GEOLOGINEN TUTKIMUSLAITOS

BULLETIN DE LA

 COMMISSION GÉOLOGIQUE

 COMMISSION GÉOLOGIQUE DE FINLANDE

N:o 208

THE CRYSTAL STRUCTURE OF STOKESITE, $\mathrm{CaSnSi}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

By
ATSO VORMA

```
                        GEOLOGINEN TUTKIMUSLAITOS
```

BULLETIN DE LA COMMISSION GÉOLOGIQUE DE FINLANDE N:o 208

THE CRYSTAL STRUCTURE OF STOKESITE, $\mathrm{CaSnSi}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

By
ATSO VORMA

Abstract

The structure of stokesite, $4\left(\mathrm{CaSnSi}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$, has been determined by twodimensional Fourier methods. The space group is Pnna and the unit cell dimensions are: $a=14.465 \pm 0.005 \AA, b=11.625 \pm 0.004 \AA$, and $c=5.235 \pm 0.003 \AA$. Spirallike chains of composition $\left(\mathrm{SiO}_{3}\right)_{\mathrm{n}}$ run parallel to the b axis. The repeat unit in the tetrahedral structure is six tetrahedra. Thus the structure of stokesite represents a new kind of chain silicate. The chains are bound together by octahedrally coordinated Sn^{4+} and also octahedrally coordinated Ca^{2+} ions. The coordination octahedron $\left[\mathrm{SnO}_{6}\right]$ is almost regular, the average $\mathrm{Sn}-\mathrm{O}$ distance being $2.033 \AA$. The coordination polyhedron $\left[\mathrm{CaO}_{6}\right]$ is more irregular. The average $\mathrm{Ca}-\mathrm{O}$ distance is $2.376 \AA$.

In addition to the crystal structure determination the indexed powder data table is given. The elimination of many coincident reflections from this table is based on the theoretical intensity calculations.

PREFACE

During the period 1961-1962 I had the opportunity to do x-ray crystallographical work at the Department of Mineralogy and Petrology of the University of Cambridge, England. For this opportunity, I am greatly indebted to Professors W. A. Deer, C. E. Tilley, P. Eskola, and V. Marmo.

This paper gives the results of the research work on the crystal structure of stokesite. This work was the major subject on which I concentrated while staying in Cambridge.

It is a great pleasure to thank Dr. P. Gay under whose supervision this work was done. He also supplied the material used during the investigation. Dr. Gay has offered many helpful suggestions and criticized the manuscript. I should also like to thank him and Dr. C. H. Kelsey for correcting the English of this paper. Dr. Kelsey has in addition given me advice during the work, especially in mathematical problems, and critically read the manuscript.

My thanks are also due to the other members of the staff of the Department of Mineralogy and Petrology for valuable suggestions and discussions. Especially I would like to thank Dr. M. G. Bown and Mr. K. O. Rickson. Dr. M. V. Wilkes kindly gave permission to have the calculations performed on the EDSAC II computer in the Mathematical Laboratory of the University of Cambridge. The programs for these calculations were devised by Mr. M. Wells.

Among the persons to whom I want to express my sincere thanks I will mention Professor K. J. Neuvonen who originally awakened my interest in x-ray mineralogy and crystallography and who has shown great interest in this work. I wish to express my appreciation also for his valuable criticism.

The impetus for this work to be published in this form was provided by my teacher, Professor M. Saksela, to whom this project is of great interest. It is a great pleasure to acknowledge this.

To the director of the Geological Survey of Finland, Professor V. Marmo, I am greatly indebted for encouraging me to specialize in this field of science. He also gave permission to have this work published in the series of the Geological Survey. To my chief, Professor A. Simonen, I am extremely
grateful for his interest and sympathetic attitude without which this work could not have been carried out.

Mrs. Toini Mikkola, Mag. Phil., has kindly helped me with the difficulties of the English language and Mrs. Elsa Järvimäki has drawn the pictures and electron density maps for which I wish to express my appreciation.

This work has been financially supported by the foundation Tekniikan Edistämissäätiö, Helsinki, for which I am very grateful.

Helsinki, January 1963
Atso Vorma

CONTENTS

PREFACE
Page 5
SUMMARY OF PREVIOUS WORK
UNIT CELL SIZE DETERMINATION AND THE POWDER DATA 11
INTENSITY DATA 13
COLLECTION OF THE DATA 13
CORRECTIONS TO THE DATA 14
OTHER CONSIDERATIONS 15
DEDUCTION OF THE TRIAL STRUCTURE 17
REFINEMENT OF THE STRUCTURE 20
REFINEMENT OF THE PROJECTION ON (001) 20
REFINEMENT OF THE PROJECTIONS ON (100) AND (010) 31
ACCURACY OF THE STRUCTURE DETERMINATION 35
DESCRIPTION OF THE STRUCTURE 39
CORRELATION OF THE STRUCTURE TO OTHER KNOWN CHAIN SILICATE STRUCTURES 44
REFERENCES 47

SUMMARY OF PREVIOUS WORK

Until now stokesite has been examined only twice: 1900 when Hutchinson described it for the first time - preliminary communication was given previously in 1899 (Phil. Mag., ser. 5, vol. 48, p. 480) - and 1960 when Gay and Rickson confirmed its chemical composition, determined the space group, and cell size and gave the x-ray powder data. These data have, in addition, once been used for the identification of the only other known stokesite occurrence in the world (Čech 1961).

The original locality for the material described by Hutchinson, and Gay and Rickson is Roscommon Cliff, St. Just, Cornwall, England, where stokesite occurs in association with axinite. The same material has been used in this work. The other known occurrence of stokesite is in Czechoslovakia in a lithium-bearing pegmatite at Ctidružice near Moravské Budějovice in Western Moravia in association with cryptocrystalline cassiterite.

Hutchinson gave an accurate morphological description of the mineral and showed it to belong to the orthorhombic holosymmetric class with

Table 1. Chemical composition and physical data of stokesite.

	1	2	Physical data			
$\begin{aligned} & \mathrm{SiO}_{2} \\ & \mathrm{SnO} \\ & \mathrm{CaO} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{array}{ll} 43.1 & \text { wt. } \% \\ 33.3 & \\ 13.45 & \\ \frac{8.6}{98.6} & \end{array}$	$\begin{aligned} & 33.7 \mathrm{wt} . \% \\ & 13.3 \end{aligned}$	Colourless, transparent Lustre vitreous $\alpha \\| c=1.609$ $\beta \\| a=1.6125$ $\gamma \\| b=1.619$ $2 \mathrm{~V}_{\gamma}=69.5^{\circ}$ (Na-light) Dominant forms $\{110\}$ and $\{211\}$ Cleavage $\{101\}$ perfect, $\{100\} \text { less perfect }$ Fracture conchoidal, brittle Hardness about 6, specific gravity 3.185			

1. Hutchinson 1900.
2. Gay and Rickson 1960.

Note: The physical data are in accordance with the unit cell determined by Gay and Rickson.
$a: b: c=0.3463: 1: 0.8033$. His microchemical analysis is recorded in Table 1. It leads to the empirical formula $\mathrm{CaSnSi}_{3} \mathrm{O}_{11} \mathrm{H}_{4}$. Mention should also be made of the results of Hutchinson's determinations of the water expelled at different temperatures. The mineral remained unchanged at $100^{\circ} \mathrm{C}$, heated to $220^{\circ} \mathrm{C}$ it lost 1.9 per cent, at $350^{\circ} \mathrm{C}$ the loss amounted to 6 per cent, and the rest of water was given off between $350^{\circ} \mathrm{C}$ and dull redness. From these numbers Hutchinson concluded that the water is not present as water of crystallization but is bound water.

Gay and Rickson (op. cit.) showed by x-ray methods that stokesite is really orthorhombic having the following cell size: $a=14.41 \AA, b=11.61 \AA$, and $c=5.23 \AA$ (all $\pm 0.03 \AA$). The space group was shown to be Pnna. They also confirmed the CaO and SnO content of the mineral by x-ray emission micro-analytical technique (Table 1) and showed the unit cell content to be $4\left(\mathrm{CaSnSi}_{3} \mathrm{O}_{11} \mathrm{H}_{4}\right)$. The cell used by Gay and Rickson is derived from Hutchinson's morphological unit by the transformation 010/001/100.

Physical properties given by Hutchinson and recorded by Gay and Rickson are also repeated here because they are dependent on the crystal structure (Table 1).

UNIT CELL SIZE DETERMINATION AND THE POWDER DATA

During the refinement of the structure the lengths of the a, b, and c axes given by Gay and Rickson (1960) were used. At the end of the accuracy estimation it became clear that the inaccuracy in the unit cell size was one of the greatest sources of error in the interatomic distances. Therefore it seemed reasonable to redetermine the cell size more accurately so that the remaining possible errors would have no influence upon the final interatomic lengths and angles.

For this purpose the Unicam back reflection flat plate camera was used with silicon as internal standard (crystal to film distance being about 25.3 mm varying slightly for different films). Cu-radiation was used and the results shown in Table 2 were obtained. Using such derived values for cell dimensions it is possible to discount the influence of inaccuracy in cell size upon the interatomic lengths and angles.

An attempt was also made to determine the unit cell size from the powder data. This was unsuccessful because the high angle reflections overlapped. The theoretical intensities of all reflections inside the limiting sphere for $\mathrm{CuK} \alpha$-radiation were calculated and compared with the observed powder

Table 2. The data for unit cell size determination.

Reflection	Radiation	Cell dimensions
18.0 .0	$\operatorname{CuK} \alpha_{1}$	$a=14.466 \AA$
0.16 .0	$\operatorname{CuK} \alpha_{2}$	$a=14.463 \AA$
0.15 .1	$\operatorname{CuK} \beta_{1}$	$b=11.625 \AA$
006	$\operatorname{CuK} \beta_{1}$	$b=11.626 \AA$
	$\operatorname{CuK} \alpha_{1}$	$($ supposing $c=5.235 \AA)$
	$\operatorname{CuK} \alpha_{2}$	$c=5.2350 \AA$
		$c=5.2351 \AA$
	Mean$a=14.465 \pm 0.005 \AA$ 	$b=11.625 \pm 0.004 \AA$
	$c=5.235 \pm 0.003 \AA$	

Note: The accuracy estimated from the formula $\Delta d=d \cdot \operatorname{tg} \Phi \Delta \Phi$

Table 3. Indexed powder data for stokesite. Measurements by Gay and Rickson 1960, indexing and d_{c} by Vorma.

lines. The indices of many planes could be eliminated because the calculated intensity of the reflections from these planes is weak. However, so many remained that it was impossible to index unambiguously all the powder lines given in the table published by Gay and Rickson. No additional lines have been listed in Table 3 which gives the measured d-spacings of Gay and Rickson and the corresponding indices deduced using the theoretical intensity data. The spacings of the planes have been recalculated using the new unit cell size.

INTENSITY DATA

COLLECTION OF THE DATA

The intensity data were collected by triple-film Weissenberg patterns using Mo-radiation and Zr filter. The reflections from $h k 0-$, $0 k l$-, and $h 0 l$ layer lines were recorded. The films were interleaved with thin tin foil which reduced the intensity by approximately $1 / 2$. They were exposed for about 30 days, 5 days, 16 hours, and some few hours respectively. The intensities were estimated visually by comparison with an intensity scale, prepared in the Weissenberg camera by selecting the 060 reflection and oscillating it $\mathrm{n}, 2 \mathrm{n}, 3 \mathrm{n}, \ldots 15 \mathrm{n}$ times through the reflecting position. When measuring the intensities of reflections where the $\alpha_{1} \alpha_{2}$ doublets were only partially resolved linear interpolation was used to estimate the combined effect. Where $\alpha_{1} \alpha_{2}$ doublets were completely resolved their sum was accepted as peak intensity. When a collimator with an aperture of 0.5 mm was used it is likely that the plateau in the centre of the spot is achieved and the peak intensity actually represents the integrated intensity (Buerger 1960, p. 84).

