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Two spatial modeling techniques, empirical weights of evidence and conceptual fuzzy 
logic, were used to predict the most prospective areas for gold exploration within the 
Paleoproterozoic Central Lapland Greenstone Belt in Northern Finland. The study area 
covers almost 20 000 km2 in a terrain with excellent infrastructure and easy access in 
spite of situating in a region some 100 km north from the Arctic Circle.

For the empirical model the spatial association between the known mineral occurrences 
and selected evidential geoscientific datasets were quantified and used to generalize the 
original datasets into binary predictor patterns indicating favorable areas. The conceptual 
model, on the other hand, was created by using expert opinions on the significance of 
the anomalies within the evidential datasets.

The data used were high-resolution airborne geophysics, regional gravity, and regional 
scale multi-element till geochemistry. Both methods, empirical and conceptual, give 
comparable results, which were geologically validated and verified to be meaningful. 
The models used predicted well the known deposits and highlighted also areas with past 
and future exploration interest. Both empirical and conceptual approaches proved to be 
suitable for the purpose and the regional geochemical, geophysical and geological data 
appeared to be appropriate for regional or reconnaissance scale first stage exploration. 
According to the evidential data used and the models produced, the Central Lapland 
Greenstone Belt has regions with high potential for new greenstone hosted orogenic 
type of gold occurrences to be found.
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INTRODUCTION

The geological information collected from the Cen-
tral Lapland Greenstone Belt (CLGB) is composed 
of multiple layers of spatial data at several scales and 

with variable coverage over the area of interest. The 
total study area used in this project is 18 790 km2 
(Fig. 1), covering the essential parts of the CLGB. 

269, 2007.
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Fig. 1. Location of the study area in Lapland. The known gold occurrences and deposits marked with yellow dots. 
The most significant deposits are labeled.

The data available includes airborne high-resolution 
multi-element geophysical surveys, regional and local 
scale geochemical surveys and geological mapping in 
variable scales. There is a need for tools to efficiently 
and properly manage, manipulate, visualize and in-
tegrate this large amount of data. Having the data in 
digital format gives one an excellent opportunity to 
utilize Geographic Information Systems (GIS) to be 
used for quantitative analysis of spatial association 
between the known mineral occurrences and the 
variable geological features. The aim of this paper 

was to make a prospectivity analysis for gold within 
the CLGB and also to illustrate the possibilities to 
conduct this task by using the geo-scientific data sets 
from Northern Finland and certain selected methods as 
examples of spatial modeling tools. Furthermore, the 
goal was to use the data sets to make estimations on the 
most prospective areas for gold by using these spatial 
analytical techniques. The strengths of the GIS tools 
used is this ability to integrate and combine multiple 
geoscientific information into a single prospectivity 
map, i.e. to condense and generalize from a complex 
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METHODS

For this study the multivariate empirical method 
called weights of evidence (Bonham-Carter et al., 
1988; Agterberg et al., 1990) and a conceptual fuzzy 
logic overlay method were selected for the data integra-
tion and analysis. The weights-of-evidence method is 
based on a log-linear form of Bayes’ rule including an 

assumption that the evidential explanatory categorical 
(geological maps etc.) or ordered (geochemical and 
geophysical) variables are conditionally independent 
with respect to the deposits and occurrences used as 
training points. The GIS software used in this study 
is ArcViewTM with Spatial AnalystTM (ESRI products). 

mass of information into a substantially simpler form 
suitable for exploration or land use decisions.

Several tools for statistical and geo-statistical opera-
tions may be used to conduct mineral prospectivity 
mapping. These methods can be divided into two 
main categories (Table 1), based on the approach: (I) 
empirical (data driven) and (II) conceptual (knowl-
edge driven) methods (Bonham-Carter, 1994). In the 
empirical approach, the known mineral deposits are 
used as ‘training points’ for examining spatial rela-
tionships between the known deposits and particular 
geological, geochemical and geophysical features. 
The identified relationships between the input data 
and the training points are quantified and used to 
establish the importance of each evidence map and 
finally integrated into a single mineral prospectivity 
map. Examples of the empirical methods used are 
weights of evidence, logistic regression and neural 
networks. The other major branch is the conceptual 
(knowledge driven) approach, where we use re-for-
mulation of knowledge about deposit formation into 
mappable criteria (i.e. threshold values in geochemistry 
and geophysics etc., certain structures or formations 
in the geological maps). The areas that fulfill the 
majority of these criteria are highlighted as being the 

most prospective. These methods are dependent on the 
geologist’s input and exploration models being thus 
fairly subjective in nature. By selecting a conceptual 
method one can benefit from the expertise of the ge-
ologists during the modeling process exceeding the 
capabilities of pure statistics. The methods belonging 
into this branch include Boolean logic, index overlay 
(binary or multi-class maps), the Dempster-Shafer 
belief theory, and fuzzy logic overlay. Especially the 
latter has been recently widely implemented for the 
data integration and mineral prospectivity mapping 
purposes (Chung and Moon, 1990; An et al., 1991, 
D’Ercole et al., 2000; Knox-Robinson, 2000, Luo and 
Dimitrakopoulos, 2003).

Direct comparison between these two different ap-
proaches (empirical vs. conceptual) is difficult since 
the methods do not use identical datasets (Singer and 
Kouda, 1999; Harris et al., 2001). The selection of 
the preferable method is thus often made based on 
the available datasets and the goals of the modeling. 
Harris et al. (2001) give an excellent summary of the 
different methods. Different methods bring their own 
characteristics into modelling and allow one also to 
use them to cross-validate results from one method 
to another.

Table 1. Empirical and conceptual methods for mineral prospectivity mapping (Bonham-Carter, 1994, Harris et al. 2001).

