Summary: Lake sediments as a store of dry matter and carbon

The study focussed on 140 lakes. The volume of the lake sediments was estimated using echo-soundings and by taking core samples by drilling. The sediment samples were analysed regarding their water content, loss on ignition, density and carbon content. The amounts of dry matter and organic carbon were determined on the basis of the volume of the sediment and laboratory analyses. The accumulation rate for dry matter and carbon were computed on the basis of the average store and the time consumed in its formation. The development history of the lakes, paleomagnetic dating and radiocarbon dating were used as the dating methods.

The average thickness of Finland’s lake sediment beds is 1.2 m and it increases as the size of the lake decreases. The average water content was found to be 79%, the average density was 0.25 g/cm3, the average loss on ignition was 20%, and average carbon content was 8.6%. The average carbon content increases as lake size decreases. The carbon content of the lake sediment beds increases towards the surface of the bed. This increase is faster in the part of the layer created during the stabilisation stage following lake initiation than in layers formed later during stable conditions.

The average dry matter store of lake sediments is 290 kg/m2 and the average accumulation rate of dry matter has been 31 g/m2/a. The maximum accumulation rates were observed in lakes, which are located in clay areas or near eskers. The lowest accumulation rates generally apply to lakes, which are small, are located at relatively high altitude and have peat along their shorelines. The accumulation of dry matter has usually been at its fastest immediately after the lake initiation.

The average carbon store of lake sediments is 19 kg/m2 and the average accumulation rate of carbon has been 2.0 g/m2/a. The average stores and accumulation rates within northern Finland’s large drainage basins are double those of southern Finland’s comparative areas. The average stores and accumulation rates of carbon increase with deceasing lake size. However, the exceptions in this are lakes less than 0.1 km2 in size. High average carbon stores and accumulation rates of carbon were found in sedimentation environments differing from one another. Large dry-matter stores in clay areas and near eskers lead to large carbon store and high accumulation rates. In lakes at higher elevations and surrounded by paludified till soils the high carbon content of the sediment leads to the same outcome. In stabilised sedimentation environment, the accumulation of carbon has continued at a fairly even rate up the present. However, many large lakes have undergone significant changes in their sedimentation conditions and these have affected the carbon accumulation at the local level. The carbon store of lake sediments in Finland is about 640 million tonnes. The carbon stored annually averages 64 000 tonnes.

Key words GeoRef Thesaurus, AGI): lake sediments, gyttja, gyttja clay, clay, stratigraphy, carbon, carbon sinks, density, sedimentation rates, Holocene, Finland

Hannu Pajunen
Geological Survey of Finland
P.O. Box 1237
FI-70211 KUOPIO
FINLAND

E-mail: hannu.pajunen@gtk.fi

ISBN 951-690-894-2
ISSN 0781-4240

Vammalan Kirjapaino Oy 2004
Järvisedimentit kuiva-aineen ja hiilen varastona

Suomen järvedimenttikerrosten keskimääräinen paksuus on 1,2 m, ja se kasvaa järven koon pienentymisessä. Keskimääräinen vesipitoisuus on 79 %, keskimääräinen tiheys 0,25 g/cm³, keskimääräinen hehkutushäviö 20 % ja keskimääräinen hiilipitoisuus 8,6 %. Keskimääräinen hiilipitoisuus kohoa järven koon pienentymyssä. Järvedimenttikerrosten keskimääräinen paksuus kohoa järven koon pienentymisessä. Keskimääräinen kuiva-aineen varastointi on 290 kg/m² ja keskimääräinen hiilivarastointi on 19 kg/m².

Pajunen, Hannu
Geologian tutkimuskeskus
PL 1237
70211 KUOPIO

Sähköposti: hannu.pajunen@gtk.fi
<table>
<thead>
<tr>
<th>SISÄLLYS–CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHDANTO</td>
</tr>
<tr>
<td>MENETELMÄT JA AINEISTO</td>
</tr>
<tr>
<td>Järven valinta</td>
</tr>
<tr>
<td>Kaikuluotauks</td>
</tr>
<tr>
<td>Kairaus</td>
</tr>
<tr>
<td>Näytteenotto ja näytteiden käsittely</td>
</tr>
<tr>
<td>Laboratoriomääritykset</td>
</tr>
<tr>
<td>Varaston ja varastotumisnopeuden laskeminen</td>
</tr>
<tr>
<td>Järvikohtaisten tulosten esitys</td>
</tr>
<tr>
<td>JÄNISJOEN VESISTÖALUE (1)</td>
</tr>
<tr>
<td>Kinnasjärvi</td>
</tr>
<tr>
<td>Tammalammit</td>
</tr>
<tr>
<td>HIITOLANJOEN VESISTÖALUE (3)</td>
</tr>
<tr>
<td>Piilampi</td>
</tr>
<tr>
<td>VUOKSEN VESISTÖALUE (4)</td>
</tr>
<tr>
<td>Saimaa</td>
</tr>
<tr>
<td>Pielinen</td>
</tr>
<tr>
<td>Pihlaväesi</td>
</tr>
<tr>
<td>Haukivesi</td>
</tr>
<tr>
<td>Orivesi</td>
</tr>
<tr>
<td>Kallavesi</td>
</tr>
<tr>
<td>Pyhäselkä</td>
</tr>
<tr>
<td>Puruvesi</td>
</tr>
<tr>
<td>Höytiäinen</td>
</tr>
<tr>
<td>Suvasvesi</td>
</tr>
<tr>
<td>Pyhätjärvi</td>
</tr>
<tr>
<td>Juojärvi</td>
</tr>
<tr>
<td>Koiterer</td>
</tr>
<tr>
<td>Juuruvesi</td>
</tr>
<tr>
<td>Viinijärvi</td>
</tr>
<tr>
<td>Onkivesi</td>
</tr>
<tr>
<td>Luonteri</td>
</tr>
<tr>
<td>Unnukka</td>
</tr>
<tr>
<td>Kangasjärvi</td>
</tr>
<tr>
<td>Kolonjärvi</td>
</tr>
<tr>
<td>Keyrity</td>
</tr>
<tr>
<td>Nerkoonjärvi</td>
</tr>
<tr>
<td>Ääskö</td>
</tr>
<tr>
<td>Nurmisjärvi</td>
</tr>
<tr>
<td>Kuonanjärvi</td>
</tr>
<tr>
<td>Kevätön</td>
</tr>
<tr>
<td>Ihalanjärvi</td>
</tr>
<tr>
<td>Räimäjärvi</td>
</tr>
<tr>
<td>Kalliojärvi</td>
</tr>
<tr>
<td>Ylä-Siukajärvi</td>
</tr>
<tr>
<td>Muntsurinjärvi</td>
</tr>
<tr>
<td>Iso-Lyly</td>
</tr>
<tr>
<td>Pitkäjärvi</td>
</tr>
<tr>
<td>Lyhyenjärvi</td>
</tr>
<tr>
<td>Järven nimi</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>Keurusselkä</td>
</tr>
<tr>
<td>Mallasvesi-Roine</td>
</tr>
<tr>
<td>Kukkia</td>
</tr>
<tr>
<td>Sääksjärvi</td>
</tr>
<tr>
<td>Kuohijärvi</td>
</tr>
<tr>
<td>Pihlajavesi</td>
</tr>
<tr>
<td>Uuranjärvi</td>
</tr>
<tr>
<td>Sääjärvi</td>
</tr>
<tr>
<td>Havanganjärvi</td>
</tr>
<tr>
<td>Sulpejärvi</td>
</tr>
<tr>
<td>Ekojärvi</td>
</tr>
<tr>
<td>Puntasjärvi</td>
</tr>
<tr>
<td>Ailine Rautjärvi</td>
</tr>
<tr>
<td>Iso Leppäjärvi</td>
</tr>
<tr>
<td>Valka-Kotinen</td>
</tr>
<tr>
<td>KARVIANJOEN VESISTÖALUE (36)</td>
</tr>
<tr>
<td>Vihiteljärvi</td>
</tr>
<tr>
<td>KYRÖNJOEN VESISTÖALUE (42)</td>
</tr>
<tr>
<td>Paukajarvi</td>
</tr>
<tr>
<td>LAPUANJOEN VESISTÖALUE (44)</td>
</tr>
<tr>
<td>Kätänjärvi</td>
</tr>
<tr>
<td>Alainen Mustalampi</td>
</tr>
<tr>
<td>PURMOJOEN VESISTÖALUE (46)</td>
</tr>
<tr>
<td>Kalijärvi</td>
</tr>
<tr>
<td>ÄHTÄVÄNJOEN VESISTÖALUE (47)</td>
</tr>
<tr>
<td>Lappajärvi</td>
</tr>
<tr>
<td>KRUUNUPYYNJOEN VESISTÖALUE (48)</td>
</tr>
<tr>
<td>Tvärasjön</td>
</tr>
<tr>
<td>LESTIJOEN VESISTÖALUE (51)</td>
</tr>
<tr>
<td>Lestijärvi</td>
</tr>
<tr>
<td>PYHÄJOEN VESISTÖALUE (54)</td>
</tr>
<tr>
<td>Pyhäjärvi</td>
</tr>
<tr>
<td>Haralampi</td>
</tr>
<tr>
<td>LIMINKAOJAN VESISTÖALUE (55)</td>
</tr>
<tr>
<td>Pieni Hetelampi</td>
</tr>
<tr>
<td>OULUJOEN VESISTÖALUE (59)</td>
</tr>
<tr>
<td>Oulujärvi</td>
</tr>
<tr>
<td>Kiantajärvi</td>
</tr>
<tr>
<td>Ontojärvi</td>
</tr>
<tr>
<td>Hossanjärvi</td>
</tr>
<tr>
<td>Ahmasjärvi</td>
</tr>
<tr>
<td>Kylmäjärvi</td>
</tr>
<tr>
<td>Pieni-Pyhäntä</td>
</tr>
<tr>
<td>Perilampi</td>
</tr>
<tr>
<td>Teerilampi</td>
</tr>
<tr>
<td>KIIMINKIJOEN VESISTÖALUE (60)</td>
</tr>
<tr>
<td>Loukojärvi</td>
</tr>
<tr>
<td>IJOEN VESISTÖALUE (61)</td>
</tr>
<tr>
<td>Kostonjärvi</td>
</tr>
<tr>
<td>Pintamojärvi</td>
</tr>
<tr>
<td>Pikku Ahvenjärvi</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Simojoen vesistöalue (64)</td>
</tr>
<tr>
<td>Vittikkolampi</td>
</tr>
<tr>
<td>Kemijärvi (65)</td>
</tr>
<tr>
<td>Javaruusjärvi</td>
</tr>
<tr>
<td>Saarijärvi</td>
</tr>
<tr>
<td>Vuontisjärvi</td>
</tr>
<tr>
<td>Rytijärvi</td>
</tr>
<tr>
<td>Viitatunturinlampi</td>
</tr>
<tr>
<td>Lehtojärvi</td>
</tr>
<tr>
<td>Lampi 130602</td>
</tr>
<tr>
<td>Rimpijärvi</td>
</tr>
<tr>
<td>Tornionjoen - Muonionjoen vesistöalue (67)</td>
</tr>
<tr>
<td>Lampi 130201</td>
</tr>
<tr>
<td>Tenon vesistöalue (68)</td>
</tr>
<tr>
<td>Pulmankijärvi</td>
</tr>
<tr>
<td>Paatsjoen vesistöalue (71)</td>
</tr>
<tr>
<td>Inarijärvi</td>
</tr>
<tr>
<td>Joukkaisjärvi</td>
</tr>
<tr>
<td>Leppälompola</td>
</tr>
<tr>
<td>Lampi 140151</td>
</tr>
<tr>
<td>Koutajoen latvavesistöalue (73)</td>
</tr>
<tr>
<td>Yli-Kitka</td>
</tr>
<tr>
<td>Talvijärvi</td>
</tr>
<tr>
<td>Tulosten tarkastelu</td>
</tr>
<tr>
<td>Järvialtaat</td>
</tr>
<tr>
<td>Altaiden synty ja muoto</td>
</tr>
<tr>
<td>Altaiden koon ja muodon vaikutus sedimentaatio-oloihin</td>
</tr>
<tr>
<td>Järvien synty</td>
</tr>
<tr>
<td>Järvialtaiden kehitys ja sedimentaatio-olojen muuttuminen</td>
</tr>
<tr>
<td>Maankuoren kallistumisen vaikutus</td>
</tr>
<tr>
<td>Laskukynynksen muutokset</td>
</tr>
<tr>
<td>Täyttymisen aiheuttama altaiden mataloituminen</td>
</tr>
<tr>
<td>Ilmaston muuttuminen</td>
</tr>
<tr>
<td>Valuma-alueiden muuttuminen</td>
</tr>
<tr>
<td>Ihmisen toiminta</td>
</tr>
<tr>
<td>Järvisedimenttikerrokset</td>
</tr>
<tr>
<td>Järvisedimenttipohjan osuus</td>
</tr>
<tr>
<td>Paksuus</td>
</tr>
<tr>
<td>Tilavuus</td>
</tr>
<tr>
<td>Koostumus</td>
</tr>
<tr>
<td>Vesipitoisuus</td>
</tr>
<tr>
<td>Tiheys</td>
</tr>
<tr>
<td>Hekutushäviö</td>
</tr>
<tr>
<td>Hiilipitoisuus</td>
</tr>
<tr>
<td>Vertikaalinen vaihtelu</td>
</tr>
<tr>
<td>Alueellinen vaihtelu</td>
</tr>
<tr>
<td>Keskimääräiset pitoisuudet</td>
</tr>
<tr>
<td>Ominaisuuksien välisen riippuvuus</td>
</tr>
<tr>
<td>Kuiva-aineen varastot</td>
</tr>
<tr>
<td>Topic</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Kuiva-aineen varastoitumisnopeudet</td>
</tr>
<tr>
<td>Hiilen varastot</td>
</tr>
<tr>
<td>Hiilen varastoitumisnopeudet</td>
</tr>
<tr>
<td>Pitkän aikavälin nopeudet</td>
</tr>
<tr>
<td>Pitkän aikavälin muutokset</td>
</tr>
<tr>
<td>Viimeaikaiset nopeudet</td>
</tr>
<tr>
<td>Ajoitusmenetelmän vaikutus varastoitumisnopeuden muutoksiin</td>
</tr>
<tr>
<td>Järvialtaiden täyttyminen</td>
</tr>
</tbody>
</table>