Intensity data were collected in all three projections to the value of $\frac{\sin \Theta}{\lambda}=1.35 \AA^{-1}$. For the (001)-projection as a whole 314 independent $h k 0$ reflections were recorded, for the (100)-projection the corresponding figure was 173 and for the (010)-projection it was 145 . The intensity data for each projection, read from various films, were placed on the same relative scale by using appropriate film factors based on the comparison of intensity readings of reflections recorded on more than one film.

Due to the small size of the stokesite crystal used in these measurements it was not possible to record very weak reflections even though the longest exposure times were as long as 30 days. The used technique gave a range of scaled intensities of approximately 1 to 750 .

During the early stages of the refinement the data for each projection have been treated independently. In the stage when the scaling seemed to
be accurate enough the mean was taken from each axial reflection occurring in more than one projection and these values were used during the latter stages.

CORRECTIONS TO THE DATA

All the recorded intensities were corrected for Lorenz-polarization factors using the charts of Cochran (1948).

The linear absorption coefficient μ for stokesite was calculated using the unit cell content and cell size given by Gay and Rickson (1960) and specific gravity given by Hutchinson (1900). For molybdenum radiation it turned out to be $41.9 \mathrm{~cm}^{-1}$. The optimum thickness of stokesite crystal for oscillation photographs would thus be $2 / \mu=0.49 \mathrm{~mm}$ (Buerger 1949, pp. 179-181). The size of the used stokesite crystal was about 0.2 mm (almost equi-dimensional fragment). Supposing that the crystal is a sphere with a radius of 0.1 mm , the transmission factor for $\mathrm{MoK} \alpha$-radiation would vary from 0.546 to 0.570 when Θ varies from 0° to 90° (Evans and Ekstein 1952). The corresponding corrections to the structure factors are so small that they have been omitted. Nevertheless it is certain that there is an absorption effect for the strongest low angle reflections, especially since the crystal used is not a sphere.

Partial allowance for secondary extinction has been made by omitting the most intense low angle reflections from the ($F_{o}-F_{c}$)-syntheses during the refinement. However, almost all the F_{o} have been included in difference maps presented, F_{200} and F_{040} being the only exceptions. In the final $F_{o^{-}}$ syntheses only these two have been replaced by the corresponding F_{c}. As a result of this the final difference maps show some features which indicate small shifts for some atoms and also adjustments of some temperature parameters. Remembering that these features are at least partly due to extinction and probably also to absorption it was thought that these small adjustments are not well founded. The magnitude of these features on the difference maps is small compared to the absolute value of the electron density at these positions on the final electron density maps showing that extinction and absorption errors are amall.

OTHER CONSIDERATIONS

All two-dimensional Fourier syntheses and greatest part of the structure factor calculations were carried out on the EDSAC II computer in the Mathematical Laboratory of the University of Cambridge, England. The programs were devised by Mr. M. Wells.

For the atomic scattering curves the analytical approximation $f(x)=$ $A e^{-a x^{2}}+B e^{-b x^{2}}+C$ was used with the constants as follows (Forsyth and Wells 1959):

	A	a	B	b	C
O	2.113	2.867	4.637	14.75	1.211
Sn	22.32	1.722	16.06	17.93	10.98
Ca^{2+}	7.062	0.8174	8.893	11.63	2.017
Si^{4+}	5.138	1.459	3.442	3.982	1.420

At the end of refinement it seemed more obvious that the Sn atom was in an ionized state. The average $\mathrm{Sn}-\mathrm{O}$ distance in the $\left[\mathrm{SnO}_{6}\right]$ coordination group turned out to be $2.033 \AA$ indicating Sn^{4+} ion (see p. 43). The structure factor calculations were performed using the atomic scattering curve for neutral Sn atom. On account of this an approximate atomic scattering curve was drawn for Sn^{4+} ion and corresponding corrections were performed to the very low angle reflections. The corrections were as a whole very small and had very little influence on the final reliability index R. Similar estimations were made to allow for the differences between the scattering curves of O and O^{2-}. In this structure the influence of the possible ionization of oxygen atoms turned out to be so small that no corrections were made to the calculated structure factors.

During the calculations of the projections on (001) of the Patterson function and electron density maps the halved value of the a axis was used and the origin was taken at a different position to that in the three dimensional space group. In the data given here the origin is always that of the three-dimensional space group Pnna ($\overline{1}$) and the sampling of points along the x direction always refers to the $14.465 \AA$-axis. The signs of the structure
factors have also been altered to correspond to the common origin, and the indices of the reflections are given in accordance with the three-dimensional space group and not with the two-dimensional plane group (pgm ; $a^{\prime}=a / 2$, $b^{\prime}=b$), where the h index is always halved. In the projections on (010) and (100) the length of the axes is the same as in three-dimensional unit cell, but the origin of the former projection is in a different position to that in the space group Pnna. The published data for this projection are also referred to the conventional unit cell of the space group Pnna.

The theoretical structure factors have been calculated for two formula units of stokesite $\left(2 \mathrm{CaSnSi}_{3} \mathrm{O}_{11} \mathrm{H}_{4}\right)$. The structure factors for the whole unit cell are thus twice those given in this work. As is to be expected in this kind of structure the influence of hydrogen atoms upon the structure factors is small and therefore has been omitted.

All the coordinates of atoms in this paper are referred to the threedimensional unit cell.

DEDUCTION OF THE TRIAL STRUCTURE

Hutchinson (1900) suggested the formal resemblance of stokesite to catapleiite $\left(\mathrm{Na}_{2} \mathrm{ZrSi}_{3} \mathrm{O}_{11} \mathrm{H}_{4}\right)$. Gay and Rickson (1960) showed that the powder photographs of these two minerals show very little resemblance. Catapleiite contains three membered $\left(\mathrm{SiO}_{3}\right)_{3}$ rings. However, before the intensity data for stokesite were available, a trial structure with a three membered ring was deduced. Subsequent structure factor calculations and F_{o}-synthesis using 70 independent reflections showed this model to be wrong. Only the tin atom was later shown to be in the correct place.

Gay and Rickson suggested, referring to the length of the c axis (5.23 \AA), that the $\mathrm{Si}-\mathrm{O}$ tetrahedral arrangement is more closely related to those of the normal band or sheet silicate structures than to that of the ring model.

Stokesite has the space group Pnna and accordingly the number of general equivalent positions in a unit cell is eight. Since there are four Sn , four Ca , twelve Si , and 44 O atoms in a unit cell, it is clear that Sn, Ca, at least four Si and four O atoms occupy special equivalent positions (in this space group there are four sets of special equivalent positions). Looking at Weissenberg photographs of different layer lines shows that the reflections with h and $k+l$ even are the most intense in the back reflection area. The heavy atom tin must be the main contributor to strong high angle reflections, and thus the tin atom must be located on one of the two sets of special equivalent positions on the centres of symmetry (Positions $4 a$ and $4 b$ in the Wyckoff notation: International Tables for X-ray Crystallography, Vol. I, p. 140, 1952). In addition the tin atom could be located in the special position $4 c$ on the diad parallel to the c axis. If the z coordinate is either 0 or $1 / 2$ (in fractional coordinates) then the reflections with h and $k+l$ even would be very strong compared with the other reflections. Thus it is possible to locate the Sn atom on $4 a, 4 b$, or $4 c$, the two first mentioned being sets of symmetry centres and the last one being a set of equipoints on the diads parallel to the c axis.

Using further the symmetry elements of this space group it is possible to conclude that at least four of the twelve Si atoms in the unit cell must be located on a diad ($4 c$ or $4 d$) since an $\left[\mathrm{SiO}_{4}\right]$ tetrahedron is not centrosym-

Fig. 1. Projection of the Patterson function of stokesite on (001). Contours at equal arbitrary intervals. The broken lines indicate negative contours.
metric. Attempts to derive a trial structure, based on the known silicate linkages, from packing considerations were unsuccessful.

When it turned to be impossible to deduce the trial structure by the methods described above, the projection of the Patterson function of stokesite on (001) was calculated using about 300 independent $\left|F_{o}\right|^{2}$. The sampling interval along each axis was $1 / 128$. Fig. 1 shows the asymmetric part of the projection of the Patterson function. This part is repeated by symmetry (pmm) to cover the whole projection of the unit cell. The origin peak has been omitted from the map as well as the centre of the peak indicating the $\mathrm{Sn}-\mathrm{Sn}$ vector. From this vector map it was possible to deduce a trial structure which at first was not quite convincing due to the very strange $\left(\mathrm{SiO}_{3}\right)_{\mathrm{n}}$ chain framework. However, it later on refined very well.

The positions of the more important interatomic vectors are indicated on the vector map. The coordinates of atoms deduced from this map are listed in Table 4. When comparing these figures with the final coordinates (Table 5) it is seen that the most noticeable difference is in the coordinates of O_{I}, which was believed to coincide in the (001)-projection with the $\mathrm{Si}_{\mathrm{II}}$ atom. z coordinates were determined at this stage by means of packing considerations. Sn atoms occupy the symmetry centre $4 b$ according to this interpretation, and Ca and Si_{I} atoms are located on diads parallel to the a axis $(4 d)$. Four oxygen atoms are situated on diads parallel to the c axis (at $4 c$) and the rest of the Si and O atoms occupy general positions in the unit cell.

Table 4. The coordinates of atoms in the unit cell of stokesite derived from (001)-Patterson projection.

Atom	Position (Wyckoff notation)	x	y	z
$\mathrm{Sn}_{\mathrm{Ca}}$	$4 e$	0	0	0
Ca_{I}	$4 e$.398	$1 / 4$	$1 / 2$
Si_{I}	$4 e$.064	$1 / 4$	$1 / 4$
$\mathrm{Si}_{\text {II }}$	$8 e$.142	.032	.00
O_{I}	$8 e$.140	.035	.60
$\mathrm{O}_{\text {II }}$	$8 e$.130	.168	.05
$\mathrm{O}_{\text {III }}$	$8 e$.423	.047	.20
O_{IV}	$8 e$.000	.172	.45
$\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$	$8 e$.285	.177	.55
O_{V}	$4 e$	$1 / 4$	0	.10

Note 1: z coordinates have been deduced on the basis of packing of atoms in the unit cell.
Note 2: The locations of atoms in every set $4 b, 4 c, 4 d$, and $8 e$ are given in Table 5.

At this stage structure factors were calculated for the strongest reflections using the coordinates of the atoms in the trial structure. The R factor for approximately $70 h k 0$ reflections was about 25%. An approximate scaling factor was used. No temperature factor was included.

REFINEMENT OF THE STRUCTURE

The refinement of the structure was based on F_{o}-syntheses and several cycles of difference syntheses on every projection. The projections used were (001), (010), and (100). Fig. 2 shows the relations of the two-dimensional plane groups of the projections to the three-dimensional space group (Pnna). The space group Pnna projects along [001] as $p 2 g m$ and along [010] and [100] as $c 2 m m$. In the (001)-projection the a^{\prime} axis is half the original a axis (in Pnna). Other axes and also the a^{\prime} axis in the other projections remain unchanged. In Fig. 2 the shaded area represents the asymmetric unit used in each projection. The cell edges a and b were sampled at 128 , the cell edge c at 64 uniformly spaced points. x and y coordinates were determined from the projection on (001) while the z coordinate was deduced from the other two projections.