Type Method Model parameters Criteria from combining input data

Empirical 
(data driven)

Weights of evidence Calculated from training data 
(i.e. existing mineral deposits)

Spatial relationship between the known occur-
rences and input data (use of Bayesian prob-
abilities)

Logistic regression
Neural networks

Calculated from training data 
(i.e. existing mineral deposits)

Use of training areas around each deposit to 
gather statistics from each of the input layers; 
Used to predict the presence or absence of a 
mineral deposit

Conceptual
(knowledge 
driven)

Boolean logic Estimated by an expert Summing of binary maps

Index overlay Estimated by an expert Summing of weighted binary maps

Dempster-Shafer 
belief theory

Estimated by an expert A generalization of the Bayesian theory of sub-
jective probability.

Fuzzy logic Estimated by an expert Each input predictor map assigned a fuzzy 
weight ranging from 0 to 1; all predictor maps 
then combined using fuzzy operators 
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The weights-of-evidence and fuzzy-logic modeling 
were carried out by using an ArcView add-on called 
ArcSDM, which is a tool developed by the Geologi-
cal Survey of Canada and the U.S. Geological Survey 
(Kemp et al., 2001).

Figure 2 shows how prospectivity mapping method-
ology can be divided into independent modules. The 
key issue is the exploration model, which is based on 
the expertise of the exploration team of geologists, 
geochemists and geophysicists.

Weights-of-evidence method 

Fig. 2. Flow chart of the methodology used to produce prospectivity maps.

The weights-of-evidence method is based on the 
application of Bayes’ Rule of Probability with an 
assumption of conditional independence (Bonham-
Carter, 1994). When this assumption is violated, one 
can run logistic regression to calculate the posterior 
probabilities. The essence of the Bayesian approach 
is to provide a mathematical rule explaining how 
you should change your existing beliefs in the light 
of new evidence. In other words, it allows scientists 
to combine new data with their existing knowledge 
or expertise. In the weights of evidence modelling 

this is expressed in terms of prior and posterior prob-
abilities, which are derived in the context of mineral 
exploration by calculating the spatial association of 
the known mineral occurrences or deposits (training 
sites) and the selected series of evidential maps. If 
the number of training sites falls mostly within a 
predictor pattern, it is evident that the probability of 
a training site occurring inside the pattern is higher 
than the prior probability. Respectively, the probability 
of having a training site outside the pattern is lower 
than the prior probability.
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Table 2. Terminology used in weights of evidence modeling.

Term Description

Training site or 
point

The known locations of which is being predicted. In this study the training sites are known Au deposits 
and occurrences within the study area

Study area/ 
analysis extend

The area to be studied and used as the analysis mask.

Evidential theme/
evidence

Maps used for prediction of point objects (mineral occurrences). These can be either in vector or raster 
format and either binary or multi-class.

Unit cell area/
response theme

The area, which the training sites are assumed to occupy. This is used in order to calculate the prob-
ability of the point occurrences. The output of the modeling is a map (response theme) showing the 
probability that a unit area contains a point i.e. an Au deposit in this study.

Pattern A map area having consistent, recognizable characteristics.

Weight, W+, W- The value assigned to a pattern as a predictor of the training sites. The weight for inside pattern is de-
noted as W+ and outside pattern is W-. The weights for areas of missing data are given a value of zero.

Contrast, C Difference between W+ and W- indicating how well a pattern predicts the training sites. A positive 
contrast that is significant based on its studentized contrast suggests that a pattern is a useful predictor. 
The relative values of contrast of the various patterns used in a model indicate the relative degree of 
importance of each patterns as a predictor.

Confidence
(studentized  
contrast, Stud(C))

The ratio of the contrast and the standard deviation of the contrast. This is used in similar manner to a 
Student t-test of significance of the contrast. A useful measure of significance of the contrast due to the 
uncertainties of the weights and missing data.

Prior probability The probability of a training site occurring per study area (the density of training sites in the study 
area) before consideration of the evidence. 

Posterior  
probability

The prior probability modified by consideration of the evidence from one or more patterns. The pos-
terior probability is calculated by adding a weight for each pattern to the logit of the prior probability 
and converting the sums from logits to probability. These calculations assume that the patterns added 
are conditionally independent.

Bonham-Carter (1994), Raines (1999), Singer and 
Kouda (1999), Carranza and Hale (2000) provide 
the detailed formulation of the weights of evidence 
model, which is only briefly described here. The main 
terminology used in the spatial modelling is described 
in the Table 2 (chiefly after Bonham-Carter, 1994; 
Raines, 1999).

By quantifying the degree of overlap between the 
training sites and the patterns of the evidential data 
one can calculate a pair of weights (W+ and W-) for 
each piece of evidence. If more points occur within 
a pattern than would be due to chance then W+ is 
positive and W- is negative. On the other hand, when 
W+ is negative and W- is positive then there are fewer 
points within the pattern that would be expected by 
chance. A positive W+ value indicates thus a positive 
association between the training points and the evi-
dence map, whereas a positive W- value indicates a 
negative association respectively. By calculating the 
difference or contrast (C = W+ – W-) between these 
two weights for each of the evidential maps, one can 
get a measure of the association between training 
sites and these evidence maps (Bonham-Carter et 

al., 1988). A stronger association shows as higher 
contrast value. The studentized value of the contrast, 
the ratio of contrast to its standard deviation, C/s(C), 
is calculated to test the significance of the contrast 
values (referred to in ArcSDM as the ‘confidence’ 
value). The confidence value gives an estimate of the 
uncertainty included in the weights calculation. The 
contrast values are used to generalize the evidential 
themes from multi-class maps into binary pattern maps 
indicating areas within each of the maps to be either 
“favourable” or “non-favourable”. The maximum 
contrast value can be used to point out the threshold 
to identify an anomaly in the data. The generalization 
of the multi-class themes is beneficial since the small 
number of the rare mineral deposits can lead to noisy 
and unreliable estimates of weights.