SUMMARY: LAKE SEDIMENTS AS A STORE OF DRY MATTER AND CARBON

Methods 293
Formation of lakes 294
Lake sediment beds 295
Properties of lake sediments 296
 Water content 296
 Density 296
 Loss on ignition 297
 Carbon content 297
Dry matter stores 299
Carbon stores 300

KIITOKSET 304
KIRJALLISUUS–REFERENCES 304
JOHDANTO

Ilmisten on sopettanut toimintansa vastaamaan nykyisiä ilmasto-oajoja. Huoli siitä, että ilmasto muuttuisi ihmisen oman toiminnan seurauksena, on kohdistanut mielenkiinnon ilmakaupun haastumukseen ja ennen kaikkea kasvihuonekaasuhiin, joista tärkeimmäät ovat hiiltä sisältävät hiilidioksidi ja metaani. Hiilen lähteet ja nielut vaikuttavat ilmakaupun koostumukseen, ja niissä tapahtuvien muutosten voidaan päätellä muuttavan himmekään koostumuksesta ja穆uttavan siten ilmastoona. Arvioidaan, että ilmakaupun koostumusvaikutusten kannalta järvesimenttien merkittävin alkuaine on hiili.

Ihminen on sopeuttanut toimintansa vastaamaan nykyisiä ilmasto-oajoja. Huoli siitä, että ilmasto muuttuisi ihmisen oman toiminnan seurauksena, on kohdistanut mielenkiinnon ilmakaupun haastumukseen ja ennen kaikkea kasvihuonekaasuhiin, joista tärkeimmäät ovat hiiltä sisältävät hiilidioksidi ja metaani. Hiilen lähteet ja nielut vaikuttavat ilmakaupun koostumukseen, ja niissä tapahtuvien muutosten voidaan päätellä muuttavan himmekään koostumuksesta ja Muuttavan siten ilmastoona. Arvioidaan, että ilmakaupun koostumusvaikutusten kannalta järvesimenttien merkittävin alkuaine on hiili.

MENETELMÄT JA AINEISTO

Järven valinta

Järviä tutkittiin yhteensä 140, ja niiden yhteensä kerrostunutta pinta-ala on noin 15 200 km². Lukumääräisesti tutkitut järviä käsittävät vajaana Suomen järviä, mutta niiden yhteensä kerrostunutta pinta-ala on 46% Suomen järviä. Testausmallissa edustavan otoksen saamiseksi tutkimuksen kohteeksi valittiin eri kokoluokkien järviä eri puolilta maata. Suurimmilla kokoluokilla, yli 100 km², järvet käsittävät lähes puolet Suomen järviä (Raatikainen & Kuusisto 1990), joten ne kaikki tekojärviä lukuun ottamatta otettiin mukaan tutkimukseen. Pienemmillä kokoluokillakin järviä on niin runsaasti, että niistä voititut tutkia vain pieni osa (taulukko 1). Suomen ympäristökeskus valitsi pienistä järviä 78 osittain tilastollisesti, osittain subjektiivisesti pyrkien samalla alueellisuudessa kattavaan otantaan (kuva 1). Loput 18 pientä järveä tutkittiin muiden yhteistyötahojen aloitteesta, ja ne valittiin eri perusteineen. Lähes kaikki tutkitut järvet kuuluvat 1990-luvulla toteutettuun pohjoismaiseen vedenlaatututkimukseen (Mannio & Mäkinen 2003).
Fig. 1. The location of the studied lakes.

Kuva 1. Tutkittujen järven sijainti.

Fig. 1. The location of the studied lakes.
Järvedimentittikerroksen tilavuuden arviointi

Järvedimentittikerrosten tilavuuden arviointi perustui maastotutkimuksiin, joita olivat kesällä tehdyt kaulakasvatuotaukset ja talvella jään päältä tehdyn kaulakasvatuotauksen. Järvedimentit käytettiin suurilla järveillä, kun taas pienten järven sedimenttimäärät arvioitiin kairauten perusteella.

Kaiku luoda

Kaikuuluotauslinja ajettiin 76 järvelle yhteensä 2360 km. Luotauslinjaisten pituudet vaihtelivat järven koon mukaan 3 km:stä 178 km:iin. Sedimentteitä ehti arvioida, vaan sedimenttimäärät arvioitiin luotauslinjoilla kootun aineiston perusteella. Siten luotauslinjojen mahdollisimman edustava sijoittaminen oli lopullisen tuloksen kannalta olennaista. Luotausaineisto pyrittiin kokoamaan sekä avoimilta että suojaisilta alueilta ja toisaalta eri syvyysvyöhykkeistä.