REFINEMENT OF THE PROJECTION ON (001)

The projection on (001) was refined calculating first the F_{o}-synthesis using only some 140 independent reflections. The artificial termination of the Fourier series produces diffraction ripples around each atom and accordingly the apparent coordinates of every atom are slightly shifted. Because series termination effects are especially noticeable about heavy atoms, all the electron density syntheses of stokesite showed a series of negative and positive rings around the Sn peak. In the early stages of refinement these ripples were so strong that for example the atom O_{I} was not resolved at all and was therefore thought to coincide with $\mathrm{Si}_{\mathrm{II}}$. At this stage, however, it was evident that the structure deduced from the Patterson function was correct.

For this projeation 314 independent $F_{h k 0}$ were measured, of which 66 were those for which k is odd and 248 for which k is even. The first mentioned 66 reflections are those on which tin has no influence whereas the other reflections with k even are affected by tin. This uneven distribution of reflections produces some "ghost» features in the corresponding electron

Fig. 2. Schematical representation of the relations between the threedimensional space group Pnna and the axial projections of it. The shaded area in each two-dimensional projection represents the asymmetric unit used in the electron density and difference maps.
density map. There is a marked tendency for the b axis to be halved and the corresponding two parts of the projection superposed. Two cycles of difference syntheses were performed. Scaling was only approximate and no temperature factor was yet used. Wilson's statistical method of determining the temperature factor (Wilson 1942) was tried but did not give a reliable value. At this stage the structure was refined to the stage that the signs for almost all observed reflections were determined. A new F_{o}-synthesis was calculated using 305 independent reflections. O_{I} was now clearly resolved. At the same time a partial Fourier synthesis was calculated using only the reflections for which the k index was odd. This synthesis clearly interpreted the negative areas around each ghost peak (Fig. 4) on the electron density map. The result corresponds to the situation of adding two Fourier series

Fig. 3. Graph for finding the temperature parameter B and the scaling factor for stokesite in (001)-projection. Note the influence of absorption and extinction.
together of which one is terminated at small value of $\frac{\sin \Theta}{\lambda}$ and the other corresponding to a halved y axis at a high value. The atomic peaks in the first are broad, in the other sharp. Both of these series show maxima at the positions of actual atoms and the electron density is the sum of these series at the corresponding point. If the two series were terminated at the same $\frac{\sin \Theta}{\lambda}$ value, the sum at the positions of ghost peaks would be zero and this disturbing effect thus avoided.

A further set of F_{c} were calculated and values for the isotropic temperature factor B and the scaling factor were found using the formula $\ln \frac{\Sigma\left|F_{o}\right|}{\Sigma\left|F_{c}\right|}=-\frac{B \sin ^{2} \Theta}{\lambda^{2}}$ where $\Sigma|F|$ represents the sum of $|F|$ over a small range of $\left(\frac{\sin \Theta}{\lambda}\right)^{2}$. If $\ln \frac{\Sigma\left|F_{o}\right|}{\Sigma\left|F_{c}\right|}$ is plotted against $\left(\frac{\sin \Theta}{\lambda}\right)^{2}$ then the slope of the resulting straight line gives a value for B (Fig. 3).

In the (001)-projection this overall temperature factor turned out to be 0.21 . Fig. 3 also displays that the low- Θ reflections are affected either by absorption or extinction or both. In subsequent cycles of refinement (five cycles of difference syntheses) individual isotropic temperature factors were determined by the method of Cochran (1951) and the scaling was checked after every cycle. At the stage when the scaling in every projection was

Table 5. The final coordinates of atoms in the unit cell of stokesite.

Atom	Number of positions and Wyckoff notation	Coord		Estimated standard deviations
Sn	$4 b$	$\begin{aligned} & 0,0,1 / 2 \\ & 1 / 2,0,1 / 2 \\ & 0,1 / 2,0 \\ & 1 / 2,1 / 2,0 \end{aligned}$		
Ca	$4 d$	$\begin{aligned} & x, 1 / 4,1 / 4 \\ & \bar{x}, 3 / 4,3 / 4 \\ & 1 / 2+x, 1 / 4,3 / 4 \\ & 1 / 2-x, 3 / 4,1 / 4 \end{aligned}$	$x=0.4000$	$\sigma(x)= \pm 0.00022$
$\mathrm{Si}_{\text {I }}$	$4 d$	—》-	$x=0.0648$	$\sigma(x)= \pm 0.00022$
$\mathrm{Si}_{\text {II }}$	$8 e$	$\begin{aligned} & x, y, z \\ & 1 / 2, x, \bar{y}, z \\ & x, 1 / 2-y, 1 / 2-z \\ & \frac{1}{x}, \bar{y}, \bar{z}, 1 / 2+y, 1 / 2-z \\ & \frac{1}{2}+x, y, \bar{z} \\ & \bar{x}, 1 / 2+y, 1 / 2+z \\ & 1 / 2+x, 1 / 2-y, \quad 1 / 2+z \end{aligned}$	$\begin{aligned} & x=0.1415 \\ & y=0.0317 \\ & z=0.0000 \end{aligned}$	$\begin{aligned} & \sigma(x)= \pm 0.00027 \\ & \sigma(y)= \pm 0.00029 \\ & \sigma(z)= \pm 0.00077 \end{aligned}$
$\mathrm{O}_{\text {I }}$	8 e	-"-	$\begin{aligned} & x=0.1175 \\ & y=0.0090 \\ & z=0.7050 \end{aligned}$	
$\mathrm{O}_{\text {II }}$	$8 e$	—"-	$\begin{aligned} & x=0.1315 \\ & y=0.1668 \\ & z=0.0810 \end{aligned}$	
$\mathrm{O}_{\text {III }}$	$8 e$	—"-	$\begin{aligned} & x=0.4235 \\ & y=0.0480 \\ & z=0.1870 \end{aligned}$	$\left\{\begin{array}{l} \sigma(x)= \pm 0.00070 \\ \sigma(y)= \pm 0.00095 \\ \sigma(z)= \pm 0.0021 \end{array}\right.$
$\mathrm{O}_{\text {IV }}$	$8 e$	\longrightarrow -	$\begin{aligned} & x=0.0010 \\ & y=0.1720 \\ & z=0.4295 \end{aligned}$	
$\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$	$8 e$	—"-	$\begin{aligned} & x=0.2870 \\ & y=0.1770 \\ & z=0.5220 \end{aligned}$	
O_{Y}	$4 c$	$\begin{aligned} & 1 / 4,0, z \\ & 3 / 4,0, \bar{z} \\ & 3 / 4, \quad 1 / 2, \quad 1 / 2+z \\ & 1 / 4,1 / 2, \quad 1 / 2-z \end{aligned}$	$z=0.0480$	$\sigma(z)= \pm 0.0021$

believed to be accurate enough the mean was taken of the axial reflections occurring in more than one projection. During the refinement many strong reflections in the very low- Θ region were omitted because of the supposed extinction and absorption. In the final difference synthesis, however, only

Table 6. Final isotropic temperature parameters.

Atom	(001)-projection	(100)-projection	(010)-projection
Sn	.15	.16	.16
Ca	.55	.55	.60
Si_{I}	.30	.30	.35
$\mathrm{Si}_{\text {II }}$.25	.30	.30
$\mathrm{O}_{\text {I }}$.55	.55	.55
$\mathrm{O}_{\text {II }}$.70	.80	.80
$\mathrm{O}_{\text {III }}$.60	.60	.60
$\mathrm{O}_{\text {IV }}$.60	.60	.60
O_{V}	.70	.70	.70
$\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$	1.00	1.00	1.00

Note: According to the final difference map on (010) the temperature parameters for Sn, Ca, and Si_{I} are too small.
F_{200} and F_{040} have been replaced by the calculated values. The same applies to the final electron density synthesis (Fig. 4), which was calculated using all the 314 observed independent reflections.

Table 5 shows the atomic coordinates with their estimated standard deviations. In Table 6 the final isotropic temperature factors for all three projections are presented. In Table 7 the $F_{h k 0}$ are recorded. The reliability index for all 314 observed reflections was 9.99 per cent.

The final difference synthesis (Fig. 5) indicates some anisotropic temperature movements for $\mathrm{Sn}, \mathrm{Si}_{\mathrm{I}}, \mathrm{Ca}$, and possibly for $\mathrm{Si}_{\mathrm{II}}$. However, the disturbances in the difference synthesis map are so small compared with the electron density in the middle of the corresponding atoms in the F_{o} synthesis that it seemed a waste of time to determine the anisotropic parameters in the case of stokesite, especially when the influence of extinction and absorption was uncorrected.

In the electron density map the most marked features are the very high electron densities in the middle of atoms and the sharpness of atomic peaks. This is due to the termination of the Fourier series at very high $\frac{\sin \Theta}{\lambda}$ value (1.35). The other conspicuous feature is the diffraction rings about the atoms, especially about tin. These rings could have been avoided by using artificial temperature factors. However, the actual refinement was done using difference syntheses where the series termination effects overcome and so there was no need to apply an artificial temperature factor. The third already mentioned feature in the electron density map is the occurrence of ghost peaks. The ghost peaks for $\mathrm{Ca}, \mathrm{Si}_{\mathrm{I}}, \mathrm{Si}_{\mathrm{II}}, \mathrm{O}_{\mathrm{II}}, \mathrm{O}_{\mathrm{III}}$, and $\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$ are clearly shown. For Sn and O_{V} there are no ghost peaks because they do not have any influence of the $F_{k h 0}$ with k odd. The ghost peak of O_{IV} almost coincides

Table 7. Observed and calculated hk0-structure factors for stokesite.

h	k	0	F_{o}	F_{c}	$\begin{array}{llll}h & k & 0\end{array}$	$F_{\text {c }}$	F 。	$h k 0$	F_{0}	$F_{\text {c }}$	
0	0		-	370	490	19	15	830	-	2	
0	2		88	91	4100	80	79	840	64	74	
0	4	0	133	171	4110	13	10	850	32	-31	
0	6		95	114	4120	57	53	860	90	111	
0	8		77	76	4130	-	-7	870	23	-23	
	10	0	-	12	4140	68	63	880	54	54	
0	12	0	77	80	4150	-	0	890	33	-27	
0	14		-	-5	4160	48	46	8100	58	60	
0	16		48	47	4170	-	-8	8110		5	
0	18	0	26	24	4180	52	52	8120	55	52	
	20	0	41	36	4190	-	-6	8130	22	-19	
0	22	0	20	20	4200	28	26	8140	37	37	
0	24	0	48	42	4210		-3	8150	19	15	
0	26	0	-	15	4220	42	38	8160	28	25	
0	28	0	34	32	4230	-	-3	8170	-	0	
0300			17	19	4240	15	19	8180	39	37	
			4250			-2	8190	14	11		
2	0			70	113	4260	25	22	8200	14	18
2	1		-	2	4270	18	1	8210		3	
2	2		58	59	4280	18	17	8220	29	26	
2	3		31	-27	4290	15	-2	8230	-	11	
2	4	0	75	87	4300	15	18	8240	28	27	
2	5	0	7	6				8250	-	-1	
2	6	0	45	39	600	46	45	8260	27	23	
2	7	0	45	-42	610	19	16	8270	-	7	
2	8	0	64	67	620	72	84	8280	22	23	
2	9	0	25	-25	630	51	45	8290	-	-1	
2	10	0	37	30	640	27	23	8300	26	27	
	11	0	31	-25	650	20	-15				
	12	0	63	59	660	91	105	1000	63	62	
2	13	0	20	-18	$\begin{array}{lll}6 & 7 & 0\end{array}$	66	72	$10 \quad 10$		2	
2	14	0	35	32	6 8	24	23	1020	19	17	
2	15	0	20	-18	690	-	4	1030	33	-33	
2	16	0	53	47	6100	73	66	1040	45	45	
2	17	0		4	6110	34	26	1050	16	-10	
2	18	0	34	32	6120	32	27	1060	46	48	
2	19	0	-	-4	6130	11	8	1070	36	-35	
	20	0	40	38	6140	44	42	1080	45	48	
	21	0	-	8	6150	17	12	1090	16	-11	
	22	0	26	23	6160	$\overline{18}$	10	10100	52	46	
2	23	0	-	7	6170	18	-13	10110	19	-14	
2	24	0	36	30	6180	40	37	10120	67	65	
2	25	0	-	7	6190	14	11	10130		1	
2	26	0	14	16	6200	-	7	10140	38	38	
	27	0	-	2	6210	15	-13	10150		-8	
2	28	0	23	21	6220	36	29	10160	50	53	
2	29	0	-	5	6230	-	1	10170	5	10	
23	300		15	15	6240	14	17	10180	32	37	
					6250	-	-5	10190		-3	
4	0		19	16	6260	25	26	10200	35	33	
4	1.		10	-6	6270	-	2	10210	85	3	
4	2	0	46	46	6280	22	18	10220	26	26	
4	3		36	29	6290	-	-4	10230	-	-1	
4	4	0	22	15	6300	33	28	10240	28	26	
4	5		36	32				10250	-	0	
4	6		73	78	800	103	119	10260	12	13	
4	7		20	17	810	42	-47	10270	-	-4	
4	8		36	33	820	74	95	10280	20	19	

4 971-63

Table 7. (Continued).