By using the presence of a predictor pattern we can 
then calculate the posterior probability, which is the 
prior probability multiplied by a factor which depends 
on the frequency with which training points occur on 
an evidential map. Posterior probability is larger than 
prior probability in the areas where the sum of the 
weights is positive.
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Fig. 3. An example of assigning fuzzy membership values (thick black line). Fuzzy membership value of 1 is ‘anomalous’ and 0 is ‘non-anomalous’. 
Values between 1 and 0 represent statements ‘probably anomalous’, ‘maybe not anomalous’ etc. The original data values were broken into a small 
number of meaningful classes by using the histogram and then the experts assigned fuzzy-membership values to the classes.

The conceptual approach is using the expertise 
of the exploration geologists, geochemists, and 
geophysicists to define the threshold values for the 
evidential datasets. For this study, the fuzzy-logic 
spatial modeling was also produced by using ArcSDM 
software (Kemp et al., 2001). In classical set theory, 
the membership of a set is defined as true or false (1 
or 0) whereas membership of a fuzzy set is expressed 
on a continuous scale from 1 to 0 (e.g. somewhere 
between ‘anomalous’ vs. ‘not anomalous’) as shown 
in Figure 3. The values of fuzzy membership can be 
chosen based on subjective judgment of an expert. 
In this study, the fuzzy membership function for 
each evidential element was defined by experts by 
taking in account the statistics of each element and 
the geological background values within each area of 
interest. Membership reflects degree of truth of some 
proposition or hypothesis, which is often a linguistic 
statement such as high magnetic values are anomalous 
for gold deposits. To define the membership function 

one needs to define the thresholds for ‘not anomalous’ 
and ‘anomalous’ values and then a function describing 
the ‘maybe – probably’ values in between these two 
thresholds. In this work, a linear function between the 
thresholds was assumed appropriate, but the shape of 
the actual function varies due to classification prior 
giving fuzzy membership values for the classes of the 
maps (Fig. 3). The fuzzy membership values reflect 
the relative importance of the each class of the maps 
used. The closer the fuzzy membership value is to one 
the more significant is the anomaly. The hypothesis 
derived from the exploration model was ‘is there a 
gold deposit’ and the fuzzy sub sets or intermediate 
hypotheses were like ‘data showing an alteration zone’ 
and ‘data showing signs of sulphides’.

After defining the fuzzy membership functions for 
each evidential map, a variety of operators can be 
used to combine the membership values together. In 
this paper, we have used the operators listed in Table 
3 (chiefly after Bonham-Carter, 1994).

Fuzzy Logic method
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Table 3. Fuzzy operators (Bonham-Carter, 1994).

Operator Boolean equivalent Desrciption

Fuzzy AND AND
(logical intersection)

This could also be called as Min-operator as it creates an output, 
which is controlled by the smallest fuzzy membership values at 
each location. It results in a conservative estimate of set member-
ship, with tendency to produce small values and minimum areas. 
Useful to find the areas where all the evidence used need to be 
present for the hypothesis to be true.

Fuzzy OR OR
(logical union)

This could be called as Max-operator as it creates an output, 
whose membership values are controlled by the maximum values 
of any of the input maps. By using this operator any positive 
evidence may be sufficient to suggest favourability.

Fuzzy Algebraic Product The combined fuzzy membership values tend to be very small 
due to the effect of multiplying several numbers less than 1. The 
output is always smaller than, or equal to, the smallest contribut-
ing membership value.

Fuzzy Algebraic Sum The result is always larger (or equal to) the largest contributing 
membership value.

Fuzzy Gamma This is defined in terms of the fuzzy algebraic product and the 
fuzzy algebraic sum, being a combination of these two opera-
tions.

DESCRIPTION OF THE DATASETS

The data used for this study are multi-element low-
altitude airborne geophysics, regional gravity, and 
multi-element till geochemistry. All the basic data are 
standard data sets produced by the GTK and available 
on request. The locations of the known Au deposits 
were taken and slightly modified from the FinGOLD 
database (Eilu, 1999). For certain larger deposits 
a few more points were added and some locations 
were relocated more precisely. The total amount of 
available training points is 40 representing the Early 
Proterozoic greenstone hosted gold deposits and oc-
currences within the study area. For the modeling, 
we used 35 training points excluding those that were 
closely clustered together.

High resolution airborne geophysics

The whole study area has been covered by high 
resolution, systematic, low altitude airborne geophys-
ics. The oldest flights date from 1974 and the most 
recent were completed during the summer 2002. The 
mapped properties are magnetic total field intensity, 
two electromagnetic field components and four gamma 
radiation components. In this work, aeromagnetic and 
apparent resistivity of conductive half space calcu-
lated from airborne electromagnetic measurements 
has been used. The flight altitude used is about 30 to 
40 meters and line spacing 200 meters. The profile 
direction has been either N-S or E-W according to the 
dominant strike of the bedrock. As the flying speed is 

around 50 m/s, and the recordings has been done two 
to ten times per second in magnetic and two or four 
times per second in electromagnetic measurements, 
the data point separation depending on method is five 
to 25 meters. The cell size of interpolated grids is 50 
m x 50 m. 

Known gold occurrences and deposits of CLGB 
have a strong lithological and structural control, and 
host rocks are affected by strong multi-stage alteration 
(Airo and Mertanen, 2001). Large crustal-scale struc-
tures, faults, shear, and in many places alteration zones 
produce observable aeromagnetic lows. To enhance 
these magnetic lows a median filter was applied by 
subtracting from the original aeromagnetic data the 
median value of a four km circular radius neighbor-
hood around each of the cells within the grid. The 
residual of the aeromagnetic grid was then used in the 
modeling instead of the original grid. In CLGB, most 
known gold occurrences are associated with sulphide 
alteration and sulphides can produce conductivity 
anomalies. However, conductive graphite bearing 
volcanic-metasedimentary rocks make the situation 
more complex. Filtering the resistivity data did not 
improve the results. Thus, the original resistivity grid 
was used in the model. Although alteration zones can 
in some cases be mapped using radiation data, the use 
of gamma radiation is hampered as, radiation attenu-
ates to zero within the first 30 cm from the source. In 
this study, the aeroradiometric data has not been used 
due to large differences in soil cover, large bog areas, 
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lakes and rivers, which unevenly mask the radiation. 
Aerogeophysical applications for gold exploration in 
CLGB has been reviewed by Airo (2006).