Kaira

Näytteenotto ja näytteiden käsitteily

Järvedimenttikerroksen ylä- ja alaosaan tiheysero on usein niin suuri, ettei yleensä koko kerroksen

<table>
<thead>
<tr>
<th>Kokoluokka (km²)</th>
<th>Lukumäärä (kpl)</th>
<th>Pinta-ala yhteensä (km²)</th>
<th>Osuus järvialasta (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>100</td>
<td>44</td>
<td>14600</td>
<td>100</td>
</tr>
<tr>
<td>100 - 10</td>
<td>18</td>
<td>560</td>
<td>7,8</td>
</tr>
<tr>
<td>10 - 1</td>
<td>30</td>
<td>75</td>
<td>1,3</td>
</tr>
<tr>
<td>1 - 0,1</td>
<td>32</td>
<td>11</td>
<td>0,28</td>
</tr>
<tr>
<td><0,1</td>
<td>16</td>
<td>0,87</td>
<td>0,052</td>
</tr>
</tbody>
</table>

Fig. 2. The long sediment cores were taken using equipment developed for lake circumstances. The cores are practically undisturbed and they extend from the surface of the sediment to below the level, which correspond to the time of lake initiation.

Häiriintymön pintanäyte otettiin Limnos-tyyppisellä näytteenotimella ja se jaettiin säännönmukaisesti seitsemään osanäytteeneseen. Näytteiden syvyydet sedimentin pinnasta lukien olivat 0–2 cm, 2–5 cm, 5–10 cm, 10–15 cm, 15–20 cm, 20–25 cm ja 25–30 cm. Paikoin sedimentkerroksen pinta oli niin tiivis, ettei täydellistä sarjaa saatu otettua.

Laboratoriomääritykset

Varaston ja varastoitumisnopeuden laskeminen

Järvisedimenttien sisältämä kuiva-ainemäärä laskettiin kertomalla sedimentin tilavuus keskimääräisellä tiheydellä. Hiilimäärä taas saatiin kuiva-ainemäärästä kuiva-aineen keskimääräisen hiilipitoisuuden perusteella. Keskimääräiset varastot (kg/m²) saatiin jakamalla järven kuiva-ainevarasto ja hiilivarastopiinta-alalla. Pitkän aikavälin keskimääräiset varasto- ja varastoinosnopeudet (g/m²/v) taas saatiin jakamalla keskimääräinen kuiva-ainevarasto ja keskimääräinen hiilivarastopiiva-aineen järven iällä. Saadut varastoinosnopeudet ovat järvioktaisia, eikä niiden perusteella voida tehdä johtopäätöksiä varastoitumisnopeuksien muutoksista.

Tutkimuspisteille lasketut varastoitumisnopeudet sitä vastoin osoittavat kuiva-aineen ja hiilen varastoitu-

Tutkimustarkkuus

Järvisedimenttien määrää arvioitiin kaikuluotausten ja kairausten perusteella. Arvioinnin tarkkuuteen vaikuttavat luotauslinjojen sijainti, luotettavuus ja mahdollisuudet erottaa järvisedimentit vanhemmista sedimenteistä.

Suurimmilla järvisissä luotauslinjaa on yli 100 km, pienimmillä luotuvalta noin 3 km. Järven kokon suhteutettuna luotauslinjat ovat noin 1 km/10 km², kohoa siitä kaksinkertaiseksi 100–200 km²:n järvissä, ja yltää muttaamisissa pienehköissä järvisissä 30 km/10 km². Pienehköä järveä johtaa luotauslinjan määrää 4 km:stä 30 km:iin (kuva 3). Samalla luotaustarkkuus kasvaa 2,1 km:stä 16 km:iin säännöllisesti (kuva 3). Samalla luotaustarkkuus kasvaa 2,1 km:stä 16 km:iin säännöllisesti (kuva 3). Samalla luotaustarkkuus kasvaa 2,1 km:stä 16 km:iin säännöllisesti (kuva 3). Samalla luotaustarkkuus kasvaa 2,1 km:stä 16 km:iin säännöllisesti (kuva 3).

Tuotok voisoi olla osiin ajoittetuja tasojen mukaan, laskettiin kunhin kerraksen keskimääräiset varastoitumisnopeudet vastavalla tavalla.

Järvisedimenttien määrää arvioitiin kaikuluotausten ja kairausten perusteella. Arvioinnin tarkkuuteen vaikuttavat luotauslinjojen ja kairausten määrä, niiden sijainti, luotettavuus ja mahdollisuudet erottaa järvisedimentit vanhemmista sedimenteistä.

Suurimmilla järvisissä luotauslinjaa on yli 100 km, pienimmillä luotuvalta noin 3 km. Järven kokon suhteutettuna luotauslinjat ovat noin 1 km/10 km², kohoa siitä kaksinkertaiseksi 100–200 km²:n järvissä, ja yltää muttaamisissa pienehköissä järvisissä 30 km/10 km². Pienehköä järveä johtaa luotauslinjan määrää 4 km:stä 30 km:iin (kuva 3). Samalla luotaustarkkuus kasvaa 2,1 km:stä 16 km:iin säännöllisesti (kuva 3). Samalla luotaustarkkuus kasvaa 2,1 km:stä 16 km:iin säännöllisesti (kuva 3). Samalla luotaustarkkuus kasvaa 2,1 km:stä 16 km:iin säännöllisesti (kuva 3). Samalla luotaustarkkuus kasvaa 2,1 km:stä 16 km:iin säännöllisesti (kuva 3). Samalla luotaustarkkuus kasvaa 2,1 km:stä 16 km:iin säännöllisesti (kuva 3).

Taulukko 2. Luotaustarkkuuden vaikutus sedimenttimäärän arviointiin Kolkonjärvellä.

<table>
<thead>
<tr>
<th>Luotaustarkkuus (km/10 km²)</th>
<th>Accuracy of echo-sounding (km/10 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2,1</td>
<td>3,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Järvisedimenttikerroksen paksuus (m)</th>
<th>Thickness of lake sediment bed (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1,74</td>
<td>1,53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Järvisedimentti määrä (milj. m³)</th>
<th>Volume on lake sediment (million m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>5,23</td>
<td>5,75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osum lopullisesta arviosta (%)</th>
<th>Proportion of last estimate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>62</td>
<td>68</td>
</tr>
</tbody>
</table>

Tuotokvoi olla osiin ajoittetuja tasojen mukaan, laskettiin kunhin kerraksen keskimääräiset varastoitumisnopeudet vastavalla tavalla.

Taulukko 2. Luotaustarkkuuden vaikutus sedimenttimäärän arviointiin Kolkonjärvellä.

Table 2. The effect of echo-sounding on the estimation of sediment volumes in Lake Kolkonjärvi.
suus pieni ja arvio sedimentin määrää kasvoi. Merkittävin muutos tapahtui siirryttäessä vaiheesta B vaiheeseen C. Kolkonjärven kohdalla riittävänä luotaustarkkuutena voitaisiin pitää 8 km/10 km².

Kustannussyyistä vastaava luotaustarkkuus ei ollut mahdollinen suurissajärvissä. Toisaalta vaikuttaa siltä, että suurissa järvissä huomattavasti pienempi luotaustarkkuus johtaa vastaavaan tutkimustarkkuuteen. Esimerkiksi Inariljärvelle päädyttiin 0,99 km²/10 km²:n luotaustarkkuudella samaan arvioon järvisedimenttien määrästä kuin mitä aiemmin oli arvioitu kairausten perusteella (Kujansuu et al. 1998).

Järvisedimentit ovat yhtenäisten altaiden eri osissa varsin tasalaatuisia. Ominaisuudet poikkeavat lähinnä järveen laskevien jokien edustoilta ja reunamien suojaisissa altaissa. Näytteneottopisteiden sijainti vaikuttaa jossain määrin tuloksiin, mutta sen suuruutta on käytettävissä olevan aineiston perusteella vaikea arvioida. Laboratoriomääritysten tarkkuutta selvitettiin toistamalla määrityksiä. Samoista näytteistä tehtiin määritysten tulokset vaihtelevat niin vähän, ettei menetelmiin liittyvillä virheillä ole lopputuloksen
Järvi kohtaisen tulosten esitys

Järven kehitys valuma-alueella ja sen liuokkaaminen on suoritettu yleensä Suomen Kartastossa perusteltuna (Eikhom 1993). Valuma-alueen maaperä kuvattiin maaperäkarttojen (1:400 000, 1:100 000 tai 1:20 000) tai peruskartoilta tehtyn tulkinnan perusteella.

Laboratoriossa tutkitaan myös järven syntyajakohtaa vastaavaa syvyys ja sen yhteyteen vanhat kerrokset, aiheuttaa 200 vuoden ikävirhe varastointisjaan perusteella. Kuvasta ilmenee myös radiohiilimetodillä ajotettujen osanäytteiden paikat ja iät kalenterivuosina.

JÄNISJOEN VESISTÖALUE (1)

Kinnasjärvi

Kinnasjärvi sijaitsee Jänisjoen vesistöalueen pohjoisosassa Tuupovaarassa. Sen pinta-ala on 1,40 km² ja pinnan korkeus 136,3 m. Järvi on noin 3 km pitkä ja suuntautunut lounaasta koilliseen (kuva 5). Kinnasjärvi on tyypiltään reittijärvi. Kinnasjärvi syntyi mannerjäätikön reunan peräntyyppiä alueelta noin 12 200 vuotta sitten. Sen jälkeen järven vedenpinta on pysynyt laskukynnyksen säätämällä tasolla.