Table 7. (Continued).

h	k	0	F_{0}	F 。	h	k		F_{o}	$F_{\text {c }}$	h	k	$F_{\text {o }}$	F_{c}
	21	0		8	26	21	0	-	-4	32	50	\cdots	8
	22	0	18	17	26		0	21	25	32	60	23	21
	23	0	-	0						32		-	-3
	24	0	20	19	28	0		43	45	32	80	24	26
	25	0		4	28	1	0		0	32	90		6
	26	0	15	18	28	2		29	31	32	10	23	22
					28	3		-	5	32	11		2
24	0		30	24	28	4		36	36	32	120	30	33
	1	0	-	3	28	5			0	32	130		1
24	2		33	36	28	6		26	29	32	140	16	21
24	3		12	-13	28	70			6	32	150		0
	4	0	14	14	28	8		24	24	32	16	22	27
	5	0		0	28	9		-	0	32	170	-	4
	6	0	45	48	28	10		21	17	32	180	17	21
24	7	0	14	-15	28	110		-	0				
	8		20	16	28	120		25	22	34	00	21	21
	9	0		0	28	13		-	-3	34	10	-	1
	10	0	41	40	28	14		-	11	34	20	23	25
	11	0	-	-6	28	15	0	-	-2	34	30	-	2
	12	0	31	29	28	16		19	19	34	40	23	21
	13	0		5	28	17			-6	34	50	-	3
	14	0	33	36	28	18	0	15	16	34	60	23	35
	15	0	-	-2	28	19		-	-2	34	70	-	5
	16	0	26	24	28	20	0	15	17	34	80	20	20
	17	0	-	10	28	210			-3	34	90		4
	18	0	40	39	28	22	0	14	18	34	100	19	24
	19	0	-	1						34	110	-	5
	20	0	-	17	30	0		29	32	34	120	16	18
	21	0	-	7	30	1	0	-	2	34	130	-	3
	22	0	28	28	30	2		-	9	34	140	14	19
	23	0	-	3	30	3		-	-3	34	150	-	2
	24	0	18	17	30	4		23	27	34	160	11	16
					30	5			-3				
26	0		24	20	30	6		15	15	36	00	22	23
	1		-	0	30	70		-	-5	36	10	-	-5
26	2	0	38	38	30	8		25	26	36	20	24	28
26	3		-	5	30	9		-	-5	36	30		1
26	4	0	25	22	30	10		12	11	36	40	20	19
26	5	0	-	9	30	110		-	-7	36	50	-	-9
26	6		32	33	30	12		27	29	36	60	20	27
26	7	0	-	5	30			-	-2	36	70	-	-1
26	8	0	21	22	30	14	0	-	10	36	80	11	15
26	9	-	-	8	30	15		-	-4	36	9	-	-7
	10	0	33	32	30	16	0	21	22	36	10	18	21
	11	0	-	7	30			-	0	36	110	-	0
	12	0	21	19	30	18	0	11	14	36	120	12	14
	13	0	-	1	30	19		-	2				
26	14	0	26	31	30	20	0	15	19	38	00	16	17
	15	0	-	1						38	10	-	-4
	16	0	20	21	32	0		25	23	38	20	10	13
26	17	0		-1	32	1	0	-	0	38	30	-	0
	18	0	26	29	32	2		-	10	38	40	8	11
	19	0	-	-5	32	3		-	-1	38	50	-	-7
	20	0	17	19	32	4	0	20	21	38	6	23	19

Fig. 4. Electron density projection on (001) of the asymmetric unit of stokesite. Contours at intervals of $8 e . \AA^{-2}$ for Ca, Si, and $0,40 e . \AA^{-2}$ for Sn (heavy lines). Negative area shaded.

$0 \quad 1 \quad 3 \AA$
Fig. 5. Final $\left(F_{o}-F_{c}\right)$-synthesis of stokesite on (001). Contours at intervals of $1 e . \AA^{-\mathbf{2}}$. Broken lines negative contours.

Fig. 6. Electron density projection of stokesite on (100). Contours at intervals of $8 e . \AA^{-2}$, heavy lines at intervals of $40 \mathrm{e} \cdot \AA^{\mathbf{- 2}}$. Negative area shaded.

Fig. 7. Electron density projection of stokesite on (010). Contours as in Fig. 6.
\qquad

Fig. 8. Final $\left(F_{o}-F_{c}\right)$-synthesis of stokesite on (100). Contours at intervals of 1 e. $\AA^{-\mathbf{t}}$. Broken lines negative contours.

Fig. 9. Final $\left(F_{o}-F_{c}\right)$-synthesis of stokesite on (010). Contours at intervals of $2 e . \AA^{-\mathbf{2}}$. Broken lines negative contours.

Table 8．Observed and calculated 0kl－structure factors for stokesite．

0	k	l	F 。	F 。	$0 k$	l	F 。	F 。	$0 k$	l	F o	$F_{\text {c }}$
0	0	0	－	370	017	3	49	－49		7	27	－27
0	2	0	88	91	019	3	38	－38	07	7	36	-31
0	4	0	133	171	021	3	39	－32	09	7	33	－32
0	6	0	95	114	023	3	32	－28	011	7	33	－36
0	8	0	77	76	025	3	22	－19	013	7	41	－37
	10	0		12	027	3	14	－16	015	7	35	－35
0	12	0	77	80	029	3	13	－14	017	7	35	－33
0	14	0	－	－5					019	7	30	－30
	16	0	48	48	00	4	102	128	021	7	26	－26
	18	0	26	23	02	4	57	56	023	7	20	－21
	20	0	41	36	04	4	104	111	025	7	19	－19
0	22	0	20	20	06	4	41	39	027	7	12	－16
0	24	0	48	42	08	4	78	75				
	26	0	－	14	010	4	21	20				
0	28	0	34	32	012	4	56	51			50	50
0	30	0	17	19	014	4	－	7	0 0	8	28	25
					016	4	40	41	0 0	8	${ }^{54}$	55
0	1	1	50	－46	018	4	37	8	0	8	50	47
0	3	1	11	－14	020	4	37	33	010	8	16	15
0	5	1	66	－65	022	4	11	15	012	8	29	29
0	7	1	56	－56	024	4	33	31	014	8		9
0	9	1	56	－55	026	4	15	17	016	8	25	25
	11	1	76	－75	028	4	31	30	018	8		3
	13	1	61	－59	030	4	14	16	020	8	23	23
	15	1	59	－54					022	8	－	10
	17	1	53	－53		5	29	－31	024	8	22	21
	19	1	35	－35	$\begin{array}{ll}0 & 3 \\ 0 & 5\end{array}$	5	22 49	－26	026	8	14	16
	21	1	30	－31	05	5	49	－47			14	16
	23	1	30	－28	07	5	50	－53				
0	25	1	16	－17	$0 \quad 9$	5	50	－52	01	9	27	－25
0	27	1	18	－17	011	5	67	－61	03	9	29	－27
	29	1	14	－17	013	5	54	－55	05	9	25	－27
					015	5	46	－46	0	9	32	－29
0	0	2	79	89	017	5	38	－42	0	9	35	-32
0	2	2	109	107	019	5	37	－34	011	9	30	－32
0	4	2	33	26	021	5	25	－26	013	9	34	－33
0	6	2	136	136	023	5	21	－23	015	9	33	－33
0	8	2	9	10	025	5	18	－19	$\bigcirc 17$	9	28	－29
	10	2	71	70		5	16	－17	019	9	27	－27
	12	2	22	22	029	5	12	－15	021	9	22	-25
	14	2	39	37		6	44	39	023	9	17	－20
	16	2	－	5		6	88					
	18	2	42	40	04	6	40	41	0		32	29
	20	2		2		6	68	61	0		49	49
	22	2	37	34	08	6	22	21	04		28	24
0	24	2	18	17	010	6	47	49	06		41	40
	26	2	30	30	012	6		0	08		16	15
	28	2	20	20	014	6	37	36	010	10	34	29
	30	2	30	31	016	6		9	012	10	－	10
					018	6	27	27	014	10	21	24
0	1	3	40	－39	020	6	16	14	016	10	－	9
0	3	3	20	－15	022	6	29	31	018	10	21	23
0	5	3	44	－41	024	6	10	12	020	10	12	12
0	7	3	37	-36	026	6	27	29	022	10	21	22
0	9	3	36	－33	028	6	15	16				
0	11	3	50	－52					01	11	11	－15
0	13	3	47	－46	01	7	23	－23	03	11	18	－19
0	15	3	47	－45	03	7	21	－22	05	11	16	－20

Table 8. (Continued).

0	k	l	F_{o}	F_{c}	0	k		$F_{\text {o }}$	$F_{\text {c }}$	0	k	l	F_{0}	F_{c}
	7	11	19	-23	0	4	12	27	28	0	5	13	13	-17
	9	11	29	-28	0	6	12	18	16	0			15	-17
	11	11	27	-28	0	8	12	24	22	0			17	-18
	13	11	28	-27		10	12	-	8	0	11		18	-19
	15	11	27	-27		12	12	20	21		13		17	--20
	17	11	20	-23		14	12	20	6				17	-20
0	19	11	18	-20	0	16		14	16	0	0		17	19
0		12	35							0			24	25
0	2	12	35 15	34 15	0 0	1	13 13	13 16	-16 -16	0			16 23	16 27

with the ordinary O_{IV} peak and the ghost peak for O_{I} is absent partly for the same cause, and partly because it has a location in the unit cell where the influence for the reflections with k odd is very small.

The negative electron density areas are shaded and it is clearly seen that these are produced mainly either by series termination ripples or by the negative depressions about the ghost peaks.