Regional gravity

Gravity reflects large crustal-scale structures, litho-
logical units, faults, and shear zones, which can be 
associated with gold occurrences. Bouguer anomaly 
data were interpolated to grid cell size of 500 m x 
500 m and the horizontal gradient was calculated for 
the analysis.

The CLGB regional gravimetric survey has been 
done with a point density of one point/km2 on the aver-
age by GTK and partly also by the Finnish Geodetic 
Institute (Kääriäinen and Mäkinen, 1997). Regional 
gravity data measured in CLGB have been described 
by Salmirinne and Turunen (2007). The gravity sur-
vey covers about 62% of the whole study area. In the 
weights-of-evidence method, training sites in areas of 
no data were not used for calculation of weights for 
the gravity theme and these no data areas are treated 
as “missing data” for which the weights are set to 
zero. In the fuzzy-logic method these areas of missing 
data are assigned area-weighted mean of the fuzzy 
membership of known data. So, in spite of low data 
density and “missing data” areas, it has been possible 
to use gravity data, which proved to be meaningful 
for the analysis.

Regional till geochemistry

The sampling density for the regional till geochem-
istry is one sample per four km2. The sampling was 
conducted in the 1980’s (Salminen, 1995). In general, 
the samples were collected as a composite of three to 
five sub-samples from an average depth of 1.5 me-
ters taken with a portable percussion drill equipped 
with a through flow bit. In certain areas, the samples 
were combined from five to ten line samples, which 

has caused some artifacts shown as level differences 
between the map sheets with single samples. The 
sampled material was chemically unaltered parent till. 
The samples were dried and the <0.06 mm fraction 
was sieved for analysis. Hot aqua regia digest was 
used and Al, Ba, Ca, Co, Cr, Cu, Fe, K, La, Li, Mg, 
Mn, Mo, Ni, P, Pb, Sc, Sr, Th, Ti, V, Y, Zn and Zr were 
determined with ICP-AES. In addition, Au, Te and Pd 
were analyzed with AAS. The original point data were 
interpolated to grid cell size of 200 m x 200 m.

Geology

Geological mapping has been conducted over 
the study area mostly at 1:50 000 scale, which are 
compiled into 1:100 000 scale printed maps and a 
generalized 1:200 000 scale digitized stratigraphical 
map of the Kittilä Greenstone Area (Lehtonen et al., 
1998). The geological outline of CLGB is given by 
Hölttä et al. (2007).

Outcrop conditions are generally poor and these 
areas have been subject only to the first stage explora-
tion, which has typically involved only till sampling 
and airborne geophysics in addition to geological 
mapping.

The geological map is based on field mapping guided 
by interpretation of the airborne geophysics. Thus, 
there is quite clear correlation between for example the 
magnetic data and the geological map. In this study, 
we have avoided the use of the interpreted geologi-
cal map together with the airborne geophysics. The 
scale of the geological map currently available also 
limits its use for spatial modeling together with the 
high-resolution airborne geophysics. The 1:100 000 
geological maps would provide more details and 
variability to lithological units compared to general-
ized 1:200 000. We expect to be able to improve the 
models when the larger scale geological maps of the 
entire study area are available.

WEIGHTS-OF-EVIDENCE MODELING

To accomplish weights-of-evidence modeling, the 
original multi-class evidential datasets were gener-
alized into binary predictor patterns. The evidence 
used were: (1) selected pathfinder elements in till 
geochemistry and (2) favorable geophysical anomalies. 
The geological map was not used as evidence, even 
though it might provide relevant information. The final 
results of the modeling are, however, compared with 
and validated by using the geological map.

After calculating the weights for each evidential 
data, one can use the variation of the weights and 

the calculated contrasts (i.e. difference between the 
weights) to select the classes where the spatial associa-
tion between the training sites and the evidential data 
sets is optimal i.e. at the maximum contrast value. The 
evidential data is then divided into two classes (e.g. 
‘favorable’ and ‘non-favorable’), which will be used 
as an input in the data integration.

Figure 4 shows the results of the generalization of 
the geophysical and combined geochemical data sets. 
Table 4 is an example of the weights analysis used 
for generalization. These binary prediction patterns 



259

 Geological Survey of Finland, Special Paper 40 
Prospectivity Analysis of Gold Using Regional Geophysical and Geochemical Data from the Central Lapland Greenstone Belt, Finland

Fig. 4. Binary patterns derived from the generalization of the geophysical and combined geochemical evidential data 
sets. Green areas are classified as ‘‘non-favorable pattern and red areas as ‘favorable’ pattern. The open circles are 
the known Au –occurrences and deposits used as training sites. Combination of geochemistry is done by fuzzy logic 
overlay in three steps. First Fe, As, Te and Ni fuzzy membership values are combined together by using Fuzzy OR 
operator resulting a combination, which is integrated together with Cu fuzzy membership values by using a Fuzzy 
AND operator. Finally Au fuzzy membership values are combined with this combination by using a Fuzzy Gamma 
operator. Classes

Table 4. Weights for airborne magnetics as an example of the weights analyses used for generalizing the magnetic evidence. Class 
1 (bold font) was considered as favorable predictor pattern (maximum contrast) and the rest as non-favourable, respectively. The 
s(W+), the s(W-) and the s(C) stand for the standard deviations of the corresponding factors. Stud(C) is the studentized contrast 
value of C/s(C). #Points = cumulative number of training sites.