Tutkimuspisteitä on yhdeksän (kuva 5). Näytteet laboratoriomäärityksissä varten otettiin yhdelta pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 1 sijaitsee järven eteläosassa, missä veden syvyys oli 18,6 m. Pitkä näyte ulottuu sedimentin pinnasta 3,26 m:n syvyyteen. Näyte on liehua, lukuun ottamatta alapäässä olevaa ohutta siltikerrosta (kuva 6). Pohjamaa rajoittuu suoraan liejuun, mikä on tyyppistä veden koskemattoman alueen järville. Järven syntyajankohtta vastaava syvyys on 3,22 m. Sen välissä hiilipitoisuus on 18 %:n tason vajaan 2 m:n syvyydessä ja pysyy korkeana pintaan saakka.

Kuroutumisen jälkeen järven pohjoispuolella on varastoitunut vuosittain kuiva-ainetta noin 0,23 milj. tunnin. Enimmäinen syväys on noin 9000 vuotta noin 5,0 g/m². Radiohiilijohtuneita radiotesteitä voidaan kohdella kaikilla seuraneet runsaat 200 vuotta ja ylempiä on keskimäärin noin 9000 vuotta. Enimmäisen syväys on noin 9000 vuotta. Eriakenteiset hesihiilit ovat sekä kuiva-ainetta että hiilen keskimääräistä syväys.

Kinnasjärven järvedimentit sisältävät kuiva-ainetta noin 0,23 milj. tunnin. Koko pinta-alalla laskettuna

Fig. 4. The location of the studied lakes in the Jänisjoki River drainage basin.
kuiva-ainetta on keskimäärin 170 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 14 g/m²/v. Kuiva-aineesta on hiiltä noin 37 milj. kg. Koko pinta-
alalle laskettu keskimääräinen hiilivarasto on 27 kg/m² ja keskimääräinen varastoitumisnopeus 2,2 g/m²/v.

Tammalammit

Tammalammit sijaitsevat Jänisjoen vesistöalueen länsireunalla Tohmajärveellä ja käsittävät kaksi lähene saman kokoista ja muotoista, kapean kannaksen erottamaa lampezia. Tämän tutkimuksen kautta kannaksen pohjoispunon kumppanuus lampekunnaksi on saatu esille. Taskunpuoleinen kante on voitu pitää erinomaisena hiekkamaan lankesta, jonka pinta-ala on 0,06 km² ja pinnan korkeus on 112,7 m. Valuma-alue on Toiseen Salpausselkään kuuluvan valumuun aikana. Pohjoinen Tammalampi on tyypiltään reittijärvi. Mannerjäätikön reunan peräännyttävä ulottui muihinkin Itämeri Tammalampien kohdalle ja sen pinta oli noin 10 m lamppien nykyistä poinukastilta. Pohjoinen Tammalampi kuroutui Itämerestä Baltian jääjärveen alun perin noin 11 500 vuotta sitten. Siitä alkaen lammen pinta-ala on kasvanut ja lammen pinnan korkeus on kasvanut sen korkeimmasta kohdasta.

Näytteet laboratoriomäärityksiä varten otettiin yhdeksi tutkimuspiireestä (kuva 7).

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä vedensyvyys oli 7,5 m. Pitkä näyte ulottuu sedimentin pinnasta 4,98 m:n syvyyteen ja on kokonaan liejuista (kuva 8). Näytteenontimen kärkikappaleessa oli hiekkaa, sitten kuroutumisajankohtaa vastaavaa syvyys on näytteen alapuolella tai korkeintaan 10 cm syvemmällä. Hiilihiiliasi on näytteen ala- ja keskiosassa noin 30 %:n syvyydessä, kohoa noin 0,7 m:n syvyydessä noin 40 %:n. Lammen pinta- ala on noin 20 %:n tason. Hiilihiiliasi hiilihiiliasihiilasi
Siitä hiilen osuus on ollut 9,6 g/m². Jos ylemmän ajoitustuloksen oletetaan osoittavan näytteen kerrostumisajankohtaa, on sekä kuiva-aineen että hiilen pitkän aikavälin varastoitumisnopeus pienentynyt neljänneen osaan. Hiilipitoisuus- ja tiheyskäyrä eivät kuitenkaan tue olettamusta niin voimakkaasta sedimentaatio-olojen muutoksesta.

Pohjoisen Tammalammen järvedimentit sisältävät kuiva-ainetta noin 5800 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 96 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 8,4 g/m²/v. Kuiva-aineesta on hiiltä noin 1,7 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 29 kg/m² ja keskimääräinen varastoitumisnopeus 2,5 g/m²/v.

Fig. 7. Tutkimuspisteen sijainti Tammalammeilla (pohjoinen). Ylhäällä oikealla lammen sijainti luusuan rajoittavalla valuma-alueella.

Fig. 8. Tammalammen tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilajoitusten tulokset. Ylhäällä oikealla pintanäytteen hiilipitoisuus.

Fig. 8. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Tammalammit. Top right shows the carbon content of the surface core.

Hiitolanjoen vesistöalue (3)

Piilampi sijaitsee Hiitolanjoen vesistöalueen luoteisreunalla Ruokolahdella. Lammen pinta-ala on 0,12 km² ja pinnan korkeus 102,8 m. Lampea ympäröivät moreenipeitteiset kalliomäet. Piilampi on tyypiltään latvajärvi.

Mannerjäätkön reunan perääntytty ulottui mui nainen Itämeri juuri ja juuri Piilammen altaaseen. Jääjärven pinta laski nopeasti, ja Piilampi kuroutui Itämerestä Baltian jääjärvi -vaiheen aikaan noin 11 500 vuotta sitten. Siitä alkaen lammen laskukynynks on säädellyt vedenpinnan tasoa.

Tutkimuspisteitä on kolme (kuva 10). Näyteet laboratoriomääritelyissä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 1 sijaitsee lammen keskiosassa, missä veden syvyys oli 8,2 m. Pitkä näyte ulottuu sedimentin pinnasta 3,24 m:n syvyteen. Näyteen alaosaa (3,24–3,10 m) on silttiä, ja sen pääellä oleva järvesiintämmikeros on kokonaan liejua (kuva 11). Kuroutumisajankohtaa vastaava syvyys on 3,10 m. Sen yläpuolella hiilipitoisuus on jo 17%, ja pitoisuus pysyy korkeana sedimentin piintaan saakka. Hiilipitoisuuden nopea kohoaminen osoittaa sedimentaatia-olojen vakiintuneen nopeasti ja on tyypillistä järville, jotka sijaitsevat vedenkoskemattomalla alueella tai ovat

Piilampi

Fig. 9. The location of studied Lake Piilampi in the Hiitolanjoki River drainage basin.

Fig. 10. The location of survey points in Lake Piilampi. Top right shows the location of the small lake in the drainage basin delimited by the outlet.
lähellä jääkauden jälkeistä ylintä rantaa.

Näytteestä ajotettiin kaksi osanäytettä radiohiilimenetelmällä. Alempi osanäyte otettiin liejukerroksen pohjalta, ja sen ikä sopii hyvin yhteen kehitystarpeellista perusteella arvioidun kuroutumisajakohdan kanssa. Ylemmässä osanäytteessä sitä vastoin saattaa olla kerrostumisajakohdat vanhempana eloperäistä aineesta. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-aineita keskimäärin 28 g/m². Siitä hiilen osuus on ollut 5,7 g/m². Jos pitkä näyte jaetaan kahteen osaan ylemmän ajoitetun osanäytteen kolmanteen osaan ja hiilen varastoitumisen kohdalta, havaitaan kuiva-aineen varastoitumisnopeuden pienentyneen kolmanteen osaan ja hiilen varastoitumisnopeuden pienentyneen puoleen.

Piilammen järvedimentit sisältävät kuiva-ainetta noin 24 000 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 200 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 17 g/m²/v. Kuiva-aineesta on hiiltä noin 4,8 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 40 kg/m² ja keskimääräinen varastoitumisnopeus 3,5 g/m²/v.

VUOKSEN VESISTÖALUE (4)

Vuoksen vesistöalue käsitteää Järvi-Suomen itäosan ja muodostaa Suomen laajimman vesistöalueen (kuva 12). Sen vedet laskevat Vuoksen kautta Laatokkaan. Koko vesistöalueen pinta-ala on noin 69 000 km², josta vajaat neljäsosa on Venäjän puolella. Suomen puoleisen osan korkeus vaihtelee 34–361 m keskimääräisen korkeuden ollessa 119 m. Muinaisen Itämeren ylimmän rannan taso on alueen eteläosassa noin 100 m, mutta kohoa luoteeseen pääntä noin 190 m. Suurin osa vesistöalueesta on mankerää, mutta laajoina yhtenäisinsä alueita sitä on vesistöalueen koirisissa. Mankkuun sellistumisen takia lähes kaikki vesistöalueen suuret järvet ovat kokeneet merkittäviä sedimentaatio-olosuhteita.

Fig. 11. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Piilampi. Top right shows the carbon content of the surface core.
Fig. 12. The location of the studied lakes in the Vuoksi River drainage basin.
Saimaa

Fig. 13. The location of echo-sounding transects and survey points in Lake Saimaa. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Tutkimuspiste 14 sijaitsee järven luoteisosassa Anninselällä, missä veden syvyys oli 19,2 m. Pitkä näyte ulottuu sedimentin pinnasta 4,14 m:n syvyyyteen (kuva 14). Näytteen alaosan (4,14–3,70 m) on savea.