REFINEMENT OF THE PROJECTIONS ON (100) AND (010)

Space group Pnna projects both on (100) and (010) as two-dimensional plane group cmm . These two projections were refined simultaneously after the first two cycles of refinement of the (100)-projection. All the $F_{0 k l}$ are affected by tin and therefore the signs for all strong reflections are determined as soon as the tin is located. Unfortunately there are in this projection very many overlapping pairs of atoms: two Sn, Ca and Si_{I}, two $\mathrm{Si}_{\mathrm{II}}, \mathrm{O}_{\mathrm{IV}}$ and $\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$ (Fig. 6). Due to the two overlapping Sn atoms the diffraction ripples about them are extremely strong.

In the (010)-projection only the reflections with h and l even are influenced by tin, the other ones with h and l odd are not influenced by tin. Again the reflections affected by Sn are usually much stronger than the other ones and whilst it was possible to record 122 reflections with h and l even, only 23 with h and l odd were recorded. The formation of ghost peaks is therefore very clear in this projection also. Thus $\mathrm{Ca}, \mathrm{Si}_{\mathrm{I}}, \mathrm{O}_{\mathrm{I}}$, and $\mathrm{O}_{\mathrm{III}}$ atoms have very marked ghost maxima (Fig. 7). The ghost peaks for O_{V} and $\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$ are represented by the spreading out of the peak maxima parallel to the c axis. The ghost peak of $\mathrm{Si}_{\text {II }}$ coincides with the actual peak and thus is not seen on the electron density map.

Six cycles of refinement of the (100)-projection and four of the (010)projection were carried out. Four cycles were performed simultaneously.

Table 9．Observed and calculated h0l－structure factors for stokesite

h	0	l	F 。	F 。	h	0	l	F 。	F 。	h	0	l	F_{0}	$F_{\text {c }}$
0	0	0	－	370	34	0	2	18	25	29	0	5	－	6
2	0	0	70	113	36	0	2	32	28		0	5	－	－2
	0	0	19	16	38	0	2	11	18	33	0	5	－	－7
	0	0	46	45						35	0	5	－	－1
8	0	0	103	119	1	0	3	5	3	37	0	5	－	0
10	0	0	63	63	3	0	3	28	26					
12	0	0	51	52	5	0	3	32	29		0	6	44	39
14	0	0	82	91	7	0	3	－	2		0	6	27	25
16	0	0	59	61	9	0	3	40	－37		0	6	36	36
18	0	0	38	35	11	0	3	9	－9		0	6	57	59
20	0	0	50	50	13	0	3	8	5		0	6	49	44
22	0	0	41	40	15	0	3	14	10	10	0	6	20	20
24	0	0	30	25	17	0	3	12	－13	12	0	6	33	27
26	0	0	24	21	19	0	3	－	0	14	0	6	55	50
28	0	0	43	45	21	0	3	－	10	16	0	6	24	25
30	0	0	29	31	23	0	3	－	8	18	0	6	15	14
32	0	0	21	23	25	0	3	－	-7	20	0	6	24	24
34	0	0	21	21	27	0	3	－	－10	22	0	6	33	29
36	0	0	22	22	29	0	3	－	－4	24	0	6	25	25
3	0	0	16	17	31	0	3	－	4	26	0	6	27	27
					33	0	3	－	4	28	0	6	27	26
	0	1	33	－32	35	0	3	－	2	30	0	6	9	10
3	0	1	62	－59	37	0	3	－	－3	32	0	6	－	8
5	0	1	38	－35						34	0	6	18	21
	0	1	18	13	0	0	4	102	128			7		
9	0	1	32	27		0	4	50	55	3	0	7	17	
11	0	1	25	23		0	4	26	21	3	0	7	17	15
13	0	1	5	－4		0	4	44	39	7	0	7	－	－ 7
15	0	1	10.	－9		0	4	57	58		0	7	－	－6
17	0	1	－	－5	10	0	4	42	40		0	7	－	－69
19	0	1	－	3	12	0	4	40	40	13	0	7	－	9 -3
21	0	1	－	－6	14	0	4	57	58	15	0	7	－	－3
23	0	1	－	－9	16	0	4	37	34	17	0	7	－	－2
25	0	1	－	2	18	0	4	34	32	19	0	7	－	-9 3
27	0	1	－	12	20	0	4	46	46	21	0	\％	－	3
29	0	1	－	5	22	0	4	33	32	21	0	？	－	6
31	0	1	－	－7	24	0	4	14	12	25	0	7	－	${ }_{0}$
33	0	1	－	－8	26	0	4	16	16	25		？	－	－
35	0	1	－	1	28	0	4	37	36	27 29		\％	－	-7 -6
37	0	1	－	4	30	0	4	24	26	29 31	0	7	－	
					32	0	4	16	19	31	0	7	－	0
0		2	79	89	34	0	4	19	20	0	0	8	50	50
2	0	2	25	22	36	0	4	16	19	2	0	8	35	33
4	0	2	86	104							0	8	20	17
6	0	2	121	136	1	0	5	18	－14	6	0	8	36	31
8	0	2	95	105	3	0	5	25	－23	8	0	8	36	30
10	0	2	28	25		0	5	10	－7	10	0	8	21	24
12	0	2	39	36		0	5	15	13	12	0	8	29	25
14	0	2	70	81	9	0	5	－	1	14	0	8	37	33
16	0	2	43	43	11	0	5	－	5	16	0	8	17	17
18	0	2	19	18	13	0	5	－	-7	18	0	8	23	22
20	0	2	50	46	15	0	5	－	7	20	0	8	37	34
22	0	2	51	52	17	0	5	－	0	22	0	8	27	27
24	0	2	35	37	19	0	5	－	2	24	0	8	－	6
26	0	2	25	23	21	0	5	－	－9	26	0	8	9	10
28	0	2	38	34	23	0	5	－	－8	28	0	8	23	24
30	0	2	18	19	25	0	5	－	0	30	0	8	20	23
32	0	2	15	17	27	0	5	－	9	32	0	8	11	16

Table 9. (Continued).

$\begin{array}{llll}h & 0 & l\end{array}$	R_{o}	F_{c}	$h 00$	Fo	F_{c}	$h 0$ l	F_{0}	F c
109	-	-3	14010	21	33	4012	15	14
309	14	-10	16010	20	23	6012	19	22
509	-	-3	18010	13	14	8012	18	23
709	-	7	20010	16	16	10012	14	18
909	-	3	22010	21	23	$\begin{array}{llll}12 & 0 & 12\end{array}$	19	21
1109	-	-1	24010	14	20	14012	26	28
1309	-	-7	26010	17	21	16012	13	18
1509	-	7	28010	14	19	18012	11	15
1709	-	6				20012	16	22
1909	-	-1	1011	-	9			
2109	-	-8	3011	-	9			
23009	-	-4	5011	-	1	$1 \begin{array}{ll}1 & 13 \\ 3\end{array}$	-	-3
2509	-	4	7011	-	-6	$\begin{array}{llll}3 & 0 & 13\end{array}$	-	-9
2709	-	3	9011	-	-2		-	0
			11011	-	4	$\begin{array}{llll}7 & 0 & 13 \\ 9\end{array}$	-	4
			13011	-	-1	$\begin{array}{llll}9 & 0 & 13\end{array}$	-	3
0010	32	30	15011	-	-2	11013	-	0
2010	25	22	17011	-	-2			
4010	17	17	19011	-	3	0014	17	20
6010	38	37	21011	-	4	2014	11	17
8010	38	33				4014	10	16
10010	18	17	0012	35	34	6014	21	27
12010	17	16	2012	23	25	8014	20	25

Finally the corresponding electron density maps were calculated (Figs. 6 and 7). The reliability index for all the 173 observed $F_{0 k l}$ (Table 8) was 6.48 per cent and for the 145 observed $F_{h 0 l}$ (Table 9) was 13.33 per cent. The final z coordinates of the atoms are given in Table 5.

On both projections the overlapping of atoms is conspicuous as is also the influence of series termination effect. The series termination effect is most marked for the atom $\mathrm{O}_{\text {IV }}$ in the projection on (010) in which the centre of the atom coincides with the first minimum about the Sn atom. In the final difference maps there are also some notable features. In (010)projection there is a deep depression (-12 e. \AA^{-2}) in the electron density at the position of Sn . In the corresponding F_{o}-synthesis the height of the peak is almost $400 \mathrm{e} \cdot \AA^{-2}$ and so the relative value of the depression is not very great. It may be partly due to the slightly incorrect scaling, partly incorrect temperature factor but certainly it is partly due to the inclusion in the last difference synthesis of all the strong low angle reflections which may be affected by extinction and absorption (compare Fig. 3).

It is still worth while to emphasize once more that the refinements in each projection were done omitting the most intense low angle reflections, but the final difference syntheses (Figs. 8 and 9) have been calculated using all the observed F, the only exceptions being F_{200} and F_{040}, and that, although the absolute heights of the maxima and minima in the difference
$5 \quad 971$ - 63
syntheses are rather great, the relative heights compared with the final electron density maps are very small. The isotropic temperature parameters used in different projections ara listed in Table 6. The reliability factors R would have been slightly reduced if the temperature parameters in every projection had been treated completely separately but it did not seem necessary for the purpose of this work.

ACCURACY OF THE STRUCTURE DETERMINATION

The accuracy of the coordinates was estimated using the formula of Cruickshank (Cruickshank 1949, Ahmed and Cruickshank 1953), according to which in a well resolved projection the estimated standard deviation of an atomic coordinate, after finite series corrections, is

$$
\sigma(x)=\frac{1}{A} \frac{2 \pi}{a}\left\{\sum h^{2}(\Delta F)^{2}\right\}^{1 / 2} / \frac{\partial^{2} \varsigma}{\partial x^{2}}
$$

where A is the area of the cell in projection and $\frac{\partial^{2} \zeta}{\partial x^{2}}$ the curvature of the peak at its maximum. If we take $\Delta F=\left|F_{o}-F_{c}\right|$, we get an estimate of the combined experimental and residual finite series errors.

In stokesite the (001)-projection has well resolved peaks. The (010)and (100)-projections have a considerable amount of overlap. The z coordinates of the atoms were obtained by refining these two projections simultaneously using the x and y coordinates obtained from the (001)-projection. It is assumed that the z coordinates have been determined to about the same accuracy as the x and y coordinates, and therefore the standard deviations calculated for the x and y coordinates can be taken as standard deviations of the z coordinates.

The electron density for a number of atoms is closely approximated by the equation

$$
\begin{equation*}
\varsigma_{r}=\varsigma_{o}^{e^{-p r} r^{2}} \tag{Booth1946}
\end{equation*}
$$

The same applies closely to the projected electron density and leads to the following relation for the central curvature.

$$
\left(\frac{\partial^{2} \varsigma}{\partial x^{2}}\right)_{r=o}=-2 p \varsigma_{o}
$$

Table 10. Coordinates derived with three point parabola method, peak heights $\varsigma_{o}, p(x)$, $p(y)$, and central curvatures $C(x)$ and $C(y)$.

Atom	x	y	$e . \varsigma_{o} \AA^{-2}$	$\begin{aligned} & p(x) \\ & \AA^{-2} \end{aligned}$	$\begin{aligned} & p(y) \\ & \AA^{-2} \end{aligned}$	$\begin{gathered} C(x) \\ e . \AA^{-4} \end{gathered}$	$\begin{gathered} C(y) \\ e . \AA^{-\star} \end{gathered}$
Sn	0	0	379	29.4	27.6	-22300	-20900
Ca	. 3997	1/4	88	18.1	-	-3180	-
SiI	. 0651	1/4	67.0	22.7	-	-3040	-
$\mathrm{Si}_{\text {II }}$. 1406	. 0312	69.3	18.3	22.0	-2540	-3050
O_{I}	. 1168	. 0065	26.7	20.8	14.8	-1110	-815
$\mathrm{O}_{\text {II }}$. 1309	. 1680	26.8	23.9	23.2	-1280	-1240
OIII	. 4244	. 0485	33.9	34.5	24.0	-2340	-1630
$\mathrm{O}_{\text {IV }}$. 0013	. 1734	34.7	~ 30	32.5	-2080	-2 250
$\mathrm{OH}_{2} \mathrm{O}$. 2872	. 1770	23.1	~ 20	~ 18	-920	-830
OV^{2}	1/4	0	25.3	19.8	17.1	-1000	-860

The position of the maximum point of each peak was determined using the three point parabola method (see for example Megaw 1954). The coordinates thus derived are slightly different from those deduced from the difference synthesis. This is natural because in difference synthesis the series termination effect is eliminated as well as the influence of overlapping of atoms.