Class Class range 
(nT)

Area  
(Sq. km)

#Points W+ s(W+) W- s(W-) Contrast S(C) Stud(C)

  1 –7040 – –270 1303.3   9 1.3113 0.3339 –0.2254 0.1962 1.5368 0.3873 3.9681

  2 –270 – –170 2571.6 12 0.9183 0.2890 –0.2727 0.2086 1.1909 0.3564 3.3413

  3 –170 – –110 4053.4 12 0.4624 0.2889 –0.1766 0.2086 0.6390 0.3563 1.7933

  4 –110 – –80 5143.0 13 0.3041 0.2775 –0.1441 0.2133 0.4482 0.3500 1.2805

  5 –80 – –50 6589.1 14 0.1303 0.2674 –0.0783 0.2183 0.2085 0.3452 0.6041

  6 –50 – –30 7802.3 15 0.0302 0.2583 –0.0220 0.2237 0.0522 0.3417 0.1527

  7 –30 – –10 9174.3 17 –0.0067 0.2426 0.0064 0.2358 –0.0131 0.3384 –0.0387

  8 –10 – 10 10402.3 19 –0.0211 0.2295 0.0257 0.2501 –0.0468 0.3395 –0.1378

  9 10 – 30 11463.6 23 0.0729 0.2086 –0.1264 0.2888 0.1993 0.3563 0.5593

10 30 – 60 12647.4 25 0.0580 0.2001 –0.1317 0.3164 0.1897 0.3743 0.5068

11 70 – 110 13954.3 29 0.1081 0.1858 –0.4023 0.4084 0.5104 0.4487 1.1377

12 110 – 190 15219.5 31 0.0880 0.1797 –0.5024 0.5001 0.5904 0.5314 1.1110

13 190 – 320 16363.7 31 0.0154 0.1797 –0.1121 0.5002 0.1276 0.5315 0.2400

14 320 – 630 17572.2 31 –0.0559 0.1797 0.5897 0.5004 –0.6456 0.5317 –1.2141

15 630 – 13820 18762.1 35
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were then pair wise tested for conditional independ-
ence to assure that the following modeling would not 
give over or underestimated results due to conditional 
dependencies between two or more data sets.

Conditional independence

One assumption with the weight-of-evidence ap-
proach is the conditional independence (CI) of eviden-
tial maps with regards to the training sites. A pair-wise 
chi-squared test can be applied and a chi-squared (χ2) 
test value calculated for testing CI between binary 
maps (Bonham-Carter, 1994). Geophysical maps used 
in this study (aeromagnetic, airborne electromagnetic 
and horizontal gradient of regional gravity) turned out 
to be conditionally independent in sufficient level but 
dependence between till geochemical maps proved to 
be more complex. The elements of interest (Cu, Fe, 
As, Te, Ni and Au) were tested against each other. To 
avoid violation of CI, geochemical anomaly maps 
of these elements were combined together into one 
evidence map using the fuzzy logic combination of 
them as described later in the fuzzy logic section of 
this paper (Figure 9.).

Table 5 summarizes the pair-wise test of the binary 
pattern used in final model. With one degree of free-
dom and probability level of 95%, the test χ2 value 
is 3.8 for rejection of the assumption of conditional 
independence (Bonham-Carter, 1994). Values in Table 
5 shows that hypothesis of conditional independence 
is not rejected at this probability level. Number of 
occurrences used for χ2 calculations was 35, which 
can be too few and cause uncertainty for calculation. 
Nevertheless, the chi-squared values seem to be in-
significant.

The other method for testing CI is the overall test. 
In the overall test, the total number of occurrences 
predicted by the model is determined by summation 
of the product of the area in counts of unit cells times 
the posterior probability for all cells on the model 
(Bonham-Carter, 1994). Predicted number of occur-
rences is usually larger than the observed number. If 
the predicted number is 10–15% larger than observed, 
conditional independence between evidential maps 
may be violated (Bonham-Carter, 1994). In this study, 
the determined number of predicted occurrences in 
final model is 42.3, which is 17.3 % larger than the 
observed number 35. This may indicate some problem 
with CI, but because χ2 values does not show any 
distinct problem between binary pattern of evidential 
maps and the small number of training points (35) can 
cause some instability also for overall test, the model 
was accepted for presentation. A new test for CI (Agter-
berg and Cheng, 2002) suggests that the conditional 

Table 5. Calculated χ2 values for testing conditional independ-
ence between binary evidence with respect to gold occurrences 
(35) used in weights of evidence modeling. None of these test 
statistics are sufficiently high to reject the assumption of con-
ditional independence.

Evidence Geochemistry Gravity Aeromagnetic

Airborne EM 1.64   0.96 1.12

Geochemistry  0.1 0.04

Gravity   0.31

independence hypothesis for the current model can be 
accepted with a probability of slightly less than 90%. 
The assumption of conditional independence is not 
required for the logistic-regression method to calculate 
the posterior probability map. Thus, the logistic-regres-
sion method (Agterberg et al., 1993) using the binary 
generalizations from the weights-of-evidence weights 
analysis was also calculated to evaluate the possible 
CI problem. The resulting posterior probability map 
patterns are similar to the patterns of the weights-of-
evidence map. The posterior probability value of the 
logistic-regression model is on average only 19% lower 
than the posterior-probability value calculated by the 
weights-of-evidence method reported here indicating 
also a minor disturbance in CI.

Results and interpretation

Table 6 shows the weights, contrasts and confidences 
calculated for the model. Confidence values (i.e. the 
studentized contrast) higher than 2 are considered as 
‘acceptable’ (Bonham-Carter, 1994). All evidence 
used here exceeds this level. Evidential maps can be 
ranked by contrast for the degree of correlation with the 
training sites. Horizontal gradient of regional gravity 
map has the largest contrast value (2.528) indicating 
that it is the best predictor. The aeromagnetic map is 
the weakest predictor, but at a contrast of 1.5 is still 
quite high. The gravity map does not cover the whole 
study area and there are quite large areas of missing 
data affecting uncertainty to calculation of posterior 
probabilities. Twenty-one gold training sites of 35 
fall into the pattern from the gravity data. Note that 
the airborne EM and aeromagnetic maps are the only 
evidence with W+ significantly larger than the absolute 
value of W-. The gravity and geochemistry favour the 
negative side; so they are defining well the areas of 
poor prospectivity for gold. Whereas the airborne EM 
and aeromagnetics favour the positive side; so they are 
defining well the areas of high prospectivity. Thus all 
the evidence is contributing, but in different ways. The 
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spatial variation of uncertainty of the posterior prob-
ability and its magnitude are shown in Figure 5.