Fig. 14. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 14 in Lake Saimaa.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta noin 99 g/m². Siitä hiilen osuus on ollut 6,9 g/m². Viimeksi kuluneen vuosituhannen aikana kuiva-aineksen keskimääräinen varastointinopeus on ollut pitkän aikavälein yleensä noin 600 g/m² vuosina. Hiilen liike maa-keskustan työntymisestä alueella on ollut 2,7 g/m² vuosina. Maksimikohdeltaan yläpuolella hiilen osuus on ollut 2,6 g/m² vuosina. Suurin osa sedimenttikerroksesta on ollut vuosituhannen aikana.

Fig. 15. The composition, density and carbon content of the long core taken from survey point 4 in Lake Saimaa. Top right shows the carbon content of the surface core.

Fig. 15. The composition, density and carbon content of the long core taken from survey point 4 in Lake Saimaa. Top right shows the carbon content of the surface core.
näyte ulottuu sedimentintiheinen pinnasta 6,33 m:n syvyyteen. Näytteen alaosa (6,33–4,56 m) on lustosavea. Sen päällä on savea (4,56–3,44 m), saviliejua (3,44–2,45 m) ja liejua (2,45–0 m). Kuroutumisajankohta vastaa syvyyssä 3,44 m (kuva 16). Sen yläpuolella hiilipitoisuus kohoa nopeasti 6 %:n tasolle ja jatkaa sitten hidasta kohoa pintaan saakka.

Mitä todennäköisimmin pitkä näyte ei ole ajallisesti yhtenäinen, vaan osa kuroutumisen jälkeen syntyneistä järvisedimenteistä on erooodutun pois. Mahdollinen aukko sijaitsee saven ja saviliejun rajalla. Hiilipitoisuuden aleneminen 3 m:n yläpuolella liittyy todennäköisesti Vuoksen puhekohtaisesta seuranneeseen vedenpinnan alenemiseen. Suurin osa järvisediment-}

Tutkimuspiste 3 sijaitsee Toisen Salpausselän eteläpuolella Ilkonselällä, missä veden syvyys oli 51,6 m. Pitkä näyte ulottuu sedimentintiheinen pinnasta 8,02 m:n syvyyteen. Näytteen alaosa (8,02–6,40 m) on silttiä. Sen päällä on savea (6,40–5,20 m), liejusavea (5,20–5,02 m), saviliejua (5,02–4,55 m), saviliejua (4,55–2,80 m), liejua (2,80–2,25 m) ja liejua (2,25–0 m). Kuroutumisajankohta vastaa syvyyssä 5,20 m (kuva 17). Sen yläpuolella hiilipitoisuus kohoa aluksi hitaasti, mutta sitten nopeasti saavuttaen 18 %:n tason 4,0 m:n syvyydessä. Sen yläpuolella pitoisuus alenee 6 %:n tasolle ja pysyy siinä pintaan saakka.

Kuroutumisen jälkeen tilalle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 52 g/m². Siitä hiilen osuus on ollut 3,5 g/m². Tutkimuspiste 15 sijaitsee Toisen Salpausselän eteläpuolella Piispalanselällä (Maavesi), missä veden syvyys oli 4,7 m. Pitkä näyte ulottuu sedimentintiheinen pinnasta 3,34 m:n syvyyteen. Näytteen alaosa (3,34–3,15 m) on silttiä. Sen päällä on savea (3,15–2,22 m), liejua (2,22–1,20 m) ja saviliejua (1,20–0 m). Näyte ei ole ajallisesti yhtenäinen, vaan saven ja liejun välissä on todennäköisesti useiden tuhansien vuosien aukko (kuva 18). Saven ja liejun rajapinnan yläpuolella hiilipitoisuus on 20 %:n tasolla, mutta laskee sitten nopeasti ja päätyy 6 %:n tasolle näytteen yläosassa.

Muinaisen Itämeren vetäytyttyä alueelta oli Piis-

Kuva 17. Saimaan tutkimuspisteeltä 3 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Yläöhällä oikealla pinta-yhteyteen liittyvä hiilipitoisuus. Fig. 17. The composition, density and carbon content of the long core taken from survey point 3 in Lake Saimaa. Top right shows the carbon content of the surface core.

Kuva 18. Saimaan tutkimuspisteeltä 15 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Fig. 18. The composition, density and carbon content of the long core taken from survey point 15 in Lake Saimaa.
vastaava syvyys on 4,60 m (kuva 19). Sen yläpuolella
hiilipitoisuus kohoaa aluksi hyvin hitaasti. Kohoami-
nen nopeutuu 2,5 m:n syvyydessä, ja hiilipitoisuus
saavuttaa 13 %:n tason vajaan 2 m:n syvyydessä. Sen
yläpuolella pitoisuus laskee nopeasti 6 %:n tasolle ja
pysyy siinä sedimentin pintaan saakka.

Riutanselän kehitys alkoi erillisänä alalta. Selän
 molemmilla puolilla on katkonaiset pitkittäisharju
(Lappalainen 1962b), joita selän ympäristöissä oli
ransaasti helposti erodoituvaa mineraalimateriaalia.
Mineraalimateriaalin kerrostumien syvänteen ollut
nopeaa, ja sen takia sedimentin hiilipitoisuus pysyi
järven kokoon nähden alhaisena. Lopulta Suur-
Saimaan tulva ulottui myös Riutanselän altaaseen.
Vedempiinan kohotessa rantasoidoa erodoitunut turve
kohotti nopeasti sedimentin hiilipitoisuutta. Vuoksen
puhkeaminen näky pitkässä näytteessä hiilipitoi-
suuden nopeana alenenemishetkellä. Tällöin rantasoiden
eroosio päättyy ja matalaan veteen joutuneet sedimentit
kohtuvat uudelleen. Uudelleen kerrostumassa
meressä oli kuitenkin tavanomaisen enemmän
turpen jäänteitä, mikä hillitsi hiilipitoisuuden alem-
nemista. Sedimentaatio-olot vakiintuivat melko pian
vastaamaan nykyistä tilannetta.

Kuroutumisen jälkeen tälle paikalle on varastoinut
muutostaitteen kuiva-ainetta noin 130 g/m². Siitä
hiilen osuus on ollut 6,8 g/m².

Tutkimuspiste 13 sijaitsee salpausselkien välisen
osoitien itäreunalla Haapavedellä, missä veden syvyys
oli 27,2 m. Pitkä näyte ulottuu sedimentin pinnasta
4,37 m:n syvyyteen. Näytteen alaosa (4,37–4,20 m) on
seava. Sen pääällä on liejusavia (4,20–3,53 m), savilie-
juja (3,53–2,50 m) ja liejuja (2,50–0 m). Kuroutumis-
ajankohtaa vastaava syvyys on 4,20 m (kuva 20). Sen
yläpuolella hiilipitoisuus kohoaa aluksi hyvin hitaasti, mutta
nopeutuu 3,5 m:n syvyydessä ja päätyy 5 %:n tasolle.
Seuraa nopean kohoamisen jakso alkaa 2,5 m:n
syvyydessä ja päätyy 18 %:n tasolle. Sen yläpuolella
hiilipitoisuus laskee sedimentin pintaan kohti.

Haapaveden kehitys alkoi erillisänä alalta. Sen
sedimentaatio-olot ehtivät vakiintua ennen kuin
Suur-
Saimaan tulva ulottui alaireenina veden pintaan. Tulvan
kohtessa alkoivat kerrostumien sedimentin hiilipitoisuus
kohota lähinnä rantasoiden eroosion seurauksena.
Vuoksen puhkeamisen yhteydessä vedenpinta laski,
rantasoiden eroosio päättyy ja sedimentin hiilipitoisuus

Kuva 19. Saimaan tutkimuspaikkasta 5 otetun näytteen koostumus, tiheys
ja hiilipitoisuus. Yhdistä oikealla pintanäytteen hiilipitoisuus.
Fig. 19. The composition, density and carbon content of the sample taken
from survey point 5 in Lake Saimaa. Top right shows the carbon content
of the surface core.

Kuva 20. Saimaan tutkimuspaikkasta 13 otetun pitkän näytteen koostumus,
tiheys ja hiilipitoisuus. Yhdistä oikealla pintanäytteen hiilipitoisuus.
Fig. 20. The composition, density and carbon content of the long core
taken from survey point 13 in Lake Saimaa. Top right shows the carbon content
of the surface core.
Kuroutumisen jälkeen tälle paikalle on varastoituun kuiva-ainetta keskimäärin 100 g/m². Siitä hiilen osuus on ollut 8,7 g/m².

Tutkimuspiste 1 sijaitsee Ensimmäisen Salpausselän luoteispuolelle Päihäniemenselällä. Alkoo aleniin 12,8 m. Pitkä näyte ulottuu sedimentin pinnasta 2,70 m:n syvyyteen (kuva 21). Näytteen alaosa (2,70–2,60 m) on kasvin jäänteitä sisältävä savea. Sen yläpuolella on turvetta (2,60–0,79 m) ja liejua (0,79–0 m).

Päihäniemenselän alla jäi kuiville muinaisen Itämeren vetäytyttyä alueella. Veden syvyys oli 12,8 m. Tutkimuspiste 1 sijaitsee Ensimmäisen Salpausselän luoteispuolella Päihäniemenselällä, missä veden syvyys oli 12,8 m. Pitkä näyte ulottuu sedimentin pinnasta 2,70 m:n syvyyteen (kuva 21). Näytteen alaosa (2,70–2,60 m) on kasvin jäänteitä sisältävä savea. Sen yläpuolella on turvetta (2,60–0,79 m) ja liejua (0,79–0 m).