The coordinates of the atoms derived with the three point parabola method together with approximate maximum values of the electron density $\left(\varsigma_{0}\right)$ at these points are given in Table 10. The corresponding values of p and the derived central curvatures parallel to the x and y axes are also listed. As seen ς_{0} varies greatly depending of course on the atom concerned but also on the position with respect to the diffraction ripples round the Sn atom. The same applies to the $p(x)$ and $p(y)$ values as well as to the $C(x)$ and $C(y)$ (central curvatures). Therefore, when calculating the standard deviations for the coordinates, the O atoms have been treated together and approximate weighted means for $C(x)$ and $C(y)$ have been taken as $-1000 e . \AA^{-4}$ and -900 e. \AA^{-4}. Table 11 gives, according to Cruickshank's formula, estimated standard deviations. The corresponding estimated standard deviations in fractional coordinates are given in Table 5 p. 23.

The accuracy of the coordinates is fairly good. It mainly depends on the very high $\frac{\sin \Theta}{\lambda}$ value where the Fourier series were terminated. The R factors (Table 12) in this case probably give an overestimate of the accuracy of the structure. In the (100)-projection the positions of Ca, Sn, and Si_{I} and the y coordinate of O_{v} are fixed by symmetry. The R factor for this zone is 6.48 per cent. This probably reflects the accuracy of the intensity measurements. For $F_{h k 0}$ and $F_{h 0 l}$ the R factors are about 10 and 14 per cent. This is still fairly good and one is prepared to say that the good agreement between

Table 11. Estimated standard deviations derived by the method of Cruickshank.

Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
Sn	-		
Ca	$.0031 \AA$	-	-
Si_{I}	$.0032 \AA$	-	-
$\mathrm{Si}_{\mathrm{II}}$	$.0038 \AA$	$.0034 \AA$	$.004 \AA \AA$
0	.010	\AA	$.011 \AA$

Note: $\sigma(z)$ not determined with the method of Cruickshank. It is, however, thought to be of the same magnitude as $\sigma(x)$ and $\sigma(y)$.
observed and calculated structure factors is completely due to the tin atom in a special position. Remembering, however, that tin does not affect every reflection it is possible to compare the R factors of reflections for which tin has and the other ones for which tin has no influence. For (001)-projection these two R factors are 9.21 and 13.92 per cent and the corresponding values for the (010)-projection are 13.54 and 11.83 respectively. This shows that the presence of tin does not improve very much the R factor directly.

The standard deviations of the interatomic distances were estimated using the formula

$$
\begin{aligned}
\sigma^{2}(l)=\left\{\sigma^{2}\left(x_{1}\right)\right. & \left.+\sigma^{2}\left(x_{2}\right)\right\} \cos ^{2} \alpha+\left\{\sigma^{2}\left(y_{1}\right)+\sigma^{2}\left(y_{2}\right)\right\} \cos ^{2} \beta \\
& +\left\{\sigma^{2}\left(z_{1}\right)+\sigma^{2}\left(z_{2}\right)\right\} \cos ^{2} \gamma
\end{aligned}
$$

(Ahmed and Cruickshank 1953)
where $\sigma\left(x_{1}\right), \sigma\left(y_{1}\right)$ and $\sigma\left(z_{1}\right)$ are the standard deviations of the coordinates of the first atom, etc., and $\cos \alpha, \cos \beta$ and $\cos \gamma$ are the direction cosines of the line joining the atoms.

These calculated standard deviations are given in Table 13 together with the interatomic distances. It is possible that the accuracy is slightly overestimated because of the possible influence of systematic errors caused by extinction and absorption.

The standard deviations for interatomic angles were estimated with the formula

$$
\begin{aligned}
\sigma^{2}(\Theta)= & (1 / l m \sin \Theta)^{2}\left[\left(x_{2}-x_{3}\right)^{2} \sigma^{2}\left(x_{1}\right)+\left(x_{1}-2 x_{2}+x_{3}\right)^{2} \sigma^{2}\left(x_{2}\right)\right. \\
& \left.+\left(x_{2}-x_{1}\right)^{2} \sigma^{2}\left(x_{3}\right)+\text { similar terms in } y \text { and } z\right]
\end{aligned}
$$

(Ahmed and Cruickshank 1953)

Table 12. The R factors for observed reflections in various projections.

	$h k 0$-refinement		0 kl -refinement		h0l-refinement		Notes
	Number of refl.	$\begin{gathered} R \\ (\%) \end{gathered}$	Number of refl.	$\begin{gathered} R \\ (\%) \end{gathered}$	Number of refl.	$\begin{gathered} R \\ (\%) \end{gathered}$	
	314	9.99	173	6.48	145	13.33	For all refl.
$k=$ even	248	9.21	-	-	-	-	Sn affects
$k=\mathrm{odd}$	66	13.92	-	-	-	-	
h and $l=$ even	-	-	-	-	122	13.54	Sn affects
h and $l=$ odd	-	-	-	-	23	11.83	

where Θ is the bond angle, l and m the bond lengths and x_{1}, x_{2} and x_{3} the x coordinates of the three atoms concerned. The results turned out to be of the magnitude of $0.6-0.8$ degrees.

DESCRIPTION OF THE STRUCTURE

From the coordinates, the most important interatomic distances with the estimated standard deviations were calculated as well as the interatomic angles; these are given in the Tables 13 and 14. Fig. 10 serves as a guide to the notation of atoms used in the tables.

Table 13. Most important interatomic distances for stokesite.

Table 14. Most important interatomic angles for stokesite.

Octahedron around Sn			Octahedron around Ca		
$\mathrm{O}_{\text {I }}$	- $\mathrm{Sn}-\mathrm{O}_{\mathrm{I}}{ }^{*}$	180°		$-\mathrm{Ca}-\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}^{\prime}}$	$172^{\circ} 32^{\prime}$
$\mathrm{O}_{\text {III }}$	- $\mathrm{Sn}-\mathrm{O}_{\mathrm{III}}{ }^{*}$	180°		- $\mathrm{Ca}-\mathrm{OH}_{2} \mathrm{O}$	$172^{\circ} 32^{\prime}$
$\mathrm{O}_{\text {IV }}$	- $\mathrm{Sn}-\mathrm{O}_{\text {IV }}{ }^{*}$	180°	$0_{\text {III }}$	- $\mathrm{Ca}-\mathrm{O}_{\text {III }}{ }^{\text {a }}$	$163^{\circ} 46^{\prime}$
O_{I}	- $\mathrm{Sn}-\mathrm{O}_{\text {III }}$	$90^{\circ} 53^{\prime}$	$\mathrm{O}_{\text {IV }}$	- $\mathrm{Ca}-\mathrm{O}_{\mathrm{VI}^{\prime}}$	$105^{\circ} 05^{\prime}$
$\mathrm{O}_{\mathrm{I}}{ }^{*}$	- $\mathrm{Sn}-\mathrm{O}_{\mathrm{III}}{ }^{*}$	$90^{\circ} 53^{\prime}$	$\mathrm{O}_{\text {IV }}$	- $\mathrm{Ca}-\mathrm{O}_{\text {III }}$	$68^{\circ} 53^{\prime}$
O_{I}	- $\mathrm{Sn}-\mathrm{O}_{\mathrm{III}}{ }^{*}$	$89^{\circ} 07^{\prime}$	$\mathrm{O}_{\text {IV }}{ }^{\prime}$	- $\mathrm{Ca}-\mathrm{O}_{\text {III }}$	$68^{\circ} 53^{\prime}$
$\mathrm{O}_{\mathrm{I}}{ }^{*}$	- $\mathrm{Sn}-\mathrm{O}_{\text {III }}$	$89^{\circ} 07^{\prime}$	$\mathrm{O}_{\text {IV }}$	$-\mathrm{Ca}-\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$	$82^{\circ} 05^{\prime}$
O_{I}	- $\mathrm{Sn}-\mathrm{O}_{\text {IV }}$	$92^{\circ} 16^{\prime}$	$\mathrm{O}_{\text {IV }}$,	$-\mathrm{Ca}-\mathrm{OH}_{2} \mathrm{O}^{\prime}$	$82^{\circ} 05^{\prime}$
$\mathrm{O}_{\mathrm{I}}{ }^{*}$	- $\mathrm{Sn}-\mathrm{O}_{\mathrm{IV}}{ }^{*}$	$92^{\circ} 16^{\prime}$	$\mathrm{O}_{\text {IV }}$	- $\mathrm{Ca}-\mathrm{O}_{\text {III }}{ }^{\text {a }}$	$100^{\circ} 49^{\prime}$
O_{I}	- $\mathrm{Sn}-\mathrm{O}_{\text {IV }}{ }^{*}$	$87^{\circ} 44^{\prime}$	$\mathrm{O}_{\text {IV }}$	- Ca - $\mathrm{O}_{\text {III }}$	$100^{\circ} 49^{\prime}$
$\mathrm{O}_{\mathrm{I}}{ }^{*}$	- $\mathrm{Sn}-\mathrm{O}_{\text {IV }}$	$87^{\circ} 44^{\prime}$	OIII	$-\mathrm{Ca}-\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$	$80^{\circ} 00^{\prime}$
$\mathrm{O}_{\text {III }}$	$-\mathrm{Sn}-\mathrm{O}_{\text {IV }}$	$83^{\circ} 00^{\prime}$	$\mathrm{O}_{\text {III }}$	$-\mathrm{Ca}-\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$	$80^{\circ} 00^{\prime}$
$\mathrm{O}_{\text {III }}$ *	- $\mathrm{Sn}-\mathrm{O}_{\text {IV }}{ }^{*}$	$83^{\circ} 00^{\prime}$		$-\mathrm{Ca}-\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$	$111^{\circ} 53^{\prime}$
$0_{\text {IIII }}$	- $\mathrm{Sn}-\mathrm{O}_{\text {IV }}{ }^{*}$	$97^{\circ} 00^{\prime}$		- $\mathrm{Ca}-\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$	$111^{\circ} 53^{\prime}$
$\mathrm{O}_{\text {IIII* }}$	$-\mathrm{Sn}-\mathrm{O}_{\mathrm{IV}}$	$97^{\circ} 00^{\prime}$	$\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$	$-\mathrm{Ca}-\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}^{\prime}}$	$90^{\circ} 48^{\prime}$