The resulting prospectivity map (Figure 6) highlights 
the areas being most favorable for greenstone hosted 
Au –deposits according to the exploration model used. 
The sensitivity of the model to specific deposits for 
the modeling was tested by calculating 23 successive 
models and leaving out one of the deposits in turn. 
This is a type of jack-knife test. The posterior prob-
ability value of each of the model was associated with 
the deposit point left out from the model and plotted 
against the posterior probability of the model including 
all the training sites resulting the scatter plot in Figure 
7. The plot suggest that excluding any other deposit 
from the model, except Kutuvuoma, would not give 
significant deviation from the model including all the 

Fig. 5. Map of posterior probability/total uncertainty indicating the spatial variation of confidence that the reported posterior probability is not zero. 
All the training sites are within the areas that exceed the 80% confidence level. The boundaries of the main lithological units of the geologic index 
map are shown as black lines in the map, demonstrating that the model excludes most of the non-greenstone rocks as zero posterior probability.

training sites. The reason for different behavior of 
Kutuvuoma is due to an artifact driven by the gener-
alized gravity pattern including all the other training 
sites except Kutuvuoma. This leads into an abnormal 
high negative weight for the gravity pattern when the 
Kutuvuoma site is excluded because there are then no 
training sites in the non-favourable gravity pattern. 
The ArcSDM software arbitrarily assigns a fractional 
training site when this situation occurs which causes 
an anomalous low W-. Those training sites plotting 
below the prior probability (see the close-up in Fig. 7) 
are all within 600 m from an area with posterior prob-
ability higher than prior probability. Another test of the 
validity of the model can be made by associating the 
training sites with the modeled posterior probability. 
Thus, one can estimate how well the model predicts 

Table 6. Weights for the binary evidence used for modeling. The total number of training points is 35. Confidence values >2 are 
considered as ‘acceptable’. Prior probability is 0.0009. The unit cell was 0.5 km2.

Evidence Area [km2] #Training sites W– W+ Contrast Confidence

Gravity 7928 21 –2.1217 0.4063 2.528 2.4722

Airborne EM 2732 20 –0.6899 1.3671 2.0571 6.0169

Geochemistry 8227 27 –1.0335 0.6028 1.6362 3.8709

Aeromagnetic 1303 9 –0.2254 1.3113 1.5368 3.9681
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Fig. 6. Weights-of-evidence gold prospectivity map. Posterior-probability model using airborne geophysics, regional gravity and till geochemistry. 
The lowest class shown in grey represents areas with posterior probability lower than prior probability, which are assumed to not be permissive 
for greenstone gold deposits. The areas from ‘Low’ to ‘Very high’ prospectivity are all above the 80% confidence level as shown in Figure 5. The 
boundaries of the main lithological units of the geologic index map are shown as black lines in the map. Note that the moderate or higher areas occur 
only on greenstone rocks.

the training sites. From the total of 35 training sites, 
31 are within the classes with posterior probabilities 
higher than prior probability. If a deposit is consid-
ered to occupy an area of 0.5 km2, which is the unit 
area used in modeling, the total number of deposits 
intersecting the classes with posterior probabilities 
higher than prior probabilities is 35 (i.e. all the train-
ing sites) giving perhaps more realistic results. Thus, 

the model seems to map the training sites reasonably 
well and one should especially note, that the training 
sites related to the most significant deposit within the 
study area found so far, the Suurikuusikko property, 
also have posterior probability values higher than prior 
probability falling into the ‘high’ class in the posterior 
probability map (Fig. 6).
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Fig. 7. Results of the jack-knife validation test as a plot of posterior probabilities in the final model and the 
test models associated with the training sites. The number of training sites used was 35 and prior probabili-
ties varied from 0.0007 (dashed line) to 0.0009 (thick solid line) among the 23 weights of evidence models 
calculated. The training sites were treated as points in this calculation. The scale in upper plot is logarithmic. 
The close-up shows posterior probability values from 0.0005 to 0.0017. All the major deposits plot above 
the prior probability (0.0009).



264

Geological Survey of Finland, Special Paper 40
Vesa Nykänen and Heikki Salmirinne

FUZZY-LOGIC MODELING

First step in fuzzy logic modeling after selecting 
the appropriate evidential data is to define the rela-
tive importance of each of the selected evidential data 
and assign the fuzzy memberships for the classes of 
these data. The knowledge of the exploration experts 
was used to accomplish this task. The assigned fuzzy 
memberships for each of the evidential data sets are 
given in Table 7.

The fuzzy membership values were defined after 
reclassifying the original data by using standard devia-
tion method in ArcView GIS. When reclassifying data 
using the standard deviations method, ArcView finds 
the mean value and then places class breaks above 
and below the mean at intervals of either 1/4, 1/2, 
or 1 standard deviations until all the data values are 
contained within the classes. ArcView will aggregate 
any values that are beyond three standard deviations 
from the mean into two classes, greater than and less 
than three standard deviations above and below the 
mean. In some cases an expert modified the classes 
manually. The resulting classes were then divided by 
an expert to be either “anomalous” (fuzzy membership 
= 1) or “non anomalous” (fuzzy membership = 0) and 
classes between these two were assigned a linear func-
tion between 0 to 1 (Fig. 3). Thus the classification of 
the data using standard deviation or any other method 
has a major influence on the final fuzzy membership 
values. Great care needs to be taken while classifying 
the data to find the thresholds. Selection of threshold 
for “anomalous” and “non anomalous” is, however, 
flexible and is defined by an expert. In Figure 8 all 
the evidential datasets are displayed according to the 
fuzzy membership values, red color indicating the 
significance of the anomaly concerned in each map.