Päihäniemenselän alla kasvoi ripustiergeologiin tälle paikalle. Alkoo aleniin 12,8 m. Pitkä näyte ulottuu sedimentin pinnasta 2,70 m:n syvyyteen (kuva 21). Näytteen alaosa (2,70–2,60 m) on kasvin jäänteitä sisältävä savea. Sen yläpuolella on turvetta (2,60–0,79 m) ja liejua (0,79–0 m).

Päihäniemenselän alla kasvoi ripustiergeologiin tälle paikalle. Alkoo aleniin 12,8 m. Pitkä näyte ulottuu sedimentin pinnasta 2,70 m:n syvyyteen (kuva 21). Näytteen alaosa (2,70–2,60 m) on kasvin jäänteitä sisältävä savea. Sen yläpuolella on turvetta (2,60–0,79 m) ja liejua (0,79–0 m).

jossa veden syvyys oli 12,8 m. Pitkä näyte ulottuu sedimentin pinnasta 2,70 m:n syvyyteen (kuva 21). Näytteen alaosa (2,70–2,60 m) on kasvin jäänteitä sisältävä savea. Sen yläpuolella on turvetta (2,60–0,79 m) ja liejua (0,79–0 m).

Koska matala vesijäähde ja virtaukset rajoittivat järviesi- menttien kerrostumista, jättivät järvivaiheen keskimääräiset kerrostumisnopeudet pieniksi. Järvivaiheen alkamisen jälkeen tälle paikalle on varastoituun vuoitettua kuiva-ainetta keskimäärin 13 g/m². Siitä hiilen osuus on ollut 2,6 g/m². Hiilen kerrostumisen järjestelmien yleisessä yhteydessä on yleensä korkeampi kerrostumisnopeus kuin ankaraa. Tällä paikalla suovaihessa vielä 35 g/m²/v.

Tutkimuspiste 6 sijaitsee Ensimmäisen Salpausselän luoteispuolella Arposenieniemen edustalla, missä veden syvyys oli 17,0 m. Pitkä näyte ulottuu sedimentin pinnasta 2,94 m:n syvyyteen (kuva 22). Näytteen alaosa (2,94–2,83 m) on silttiä. Sen yläpuolella on turvetta (2,83–2,00 m), liejusaataja turvetta (2,00–1,60 m) ja liejua (1,60–0 m).

Muinaisen Itämeren peräänjäättyneen sedimentin järkestumis- ja kerrostumisen alkaessa on kohdattavissa runsaat 9000 vuotta. Suvojen kohdalla on pieniä kerrostumis-ja lierryttely-alueita. Veden syvyys oli 12,8 m. Pitkä näyte ulottuu sedimentin pinnasta 2,70 m:n syvyyteen (kuva 21). Näytteen alaosa (2,70–2,60 m) on kasvin jäänteitä sisältävä savea. Sen yläpuolella on turvetta (2,60–0,79 m) ja liejua (0,79–0 m).

Saimaan tutkimuspisteeltä 1 otetun pitkän näytteen aikatauluna on 9000 vuotta, paitsi nuorempia aikoja. Kuvan osoittaa, etteivät kiekotuoret varastoituun vuoitettua kuiva-ainetta keskimäärin 13 g/m². Siitä hiilen osuus on ollut 2,6 g/m². Hiilen keskimääräinen kerrostumisnopeus on ollut 35 g/m²/v. Tällä paikalla seurannut suoveraita on ollut noin 700 vuotta, sitä seurannut matalan veden vaihe noin 1500 vuotta ja syvän veden vaihe noin 8000 vuotta. Viimeksi kuluineen 8000 vuoden aikana talle paikalle on varastoituun vuoitettua kuiva-ainetta keskimäärin 28 g/m². Siitä hiilen osuus on ollut 3,0 g/m². Hiilen keskimääräinen kerrostumisnopeus on ollut suovaiheessa 27 g/m²/v ja matalan veden vaiheessa 8,9 g/m²/v.

Saimaan tutkimuspisteeltä 1 otetun pitkän näytteen aikatauluna on 9000 vuotta, paitsi nuorempia aikoja. Kuvan osoittaa, etteivät kiekotuoret varastoituun vuoitettua kuiva-ainetta keskimäärin 13 g/m². Siitä hiilen osuus on ollut 2,6 g/m². Hiilen keskimääräinen kerrostumisnopeus on ollut 35 g/m²/v. Tällä paikalla seurannut suoveraita on ollut noin 700 vuotta, sitä seurannut matalan veden vaihe noin 1500 vuotta ja syvän veden vaihe noin 8000 vuotta. Viimeksi kuluineen 8000 vuoden aikana talle paikalle on varastoituun vuoitettua kuiva-ainetta keskimäärin 28 g/m². Siitä hiilen osuus on ollut 3,0 g/m². Hiilen keskimääräinen kerrostumisnopeus on ollut suovaiheessa 27 g/m²/v ja matalan veden vaiheessa 8,9 g/m²/v.

Saimaan tutkimuspisteeltä 1 otetun pitkän näytteen aikatauluna on 9000 vuotta, paitsi nuorempia aikoja. Kuvan osoittaa, etteivät kiekotuoret varastoituun vuoitettua kuiva-ainetta keskimäärin 13 g/m². Siitä hiilen osuus on ollut 2,6 g/m². Hiilen keskimääräinen kerrostumisnopeus on ollut 35 g/m²/v. Tällä paikalla seurannut suoveraita on ollut noin 700 vuotta, sitä seurannut matalan veden vaihe noin 1500 vuotta ja syvän veden vaihe noin 8000 vuotta. Viimeksi kuluineen 8000 vuoden aikana talle paikalle on varastoituun vuoitettua kuiva-ainetta keskimäärin 28 g/m². Siitä hiilen osuus on ollut 3,0 g/m². Hiilen keskimääräinen kerrostumisnopeus on ollut suovaiheessa 27 g/m²/v ja matalan veden vaiheessa 8,9 g/m²/v.

Saimaan tutkimuspisteeltä 1 otetun pitkän näytteen aikatauluna on 9000 vuotta, paitsi nuorempia aikoja. Kuvan osoittaa, etteivät kiekotuoret varastoituun vuoitettua kuiva-ainetta keskimäärin 13 g/m². Siitä hiilen osuus on ollut 2,6 g/m². Hiilen keskimääräinen kerrostumisnopeus on ollut 35 g/m²/v. Tällä paikalla seurannut suoveraita on ollut noin 700 vuotta, sitä seurannut matalan veden vaihe noin 1500 vuotta ja syvän veden vaihe noin 8000 vuotta. Viimeksi kuluineen 8000 vuoden aikana talle paikalle on varastoituun vuoitettua kuiva-ainetta keskimäärin 28 g/m². Siitä hiilen osuus on ollut 3,0 g/m². Hiilen keskimääräinen kerrostumisnopeus on ollut suovaiheessa 27 g/m²/v ja matalan veden vaiheessa 8,9 g/m²/v.
Fig. 22. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 6 in Lake Saimaa. Top right shows the carbon content of the surface core.

Pielinen

Pielinen on Suomen viidenneskis suurin järvi. Se sijaitsee Vuoksen vesistöalueen pohjoisosassa ja kuuluu Enon, Lieksan, Juuan ja Nurmeksen kuntaan. Sen pinta-ala on 871 km\(^2\) ja pinnan korkeus 93,7 m. Järvi on noin 90 km pitkä ja suuntautuu luoteeseen kaakkoiseen (kuva 23). Pielinen on tiypiltään reitijärvi. Lähde puoleen sen valuma-alueesta on Venäjän puolella.

Sedimentaalitutkimukset

Sedimentaatiodolojien monimuotoisuutta lisäävät vielä virtaukset. Pielisen loistavissa kaivereissa, järven virta- ja alakumpuessa, on havaittu, että jääjärvivaiheessa alueella on tapahtunut useita merkittäviä järven muotoilukykyisiä muutoksia.

Sedimentaalitutkimukset

Hannu Pajunen
on 8000 vuotta, seuraava 5600 vuotta ja loput nuorem- pia kuin 3000 vuotta. Pitkällä aikavälillä kuiva-aineen varastoitumisnopeus on hieman hidastunut ja hiilen hieman nopeutunut (kuva 25). Viime vuosituhansina varastoitumisnopeudet ovat vaihtelusta huolimatta pysyneet samalla tasolla.

Tutkimuspiste 2 sijaitsee Suurselällä järven itä- osassa, missä veden syvyys oli 23,0 m. Pitkä näyte ulottuu sedimentin pinnasta 4,57 m:n syvyysyn. Näyt- teen alaosaa (4,57–2,40 m) on lustosavea. Sen päällä on savea (2,40–2,00 m), liejusavea (2,00–1,20 m) ja saviliejuva (1,20–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,00 m (kuva 26). Sen yläpuo- lella hiilipitoisuus kohoaa hitaasti ja saavuttaa 3 %:n
Hannu Pajunen

32

Fig. 24. The composition, density and carbon content of the long core taken from survey point 1 in Lake Pielinen. Top right shows the carbon content of the surface core.

Fig. 25. Accumulation rate of dry matter and carbon at survey point 1 in Lake Pielinen.