Tetrahedron around Si_{I}		Tetrahedron around $\mathrm{Si}_{\text {II }}$			
$\mathrm{O}_{\text {II }}$	- $\mathrm{Si}_{\text {I }}-\mathrm{O}_{\text {IV }} 108^{\circ} 57^{\prime}$	$\mathrm{O}_{\text {I }}$	$-\mathrm{Si}_{\text {II }}$	$-\mathrm{O}_{\text {II }}$	$112^{\circ} 53^{\prime}$
$\mathrm{O}_{\text {II }}$	$-\mathrm{Si}_{\text {I }}-\mathrm{O}_{\text {IV }}{ }^{\prime} 108^{\circ} 57^{\prime}$	$\mathrm{O}_{\text {I }}$	- $\mathrm{Si}_{\text {III }}$	- $\mathrm{O}_{\text {IIII }}$	$110^{\circ} 54^{\prime}$
$\mathrm{O}_{\text {II }}$	$-\mathrm{Si}_{\text {I }}-\mathrm{O}_{\text {IV }}{ }^{\prime} 1111^{\circ} 05^{\prime}$	$\mathrm{O}_{\text {I }}$	- Si ${ }_{\text {II }}$	- O_{v}	$108^{\circ} 37^{\prime}$
$\mathrm{O}_{\text {II }}$	- SiI - OiV $111^{\circ} 05^{\prime}$	$\mathrm{O}_{\text {II }}$	- Si ${ }_{\text {II }}$	- $\mathrm{O}_{\text {III }}$	$109^{\circ} 43^{\prime}$
$\mathrm{O}_{\text {III }}$	- $\mathrm{Si}_{\mathrm{I}}-\mathrm{O}_{\mathrm{II}}{ }^{\prime} 107^{\circ} 18^{\prime}$	$\mathrm{O}_{\text {II }}$	- $\mathrm{Si}_{\text {III }}$	$-\mathrm{OV}_{\mathrm{v}}$	$105^{\circ} 11^{\prime}$
$\mathrm{O}_{\text {IV }}$	- Si_{I} - $\mathrm{O}_{\text {VI }}{ }^{\prime} 109^{\circ} 30^{\prime}$	$\mathrm{O}_{\text {III }}$	- $\mathrm{Si}_{\mathrm{II}}$	$-\mathrm{O}_{\mathrm{V}}$	$109^{\circ} 02^{\prime}$
Aver	age $0-\mathrm{Si}_{\mathrm{I}}-0109^{\circ} 29^{\prime}$	Aver	age 0	$\mathrm{Si}_{\text {II }}-0$	$109^{\circ} 23^{\prime}$

$\mathrm{Si}_{\text {II }}$	$-\mathrm{O}_{\text {II }}$	$-\mathrm{Si}_{\mathrm{I}}$	$139^{\circ} 57^{\prime}$
$\mathrm{Si}_{\mathrm{II}}$	$-\mathrm{O}_{\mathrm{V}}$	$-\mathrm{Si}_{\mathrm{II}}{ }^{*}$	$162^{\circ} 26^{\prime}$

In Figs. 11, 12, and 13 the silicate framework of stokesite is schematically represented. In Fig. 11 it is seen that the structure represents a peculiar type of chain silicate the chains being parallel to the b axes. There are six tetrahedra in a repeat unit of tetrahedral structure. The chains are a helical like arrangement about the screw diads. In Fig. 12 the $\left(\mathrm{SiO}_{3}\right)_{\mathrm{n}}$ chains are projected into the plane perpendicular to the b axes and the screw diads. As seen the spiral-like structure is far from complete but has been strongly deformed. Fig. 13 shows the chains viewed along the a axis.

The $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles are $139^{\circ} 57^{\prime}$ and $162^{\circ} 26^{\prime}$ (Table 14). In a statistical treatise on $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles in different kinds of silicate structures, Liebau (1961) gives 140° as a mean value for this angle (the smallest angle he used for this mean was 129° and the greatest 166°). The $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles in stokesite are thus in accordance with the results of Liebau.

In a review of the measured $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Al}-\mathrm{O}$ distances (in tetrahedral coordination) Smith (1954) comes to the conclusion that $\mathrm{Si}-\mathrm{O}=1.60 \pm 0.01$

Fig. 10. Schematical representation of the projection on (001) of the unit cell content of stokesite.

Fig. 12. $\left(\mathrm{SiO}_{8}\right)_{\mathrm{n}}$ framework of stokesite viewed along the b axis.

Fig. 11. $\left(\mathrm{SiO}_{3}\right)_{\mathrm{n}}$ framework of stokesite viewed along the c axis.

Fig. 13. $\left(\mathrm{SiO}_{\mathbf{z}}\right)_{\mathrm{n}}$ framework of stokesite viewed along the a axis.
\AA and $\mathrm{Al}-\mathrm{O}=1.78 \pm 0.02 \AA^{1}$). In the case of stokesite there is no question of Al substitution because all the tetrahedral sites are occupied by Si . As seen in Table 13 the mean value for the distance $\mathrm{Si}_{\mathrm{I}}-\mathrm{O}$ is $1.613 \AA$ and $\mathrm{Si}_{\mathrm{II}}-\mathrm{O}$ $1.628 \AA$ thus confirming the accuracy of the structure determination. Comparison of the interatomic distances within the coordination polyhedron $\left[\mathrm{Si}_{\mathrm{I}} \mathrm{O}_{4}\right]$ and within the $\left[\mathrm{Si}_{\mathrm{II}} \mathrm{O}_{4}\right]$ tetrahedron shows that the tetrahedra are only very slightly deformed.

When applying Cruickshank's significance test (Lipson and Cochran 1957, p. 309) to the bond length differences in the $\left[\mathrm{Si}_{\mathrm{I}} \mathrm{O}_{4}\right]$ tetrahedron it is seen that the bond length variation $1.627-1.599$ is possibly significant. The bond length differences in the $\left[\mathrm{Si}_{\mathrm{II}} \mathrm{O}_{4}\right]$ tetrahedra are not significant, the only exception being the bond $\mathrm{Si}_{\text {II }}-\mathrm{O}_{\mathrm{I}}$ which may be significantly shorter than the others. Significance tests applied to the $\mathrm{O}-\mathrm{O}$ distances within the tetrahedra show that some of the $\mathrm{O}-\mathrm{O}$ distances in the $\left[\mathrm{Si}_{\mathrm{I}} \mathrm{O}_{4}\right]$ tetrahedra are possibly significantly different whilst some of the $\mathrm{O}-\mathrm{O}$ distances in the $\left[\mathrm{Si}_{\mathrm{rI}} \mathrm{O}_{4}\right]$ tetrahedra are significantly different.

An examination of Figs. 11-13 showing the silicate framework structure makes it clear that there are »tunnels» parallel to the c axis as well as parallel to the a axis. The former are occupied by Ca ions and water molecules, the latter by Sn ions.

Ca is coordinated by six oxygen atoms: $\mathrm{O},_{\text {IV }} \mathrm{O}_{\text {IV }}$ (adjacent chain), $\mathrm{O}_{\text {III }}$, $\mathrm{O}_{\mathrm{III}}, \mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$, and $\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}^{\prime}}$. The coordination number six is rare for Ca. Some of the other known silicate structures containing octahedral groups [CaO_{6}] are monticellite (Eitel 1954, p. 20), foshagite (Gard and Taylor 1960), xonotlite (Heller and Taylor 1956, pp. 46-47), and possibly some other calcium silicates. Usually Ca has a higher coordination with oxygen (7 or 8). Lower coordination numbers are probably more stable at higher temperatures. The oxygen atoms $\mathrm{O}_{\mathrm{IV}}, \mathrm{O}_{\mathrm{IV}}$, and $\mathrm{O}_{\mathrm{III}}\left(\mathrm{O}_{\mathrm{III}}\right)$ belong to three different $\left(\mathrm{SiO}_{3}\right)_{\mathrm{n}}$ chains, Ca ions therefore hold the corresponding chains together. The coordination octahedron is rather irregular as is clearly seen from the interatomic lengths and angles (Tables 13 and 14). Ca-O distances vary from 2.33 to $2.40 \AA$ (this variation is significant according to Cruickshank's significance test) the shortest distance being $\mathrm{Ca}-\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$ as is natural because all the other oxygen atoms belong at the same time to the $\left(\mathrm{SiO}_{3}\right)_{\mathrm{n}}$ chains and, due to the vicinity of Si^{4+}, the Ca^{2+} has "migrated» slightly towards $\mathrm{O}_{\mathrm{H}, 0}$. O - O distances in the octahedron vary from 2.71 to $3.81 \AA$.

Sn is coordinated more regularly than Ca in octahedral groups [SnO_{6}]. The Sn - O distances vary very little (the difference between bond lengths $\mathrm{Sn}-\mathrm{O}_{\mathrm{I}}$ and $\mathrm{Sn}-\mathrm{O}_{\mathrm{III}}$, however, is significant) being of the magnitude

[^0]$2.03 \AA$ which corresponds to the usual distance, $2.054 \pm 0.014 \AA$, between Sn^{4+} and O (International Tables for X-ray Crystallography, Vol. III, p. 264). For Sn^{2+} the corresponding distance is $2.21 \AA$ (coordination number 4). The oxygen to oxygen distances in the octahedron vary from 2.71 to $3.06 \AA$ showing much more regularity than in the coordination group $\left[\mathrm{CaO}_{6}\right]$. The oxygen atoms forming the $\left[\mathrm{SnO}_{6}\right]$ group belong to four different $\left(\mathrm{SiO}_{3}\right)_{\mathrm{n}}$ chains. Thus Sn binds these chains together.

In the summary of previous work on stokesite the results on water loss at different temperatures were given (p.10). These indicate that the water molecules are rather strongly bound to the structure. The sharp peaks on the electron density maps also show that the water molecules have fixed positions. It is probable that the adjacent Ca ion causes the water molecules to be polarized and that hydrogen bonds occur between $\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}$ and some of the oxygen atoms belonging to the silicate framework and possibly $\mathrm{O}_{\mathrm{H}_{2} \mathrm{O}^{\prime}}$. Due to the uncertainty in the coordinates of water molecules ${ }^{1}$) it is difficult to determine which of the interatomic distances really represent the hydrogen bonds; small shifts of the water molecules could change the situation completely.

Pauling's valence rule (e. g., Pauling 1954) is also approximately fulfilled. If it were possible to decide which of the interatomic distances corresponded to hydrogen bonds then it is probable that the rule would be completely fulfilled.

The structure given here for stokesite can also explain perfectly the observed cleavages. Thus both good cleavage directions are such that the silicate chains are preserved when cleaved.

[^1]
CORRELATION OF THE STRUCTURE TO OTHER KNOWN CHAIN SILICATE STRUCTURES

In the following we shall not consider the classification of the silicate structures as a whole but our attention is directed only to one special group of the chain silicates. The chain structures are generally divided into the following subtypes: single chains, double chains, multiple chains and possibly mixed chains (Liebau 1959, 1960, 1961; Zoltai 1960). In the following

Table 15. Classification of chain silicates with single chains.