After defining the fuzzy membership values, the 

evidential data were integrated in several steps ac-
cording to the exploration model (Figure 8). First the 
magnetic and resistivity data were combined using 
a ‘Fuzzy AND’ operator to define possible conduc-
tive alteration zones. Till geochemical evidence was 
combined in two steps by first integrating metals Fe, 
As, Te and Ni by ‘Fuzzy OR’ operator and the result-
ing map with Cu by using ‘Fuzzy AND’ operator in 
order to highlight the anomalies indicating possible 
sulphide sources. These two intermediate response 
maps (geophysical and geochemical) were then com-
bined together with regional gravity and Au in till by 
using ‘Fuzzy GAMMA’ operator with γ = 0.9. Since 
Au tends to have its own characteristics in till, it was 
used as a single evidence in the final combination as 
well as the horizontal gradient of the regional gravity, 
which reflects large crustal structures.

Results and interpretation

The final results are shown as a prospectivity map 
in Figure 9 classifying the study area based on the 
relative importance of the integrated datasets. Twenty 
training sites of 35 fall into fuzzy membership values 
0.5 and above, when the training sites are taken as 
points. Whereas if a training site is surrounded by 600 
m buffer representing an area of a site the number is 
31 (i.e. 89 %). A significant result is, however, that 
Suurikuusikko deposit is within the fuzzy member-
ship values 0.7–0.9 suggesting that the current model 
predicts well Suurikuusikko type of deposit. In addition 
to good prediction of the known exploration targets, 
this model also predicts areas with high exploration 
potential.

Table 7. Thresholds for Fuzzy membership values for the evidential datasets. Classes between these thresholds were linearly 
transformed to fuzzy membership values between 0 and 1. Each evidence map was reclassified to define classes by the standard-
deviation method before the fuzzy membership was calculated. See Figure 3 to understand this process.

Evidence Not anomalous (0) Anomalous (1)

Airborne magnetic data (residual nT) >630 <–270

Airborne EM (Ωm) >2000 <20

Regional Gravity, horizontal gradient (mgal/500 m) <1.5 >3.2

Au in till (ppb) <0.1 >5

As in till (ppm) <15 >49

Cu in till (ppm) <48 >116

Fe in till (ppm) >27610 >57300

Ni in till (ppm) <62 >129

Te in till (ppm) <23 >55
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Fig. 8. The inference network of the fuzzy logic model for greenstone-hosted gold deposits. The rounded boxes are the operators (see Table 3 for 
explanation) and the rectangles represent the evidential data sets and the results. 
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The aim of the current paper was to make a pro-
spectivity analysis for gold and to test how well the 
regional datasets of GTK can predict the locations of 
known deposits. Also the aim was to test the empiri-
cal and conceptual approaches. The high-resolution 
airborne geophysical data would give a chance to 
interpret spatial models even in greater detail at larger 
scale than was done in this paper. This would require 
other evidence as well at the same data resolution and 
more focused study areas. Comparable data would 
be local scale geochemical surveys, which would, 
however, cover only limited areas but would be ap-
propriate data for detailed exploration. For a local 
scale, a conceptual modeling would perhaps be more 
suitable since there are seldom statistically enough 
training points in small areas. The best evidence in 
the current models was, however, the horizontal gradi-
ent derived from the regional gravity data. The large 
crustal-scale structures seem to have a major control 
on spatial distribution of Au-deposit within the CLGB. 
Till geochemistry, which is a widely used exploration 
tool, is generally a very good data for modeling, but 
might improve significantly after more elaborate pre-
processing than was done here.

In the current weights-of-evidence modeling, all 
the used training sites were treated as equal or at least 

being part of the same type common to the green-
stone-hosted gold deposits. Each of the occurrences 
has many unique characteristics, which suggest that 
they might not be treated as a single deposit style but 
rather being grouped into several styles resulting in 
relatively a small number of training sites for each 
group. As the statistical tests in this paper show, there 
really is a significant spatial association between the 
training sites occupying an area of 0.5 km2 and the 
specific map patterns used as evidence indicating that 
all the greenstone-hosted type of Au deposits can be 
treated as a single group at this scale.

As pointed out by Harris et al. (2001) one should use 
geostatistical methods to study the spatial behavior of 
geochemical data before interpolation. This was not 
done in this study, which might be one reason for a 
slightly poor predictive capability of the till geochem-
istry. In addition, the use of geological barriers during 
the interpolation process might be considered if they 
are known. Geochemical data is normally found to be 
a positive type of evidence, not the negative weighting 
seen here in the weights analyses. This suggests that 
some other ways of preprocessing the geochemical 
data should produce better evidence with W+ larger 
than or at least equal to the absolute value of W- and 
an increase in the contrast. Similarly, the airborne EM 

Fig. 9. Fuzzy-logic gold prospectivity map. Fuzzy membership model using airborne geophysics, regional gravity and till geochemistry. The bounda-
ries of the main lithological units of the geologic index map are shown as black lines in the map. Note that most of the non-grey areas are in the 
greenstone rocks.

DISCUSSION
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Table 8. Matrix of observed proportions (A) and expected proportions (B) of weights-of-evidence (WofE) and fuzzy-logic (Fuzzy) 
prospectivity models. The values in the matrix are percent of area. Shaded values in principal diagonal represent areas of agree-
ment. Agreement of observed proportions between these models is 60%. and overall kappa value is 0.22. The conditional kappa 
values for the classes from 1 to 5 are 0.48, 0.01, 0.08, 0.20 and 0.66, respectively. Spearman’s area weighted correlation coef-
ficient is 0.80 Calculation procedures after Bonham-Carter (1994). These tables give a measure of the nature of the agreement 
or correlation between the two models.