Fig. 26. The composition, density and carbon content of the long core taken from survey point 2 in Lake Pielinen. Top right shows the carbon content of the surface core.
Pihlajavesi

Näytteet laboratoriomääritystä varten otettiin seitsemältä tutkimuspisteeltä (kuva 28). Kaikuluotaislinja on yhteensä 64 km.
Tutkimuspiste 7 sijaitsee järven luoteisosassa Tuohiselällä, missä veden syvyys oli 32,6 m. Pitkä näyte ulottuu sedimentinpinnasta 2,70 m:n syvyyteen. Näytteen alaosa (2,70–1,95 m) on lustosavea. Sen päällä on savea (1,95–1,70 m), liejusavea (1,70–1,42 m), saviliejua (1,42–1,19 m) ja liejua (1,19–0 m). Kuroutumisajankohta vastaava syvyys on 1,70 m (kuva 29). Hiilipitoisuus kohoaa portaittain 1 %:n tasolta 3 %:n tasolle ja siitä edelleen noin 6 %:n tasolle. Vuoksen puhkeamisen aiheuttama vedenpinnan lasku näkyy hiilipitoisuuden tilapäisenä alenemisena 0,9 m:n syvyydessä.

Kerrosjärjestyksestä päätellen Tuohiselän sedimentinäyte on aukoton, mutta sedimentaationopeus on ollut hidas. Kuroutumisen jälkeen tällä paikalla on varastoituun kuiva-ainettu keskimäärin 40 g/m². Siitä hiilen osuus on ollut 1,8 g/m².

Tutkimuspiste 3 sijaitsee järven pohjoisosassa Pitkällä Pihlajavedellä, missä veden syvyys oli 49,0 m. Pitkä näyte ulottuu sedimentinpinnasta 6,17 m:n syvyyteen. Näytteen alaosa (6,17–6,04 m) on lustosavea. Sen päällä on savea (6,04–5,60 m), liejusavea (5,60–5,20 m), liejua (5,20–4,70 m) ja liejua (4,70–4,23 m). Kuva 29. Luotauslinjojen ja tutkimuspisteiden sijainti Pihlajavedellä. Ylhäällä oikealla järven sijainti luusuaan rajoittuvalta valuma-alueella.

Fig. 28. The location of echo-sounding transects and survey points in Lake Pihlajavesi. Top right shows the location of the lake in the drainage basin delimited by the outlet.
savea (5,60–5,26 m), saviliejua (5,26–4,90 m), liejua (4,90–4,20 m), saviliejua (4,20–3,40 m) ja liejua (3,40–0 m). Kuroutumisajankohtaa vastaava syvyys on 5,60 m (kuva 30). Sen yläpuolella hiilipitoisuus kohoaa aluksi hitaasti, sitten nopeutuvaan 3 %:n tasolle ja siitä taas nopeasti 6 %:n tasolle. Pitoisuus alenee ensimmäisen kerran 4,2 m:n syvyydessä ja jatkaa siitä hyvin hidasta kohoamista sedimentin pintaa kohti. Läheällä pintaa pitoisuus taas alenee.

Hiilipitoisuuden ensimmäinen aleneminen 4,2 m:n syvyydessä liittyy todennäköisesti Vuoksen puheamista seuranneeseen vedenpinnan laskuun. Suurin osa järvesimenttikerroksesta on kertynyt ennen Vuoksen puheamista. Virtauksenmuutoksen ei siten ole ollut mainittavaa vaikutusta Särkilahdenseuden sedimentaatio-oloihin. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 43 g/m². Siitä hiilen osuus on ollut 4,5 g/m².

Tutkimuspiste 2 sijaitsee järven kaakkoisosassa Hirvolanselällä, missä veden syvyys oli 49,0 m. Pitkä näyte ulottuu sedimentin pinnasta 2,41 m:n syvyteen. Näytteen alaosaa (2,41–2,05 m) on savea. Sen pääällä on liejusavea (2,05–1,72 m), saviliejua (1,72–1,50 m) ja liejua (1,50–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,05 m (kuva 31).

Sedimentin hiilipitoisuus kohoaa aluksi hitaasti ja saavuttaen 2 %:n tason 1,7 m:n syvyydessä. Sen yläpuolella pitoisuus saavuttaa 8 %:n tavallinen 3,3 m:n syvyydessä. Sen yläpuolella pitoisuus taas kohoaa nopeasti 14 %:n tasolle, laskee lähes yhtä nopeasti takaisin 8 %:n tasolle ja pysyy siinä paikalla.

Suurimmat halipitoisuudet ovat järven kokon nähden korkeita. Niiden syntyyn on voinut vaikuttaa rantasoiden eroosio tulvan kohoamisvaiheessa. Pitoisuuden nopea aleneminen on seuranneen Vuoksen puheamisen liittyvää vedenpinnan laskua ja rantasoiden eroosion päätymistä. Viime vuosituhansien aikana sedimentaatio-olot ovat pysyneet vakaina. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 72 g/m². Siitä hiilen osuus on ollut 5,6 g/m².

Tutkimuspiste 5 sijaitsee järven itäosassa Utrasselällä, missä veden syvyys oli 22,5 m. Pitoisuuden aleneminen 3,40 m:n syvyyteen. Sen alaosaa (3,40–2,97 m) on lustosavea. Sen pääällä on savea (2,97–2,70 m), saviliejua (2,70–2,44 m) ja liejua (2,44–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,70 m (kuva 33). Sen yläpuolella hiilipitoisuus kohoaa nopeasti ja saavuttaa 18 %:n tason 1,9 m:n syvyydessä. Sen yläpuolella pitoisuus taas putoaa 8 %:n tasolle ja pysyy siinä paikalla. Utrasselän tutkimuspiste on huomattavasti matallamalla alueella kuin edellä kuvatut Hirvolanselän ja Särkilahdenseuden pisteet. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 72 g/m². Siitä hiilen osuus on ollut 5,6 g/m².

Kuvan kohdalla liittyvä viivästys pystyy kuvattua järven kokoon nähden korkeita. Niiden syntymään on voinut vaikuttaa rantasoiden eroosio tulvan kohoamisvaiheessa. Pitoisuuden nopea aleneminen on seuranneen Vuoksen puheamisen liittyvää vedenpinnan laskua ja rantasoiden eroosion päätymistä. Viime vuosituhansien aikana sedimentaatio-olot ovat pysyneet vakaina. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 72 g/m². Siitä hiilen osuus on ollut 5,6 g/m².
vakaina hitaasta vedenpinnan laskusta huolimatta. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 37 g/m². Siitä hiilen osuus on ollut 3,1 g/m². Tutkimuspiste sijaitsee järvenitäosassa Akonsalon ja Akonniemen välissä, missä veden syvyys oli 7,2 m. Pituusnaapurin pinta on poikkeuksellisen vaalea ja sen ulottuu sedimentin pinnasta 2,5 m:n syvyyteen. Näin on kokonaan liejua. Liejun alla on kova pohja, joten kuroutumisajankohtaa vastaava syvyys on 2,5 m. Sen yläpuolella hiilipitoisuus on peräti 28 %, mutta laskee siitä 8 %:n tasolle näyten yläosassa. Kuroutumisen jälkeen vedenpinta oli nykyistä alempana eikä järvedimenttien kerrostuminen ollut mahdollista. Sedimenttejä alkoivat kerota; kun Suur-Saimaan tulva oli kohonnut riittävästi kerrotuksiin. Ensimmäiset paikalle merkitsevät sedimentit sisoisivat runsaasti rantasoiden erodoituutetta turvetta. Rantasoiden erosio kuitenkin päätyi ja saapui yleisesti pitkään kohdalle pieniä muutosviksi, sillä varastoituksen päästymistäksi huolimatta. Kuvan oikealta näkyy n. 10 700 v

Fig. 30. The composition, density and carbon content of the long core taken from survey point 3 in Lake Pihlajavesi. Top right shows the carbon content of the surface core.

Alempalla, järvedimenttien kerrostuminen on mahdollista. Sedimenttejä alkoivat kerota; kun Suur-Saimaan tulva oli kohonnut riittävästi kerrotuksiin. Ensimmäiset paikalle merkitsevät sedimentit sisoisivat runsaasti rantasoiden erodoituutetta turvetta. Rantasoiden erosio kuitenkin päätyi ja saapui yleisesti pitkään kohdalle pieniä muutosviksi, sillä varastoituksen päästymistäksi huolimatta. Kuvan oikealta näkyy n. 10 700 v

Fig. 31. The composition, density and carbon content of the long core taken from survey point 6 in Lake Pihlajavesi. Top right shows the carbon content of the surface core.

Kuvan oikealta näkyy n. 10 700 v

Fig. 31. The composition, density and carbon content of the long core taken from survey point 6 in Lake Pihlajavesi. Top right shows the carbon content of the surface core.

Pihlajaveden pohjasta noin 45% on järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 120 milj. t. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 150 kg/m², ja sen keskimääräinen varastoturnusnopeus on ollut 14 g/m²/v. Kuiva-ainesta on hiiltä noin 9400 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 12 kg/m² ja keskimääräinen varastoturnusnopeus 1,2 g/m²/v.

Fig. 32. The composition, density and carbon content of the long core taken from survey point 2 in Lake Pihlajavesi. Top right shows the carbon content of the surface core.

Fig. 33. The composition, density and carbon content of the long core taken from survey point 5 in Lake Pihlajavesi. Top right shows the carbon content of the surface core.
Haukivesi

Haukivesi sijaitsee Vuoksen vesistöalueen keski­ osassa Varkauden ja Savonlinnan välissä, ja sen keskiosassa kuuluu Rantasalmen kuntaan. Järven pinta-ala on 620 km² ja pinnan korkeus 75,9 m. Se on lukuisten saarten ja niemen takia hyvin rikkonainen (kuva 34). Haukivesi on tyyppiltään reittijärvi. Siihen laskevat pohjoisesta Kallaveden ja idästä Oriveden vedet.