Number of tetrahedra in a repeat unit	Examples	References
1	Not yet found	
2	Pyroxenes	Warren and Bragg 1928
	```Carpholite-ferrocarpholite \(\mathrm{MnAl}_{2}(\mathrm{OH})_{4} \mathrm{Si}_{2} \mathrm{O}_{6}-\mathrm{FeAl}_{2}(\mathrm{OH})_{4} \mathrm{Si}_{2} \mathrm{O}_{6}\) Ramsayite (Lorenzenite) \(\mathrm{Na}, \mathrm{Ti}_{2} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{O}_{6}\)```	MacGillavry, Korst, Moore, and Plas 1956, Strunz 1957.   Schurtz 1955
	$\mathrm{Li}_{2} \mathrm{SiO}_{3}$	Seeman 1956
	$\mathrm{BaSiO}_{3}(\mathrm{~h})$	Liebau 1960
3	$\beta$-wollastonite $\mathrm{CaSiO}_{3}$	Dornberger-Schiff, Liebau, and Thilo 1955
	${ }^{\text {Bustamite }} \mathrm{CaMn}\left(\mathrm{SiO}_{3}\right)_{2}$	Liebau 1960
	$\beta-\mathrm{MnSiO}_{3} \quad{ }^{\text {a }}$	Liebau 1960
	Pectolite $\mathrm{Ca}_{2} \mathrm{NaHSi}_{3} \mathrm{O}_{9}$	Buerger 1956
	Schizolite ( $\mathrm{Ca}, \mathrm{Mn})_{2} \mathrm{NaHSi}_{3} \mathrm{O}_{9}$ Foshagite $\mathrm{Ca}_{4} \mathrm{Si}_{3} \mathrm{O}_{9}(\mathrm{OH})_{2}$	Liebau 1957   Gard and Taylor 1960
4	Not yet found ${ }^{1}$ )	
5	Rhodonite ( $\mathrm{Mn}, \mathrm{Ca}$ ) $\mathrm{SiO}_{3}$	Liebau, Hilmer, and Lindeman 1959
6	Stokesite $\mathrm{CaSnSi}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	The present paper
7	Pyroxmangite ( $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ca}, \mathrm{Mg}$ ) $\mathrm{SiO}_{3}$	Liebau 1959



Fig. 14. Schematical representation of the single chain types found in silicates.
treatment we are only interested in the single chain structures to which stokesite also belongs. Liebau $(1959,1961)$ classifies these conveniently on the basis of the number of tetrahedra in a repeat unit of tetrahedral structure and this classification for chain silicates seems to be commonly accepted (Zoltai 1960, Wells 1962, p. 792). Accordingly it is possible to group the known single chain silicates as given in Table 15.

In Fig. 14 there is a schematic representation of all the known single chain silicate structure types. (a) represents the case of pyroxenes etc, (b) $\beta$-wollastonite etc, (c) rhodonite, (d) stokesite, and (e) pyroxmangite. Stokesite is the first silicate having six tetrahedra in a repeat unit. As seen, its silicate framework does not resemble any other chain silicate type. Liebau (1959) emphasized that the chains of $\beta$-wollastonite, rhodonite, and pyroxmangite resemble each other very much. The "three tetrahedra unit» of $\beta$-wollastonite is a part of the »five tetrahedra unit» in rhodonite which correspondingly is part of the »seven tetrahedra unit» in pyroxmangite. The two other known silicate chains do not resemble this scheme at all.

The single chain with one tetrahedron in a repeat unit has not been found in silicates. It has been found, however, in other inorganic compounds as in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CuCl}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CuBr}_{3}$, and $\mathrm{K}_{2} \mathrm{CuCl}_{3}$ (Brink and MacGillavry 1949, Brink and van Argel 1952), $\mathrm{CuGeO}_{4}$ (Ginetti 1954). The single chain with four tetrahedra in a repeat unit is the one other which has not yet been found in silicates. It is, however, also found in the inorganic compounds $\left(\mathrm{AgPO}_{3}\right)_{\mathrm{n}}$ and $\left(\mathrm{NaPO}_{3}\right)_{\mathrm{n}}$ (Jost 1961). Similar chains to those found in pyroxenes have
been found in very many compounds in addition to silicates. For example some germanates (Roth 1955), phosphates (Corbridge 1956), arsenates (Hilmer and Dornberger-Schiff 1956), vanadates (Liebau 1959), and fluoberyllates (Hahn 1953) have this kind of chain structure. The chain structure similar to that in $\beta$-wollastonite is also present in some germanates and fluoberyllates (Liebau 1957). It seems evident that no structure with repeat unit of six tetrahedra has been reported before the present work. The chains in stokesite bear some resemblance to the chains in $\left(\mathrm{AgPO}_{3}\right)_{\mathrm{n}}$ in that in both structures the chains are spiral-like. This is, however, the only resemblance; the latter has only four tetrahedra in a repeat unit.

## REFERENCES

Ahmed, F. R. and Cruickshank, D. W. J. (1953) A refinement of the crystal structure analysis of oxalic acid dihydrate. Acta Cryst. 6: 385-392.
Воотн, A. D. (1946) The accuracy of atomic coordinates derived from Fourier series in X-ray structure analysis. Proc. Roy. Soc. (London) (A) 188: 77-79.
Brink, Clara and MacGillavry, C. H. (1949) The crystal structure of $\mathrm{K}_{2} \mathrm{CuCl}_{3}$ and isomorphous substances. Acta Cryst. 2: 158-163.
—"- and van Argel, A. E. (1952) The crystal structures of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CuCl}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2}$ $\mathrm{CuBr}_{3}$. Acta Cryst. 5: 506-510.
Buerger, M. J. (1949) X-ray crystallography. New York.
—"- (1956) The determination of the crystal structure of pectolite, $\mathrm{Ca}_{2} \mathrm{NaHSi}_{3} \mathrm{O}_{9}$. Z. Kristallogr. 108: 248-262.
—》 (1960) Crystal-structure analysis. New York.
Čect, F. (1961) Occurrence of stokesite in Czechoslovakia. Mineral. Mag., 32: 673-675.
Cochran, W. (1948) The correction of X-ray intensities for polarization and Lorenz factors. J. Scientific Instruments 25: 253-254.
—" (1951) Some properties of the ( $F_{o}-F_{e}$ )-synthesis. Acta Cryst. 4: 408-411.
Corbridge, D. E. C. (1956) The crystal structure of rubidium metaphosphate. Acta Cryst. 9: 308-314.
Crutckshank, C. W. J. (1949) The accuracy of electron-density maps in X-ray analysis with special reference to dibenzyl. Acta Cryst. 2: 65-82.
Dornberger-Schiff, K., Liebau, F. and Thilo, E. (1955) Zur Struktur des $\beta$-Wollastonits, des Maddrelleschen Salzes und des Natriumpolyarsenats. Acta Cryst. 8. $752-754$.

Eitel, Wilhelm (1954) The physical chemistry of the silicates. Chicago.
Evans, Jr. H. T. and Erstein, Miriam G. (1952) Tables of absorption factors for spherical crystals. Acta Cryst. 5: 540-542.
Forsyth, J. B. and Wells, M. (1959) On an analytic approximation to the atomic scattering factor. Acta Cryst. 12: 412-415.
Gard, J. A. and Taylor, H. F. W. (1960) The crystal structure of foshagite. Acta Cryst. 13: 785-793.
Gay, P. and Rickson, K. O. (1960) X-ray data on stokesite. Mineral Mag. 32: 433-435.
Ginetti, Y. (1954) Structure cristalline du métagermanate de cuivre. Bull. Soc. Chim. Belgique 63: 209-216.
Hahn, Theo (1953) Modellbeziehungen zwischen Silikaten und Fluoberyllaten. Neues Jb. Miner., Abh. 86: 1-65.
Heller, L. and Taylor, H. F. W. (1956) Crystallographical data for the calcium silicates. London.
Henry, Norman F. M. and Lonsdale, Kathleen (1952) International tables for X-ray crystallography. Vol. I. Symmetry groups. Birmingham.

Hilmer, Waltrand and Dornberger-Schiff, Käte (1956) Die Kristalstruktur von Lithiumpolyarsenat $\left(\mathrm{LiAsO}_{3}\right)_{\mathbf{x}}$. Acta Cryst. 9: 87-88.
Hutchinson, A. (1900) On stokesite, a new mineral containing tin, from Cornwall. Mineral. Mag. 12: 274-281.
Jost, K. H. (1961) Die Struktur des Silberpolyphosphats $\left(\mathrm{AgPO}_{3}\right)_{\mathrm{x}}$. Acta Cryst. 14: 779-784.
—"- (1961) Die Struktur des Kurrol'schen Na-Salzes $\left(\mathrm{NaPO}_{3}\right)_{\mathbf{x}}$. Typ A. Acta Cryst. 14: 844-847.
Liebau, Friedrich (1957) Über die Struktur des Schizoliths. Neues Jb. Miner., Mh. 1957: 227-229.
—"- (1957) On the crystal chemistry of silicates, germanates, arsenates, vanadates and alkalifluoberyllates. Acta Cryst. 10: 790-791.
—"— (1959) Über die Kristallstruktur des Pyroxmangits ( $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ca}, \mathrm{Mg}$ ) $\mathrm{SiO}_{3}$. Acta Cryst. 12: 177—181.
—"- (1960) Zur Kristallchemie der Silikate, Germanate und Fluoberyllate des Formeltypus $\mathrm{ABX}_{3}$. Neues Jahrb. Miner., Abh. 94: 1 209—1 222.
—"- (1961) Ein erweitertes System der Silikate. Fortschr. Mineral. 39: 38-39.
—》- (1961) Untersuchungen über die Grösse des $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ Valenzwinkels. Acta Cryst. 14: 1 103—1 109.
—"- Hilmer, Waltrand and Lindemann, Gerhard (1959) Über die Kristallstruktur des Rhodonits. (Mn, Ca) $\mathrm{SiO}_{3}$. Acta Cryst. 12: 182-187.
Lipson, H. and Cochran, W. (1957) The determination of crystal structures. The crystalline state. Vol. III. London.
MacGillavry, C. H., Korst, W. L., Moore, E. J. W. and van der Plas, H. J. (1956) The crystal structure of ferrocarpholite. Acta Cryst. 9: 773-776.
—"- and Rieck, Gerald D. (1962) International tables for X-ray crystallography. Vol. III. Physical and chemical tables. Birmingham.
Megaw, Helen D. (1954) Location of atomic centres in an electron density synthesis. Acta Cryst. 7: 771.
Pauling, Linus (1954) The nature of the chemical bond. New York.
Roth, Robert S. (1955) Synthetic alkaline earth germanates isostructural with enstatite and pseudowollastonite. Amer. Mineralogist 40: 332.
Seeman, H. (1956) Die Kristallostruktur des Lithiummetasilikates, $\left(\mathrm{Li}_{2} \mathrm{SiO}_{3}\right)_{\mathbf{x}}$. Acta Cryst. 9: 251-252.
Shurtz, Robert F. (1955) Lorenzenite $\mathrm{Na}_{2} \mathrm{Ti}_{2} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{O}_{6}$. Amer. Mineralogist 40: 335 .
Smith, J. V. (1954) A review of the Al—O and Si-O distances. Acta Cryst. 7: 479—481.
Strunz, H. (1957) Ferrokarpholith-Karpholith. Acta Cryst. 10: 238.
Warren, B. and Bragg, W. Lawrence (1928) The structure of diopside, CaMg $\left(\mathrm{SiO}_{3}\right)_{2}$. Z. Kristallogr. 69: 168-193.
Wells, A. F. (1962) Structural inorganic chemistry. Oxford.
Wilson, A. J. C. (1942) Determination of absolute from relative X-ray intensity data. Nature 150: 152.
Zoltai, Tibor (1960) Classification of silicates and other minerals with tetrahedral structures. Amer. Mineralogist 45: 960—973.


[^0]:    ${ }^{1}$ ) Smith and Bailey (1962): The average of all $\mathrm{Si}-\mathrm{O}$ distances in a structure depends on the extent of the tetrahedral linkage, changing from $1.61 \AA$ in tectosilicates to $1.63 \AA$ in nesosilicates (Program, 1962 Annual Meetings, The Geological Society of America, etc.)

[^1]:    ${ }^{1}$ ) E.s.d. were determined as a mean for all oxygen atoms from the (001)-projection. The central curvatures for water molecules were considerable less than this mean value. In the other two projections the water molecules are either superposed by $\mathrm{O}_{\mathrm{IV}}$ or the maxima in electron density is elongated parallel to the $c$ axis. Thus the e.s.d. derived from the (001)-projection and applied also to the $z$ coordinates are not at all reliable in the case of water molecules.