A)

Fuzzy Very low Low Moderate High Very High

WofE Class 0–0.2 0.2–0.46 0.46–0.59 0.59–0.71 0.71–0.98 Total

Very Low <0.0009 59.46 2.95 3.81 2.29 0.41 68.93

Low 0.0009–0.00120 10.51 1.09 2.74 3.52 1.47 19.32

Moderate 0.00120–0.00748 2.42 0.26 0.96 1.72 1.00 6.36

High 0.00748–0.01 1.07 0.07 0.42 1.29 2.10 4.94

Very High 0.01–0.03 0.05 0.00 0.00 0.09 0.31 0.45

Total 73.51 4.36 7.93 8.91 5.28 100.00

B)

Fuzzy Very low Low Moderate High Very High

WofE Class 0–0.2 0.2–0.46 0.46–0.59 0.59–0.71 0.71–0.98 Total

Very Low <0.0009 50.67 3.01 5.47 6.14 3.64 68.93

Low 0.0009–0.00120 14.20 0.84 1.53 1.72 1.02 19.32

Moderate 0.00120–0.00748 4.68 0.28 0.50 0.57 0.34 6.36

High 0.00748–0.01 3.63 0.22 0.39 0.44 0.26 4.94

Very High 0.01–0.03 0.33 0.02 0.04 0.04 0.02 0.45

Total 73.51 4.36 7.93 8.91 5.28 100.00

and magnetics are the only evidence with W+ larger 
than the absolute value of W-. This result for the 
magnetics was highly enhanced by using the residual 
from the median filter. Better filtering of the magnetics 
and useful filtering of the EM should improve defini-
tion of the anomalies from these data and increased 
contrast. Most of the evidential data used here were 
as far as possible not interpreted data to be able to 
avoid biased results. However, one might want to use 
other highly interpreted evidence as well, together 
with the geophysical and geochemical data, to exploit 
the results from structural or any other geological 
modeling providing spatially referenced datasets with 
sufficient coverage over the area of interest. Example 
of this kind of data could be paleostress modeling 
studies (Holyland and Ojala, 1997; Mair et al., 2000, 
Ojala and Nykänen, 2007), geological shape analysis 
(Gardoll et al., 2000) or lithodiversity (Mihalasky and 
Bonham-Carter, 2001). The resolution and coverage 
of GTK’s airborne geophysics and the contrasts found 
shows that this data is a strong exploration tool. By 
integrating this high-resolution data together with other 
less detailed data in GIS environment, as has been 
done in this paper, one can extract information that 
would otherwise be difficult to achieve, and laborious 
and less effective to accomplish.

The calculated weights of evidence and fuzzy 

logic models (Figs. 6 and 9) visually correlate with 
each other, which is obviously the result of the more 
or less identical evidential data used for the models. 
The agreement between two nominal-scale maps can 
be estimated by calculating the coefficient of agree-
ment and kappa (Table 8). The overall kappa value 
for these two models is moderately low (0.22), but 
the conditional kappa value for the highest class of 
the two prospectivity maps is 0.66 and 0.48 for the 
lowest class suggesting that the two models do cor-
relate at both higher and lower probability levels. The 
moderate levels do not correlate well due to the experts 
focusing on the thresholds and not assigning the mid 
point of fuzzy memberships for the evidential data. 
The moderate values were not considered important 
in either model, because the ultimate objective was to 
define the best targets. The area weighted Spearman’s 
correlation coefficient is 0.80 due to the strong correla-
tion between the lowest classes covering a large area 
in both of the models. Poor correlation between the 
moderate classes might be overcome with these models 
by combining the moderate classes. A noticeable point 
is that the predicted areas are almost entirely within 
the greenstone belt and in certain formations, even 
though geological map was not used as input data. 
Almost all of the predicted areas are within Savukoski 
and Kittilä groups, which have been suggested to be 
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most favorable for Au within the CLGB area (Eilu et 
al. 2007 ). Thus, it seems that both models would pass 
a rough geological validation. As already mentioned in 
the Fuzzy-logic section it is promising that the location 
of the largest known gold deposit, Suurikuusikko, can 
be predicted by both models. In addition to the already 
known targets, the models generate new target areas. 

The region between Suurikuusikko and Pahtavaara 
seems to give high response in both of the models and 
is suggested for more detailed and focused modeling. 
The areas about 50 km to NE from Pahtavaara mine 
also appear to be highly prospective as well as the 
area some 25 km NW from Saattopora.

CONCLUSIONS

The spatial modeling techniques tested here proved 
to give an efficient tool for exploration geologists 
to integrate data from several geoscientific sources. 
Conceptual fuzzy-logic method gives a flexible tool 
to test exploration models on large datasets in an 
easily understood manner. The uncertainties of the 
fuzzy-logic modeling can be difficult to estimate, but 
an expert validation process would in many cases be 
appropriate and lead to reliable results. Empirical 
weights-of-evidence method instead includes com-
prehensive statistical validation process, which makes 
it laborious but more reliable. Weights-of-evidence 
method includes better control for uncertainty, but 
restricts the amount of evidential data to be used due 
to the requirement for conditionally independence. 

On the other hand, the weights calculation provides 
a convenient way to estimate and quantify spatial 
association between geographical locations like min-
eral deposits, rock formations etc. and any spatially 
referenced geoscientific or other relevant data. The 
agreement between these two models used in this study 
seems to be good at the low and high prospectivity 
areas. For future fuzzy-logic models, it seems that 
expert control of the middle fuzzy membership is also 
an important consideration, if these mid-range areas of 
important to the objectives of the modeling. However, 
the current paper suggests that the fuzzy-logic model 
produced here could be applied also to a study area 
without training sites to accomplish a prospectivity 
analysis within a reasonable confidence level.
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