Mannerjäätikön reunan peräännyttilä ulottui muinaisen Itämeren Haukiveden alauteen ja sen vedenpinta oli noin 40 m järven nykyistä pintaa korkeammalla. Maankuoren kohotossa vedenpinta laski ja Haukivesi kurotti Itämerestä Ancylus-järven vaiheen, noin 10 000 vuotta sitten. Kurottumisen aikaan oli sen vedenpinta luoteisosaan nykyistä ylemmänä ja kaakkoisosassa nykyistä alempina. Alkuvaiheessa Haukiveden vedet laskivat muiden Saimaan alueen vesien tavoin luoteeseen. Koska järven laskukynnysettä sijaitsivat nopeimman maanhoidon alueella, kokosi vedenpinta laskynnyennyttä sen muotoja. Järven laajennut, salmet arvattuaan, ja uusia järviä liittyi osaksi muinaista Suur-Saimaaan. Vedenpinta kohotti kokojärven keskiosassa, missä veden syvyys oli 38,6 m. Pitkänäyte ulottuuo sedimentin pinnasta 6,74 m:n syvyyteen. Näytteen alaosa (6,74–6,31 m) oli luostosava. Sen päällä oli savea (3,30–3,18 m), saviliejua (3,18–2,65 m), saviliejua (2,65–2,24 m), liejua (2,24–1,05 m), saviliejua (1,05–0,42 m), saviliejua (0,42–0,36 m) ja liejua (0,36–0 m). Kuroutumisajankohtaa vastaava syvyys on 4,40 m (kuva 37). Sen yläpuolella hiilipitoisuus on ollut 2 %:n tasolle, alenee siitä edelleen ja on pienimmillään Valvatuksen purkauksen pintaan.

Kurottumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 110 g/m². Siitä hiilen osuuus on ollut 10 g/m².

Tutkimuspisteen sijaan Joroisselällä järven län­ sisiosassa, missä veden syvyys oli 13,0 m. Pitkänäyte ulottuuo sedimentin pinnasta 4,56 m:n syvyyteen. Näytteen alaosa (4,56–4,40 m) oli savea. Sen päällä on liejusavea (4,40–3,70 m), saviliejua (3,70–3,30 m), liejua (3,30–3,18 m), turvetta (3,18–2,65 m), turpeenseista liejua (2,65–2,24 m), liejua (2,24–1,05 m), saviliejua (1,05–0,42 m), savea (0,42–0,36 m) ja liejua (0,36–0 m). Kuroutumisajankohtaa vastaava syvyys on 4,40 m (kuva 37). Sen yläpuolella hiilipitoisuus on ollut 2 %:n tasolle, alenee siitä edelleen ja on pienimmillään Valvatuksen purkauksen pintaan.

Kurottumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 150 g/m². Siitä hiilen osuuus on ollut 9,4 g/m². Valvatuksen purkauksen jälkeiselle ajalle laskettuna vaasavat kuiva-aineen ja hiilen varastoitumisnopeudet ovat 850 g/m² ja 20 g/m². Kuiva­aineen suurin varastoitumisnopeus johtuu osittain siitä, että purkauksen yhteydessä matalaan veteen joututunun maankäytön eteläosissa suorittavista tutkimuksista. Hiilen syväntesteitä on alueella. Kuiva-ainesäteet, joten paikka...
Järisedimentit kuiva-aineen ja hiilen varastona ei ole paras mahdollinen varastointumisnopeuksien muutosten tarkasteluun. Jotta Valvatuksen purkautumisen jälkeisen ajan varastointumisnopeuksia voitaisiin paremmin verrata pitkän aikavälin varastointumisnopeuksiin, haettiin toinen pitkä näyte Joroisselän eteläosasta. Tällä tutkimuspisteellä (5) veden syvyys oli 14,9 m, ja pitkänäyte ulottuva sedimentin pinnasta 6,9 m:n syvyteen. Näytteen alaosa (6,93–5,10 m) on lustosavea. Sen päällä on savea (5,10–4,65 m), liejusavea (4,65–3,60 m), saviliejuja (3,60–3,20 m) ja liejuja (3,20–0,69 m). Lähellä sedimentin pintaa on Valvatuksen purkauskerroksa ja sen molemin puolin saviliejuja. Kuroutumisajankohta vastaa syvyys on 4,65 m (kuva 38).

Sen yläpuolella hiilipitoisuus kohoa hyvin hitaasti. Kohoaminen nopeutuu 3,2 m:n syvyydessä päätyen samalle tasolle kuin edellisellä pisteellä, mutta laskee metriä ylemmänä 8 %:n tasolle. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 150 g/m². Siitä hiilen osuus on ollut 10 g/m². Valvatuksen purkauksen jälkeiselle ajalle laskettuna vastaavat varastointumisnopeudet ovat 640 g/m² ja 31 g/m².

Pisteen 5 varastointumisnopeudet vastaavat hyvin pisteeltä 3 saatujen arvojen. Vaikka pisteellä 5 ei osuttuakaan vajonneeseen turvettelautaan, on vastaavan kerroksen hiilipitoisuus samalla tasolla. Rantasijoista eroodoitunut aines on kerrostunut koko altaan alueelle. Pisteellä 3

Vedenpinta kohosi järven kaakkoisosassa jo heti kuroutumisen jälkeen. Kohoaminen kuitenkin nopeutui Haukiveden liittyvyyden osaksi suurempaa järvekompaktia. Vedenpinnan kohoa myös päätyi ensimmäisen eteläisen lasku-oman puhkeamiseen Ristiinaan. Rans-
tasoiden eroosio päättyi vasta, kun vedenpinta alkoi laskea Lappeenrannan lasku-oman vaikutuksesta. Uudelleen kerrosten saattua turvetta tavoitettiin Joroisselän lisäksi Hiekonselälä, ja on todennäköistä, että sitä löyttyy myös muista lähellä rantaa olevista altaista. Turvekerrokset syntyminen on edellyttänyt kosteusolojen suhteen sopivaa maaston painannettujen eroodoitumisen avoimia ulappia, missä rantavuokio ovat olleet riittävän tehokkaita. Suojaisiin paikoihin syntynyt turvekerros ovat peittynyt sellaisenaan järvesimenttien alle. On mahdollista, että turvetta sisältävät sedimenttikerroiset ovat yliiedestettuina Haukiveden aineistossa. Sen tähden kuiva-aine- ja hiilivarastossa painotettiin pisteen 1 tuloksia kertoimella 0,5, pisteen 2 tuloksia kertoimella 0,3 ja pisteen 5 tuloksia kertoimella 0,2. Piste 3 sijaitsee samassa altaassa kuin piste 5, joten se jätettiin huomioimatta.

Haukiveden pohjasta noin 30 % on järvatismojen tinkoista, ja ne sisältävät noin 72 milj. tn kuiva-ainetta. Koko pintaalalle laskettuna kuiva-ainetta on keskimäärin 120 kg/m², ja sen keskimääräinen varastointisnopeus on ollut 12 g/m²/v. Kuiva-aineesta on hiiltä noin 5200 milj. kg. Koko pintaalalle laskettu keskimääräinen hiilivarasto on 8,5 kg/m² ja keskimääräinen varastointisnopeus 0,85 g/m²/v.

Kuva 37 Haukiveden tutkimuspisteeltä 3 otetun pitkän näyteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanalyyteen hiilipitoisuus. Fig. 37. The composition, density and carbon content of the long core taken from survey point 3 in Lake Haukivesi. Top right shows the carbon content of the surface core.

Kuva 38. Haukiveden tutkimuspisteeltä 5 otetun pitkän näyteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanalyyteen hiilipitoisuus. Fig. 38. The composition, density and carbon content of the long core taken from survey point 5 in Lake Haukivesi. Top right shows the carbon content of the surface core.
Orivesi

Näyteet laboratoriorakaisyksikössä varten otettiin Savonpeltohoidoista, Paasselältä ja Mustanselältä (kuva 39). Kaikuluotuslinjaa on yhteensä 69 km.

Tutkimuspiste 1 sijaitsee Savonpeltohoidoissa, missä veden syvyys oli 16,0 m. Pitkä näyte ulottuu sedimentin pinnasta 6,84 m:n syvyyteen. Näyteen alaosa (6,84–4,82 m) on lustosavea ja silttiä, jossa ei ole lusterakennetta. Sen päällä on savea (4,82–4,19 m), liejusavea (4,19–3,72 m), savilieja (3,72–3,35 m), liejua (3,35–3,00 m) ja uudelleen savilieja (3,00–0 m). Höytiäisen purkauksen yhteydessä syntynyt saviraita on 13–14 cm:n syvyydessä. Kuroutumisajankohtaa vastaava syvyys on 4,19 m (kuva 40). Sen yläpuolella hiilipitoisuus on aluksi runsaan 1 %:n tasolle, kohoa 7 %:n tasolle 3,2 m:n syvyydessä ja vakiintuu lopulta 5 %:n tasolle. Lähellä sedimentin pinta saavutti kääntynyt laskuun.

Suur-Saimaan tulvan kohoaminen on aihetteutauta rantasoiden eroosiota, mikä näkyy hiilipitoisuusläänän voimakkaasta kohoamisesta. Pitoisuuden voimakas lasku 3 m:n syvyydessä on liittyvä vuokseen puheemista seuranneeseen vedenpinnan laskuun ja sedimenttien uudelleen kerrostumiseen. Höytiäisen purkauksen yhteydessä Kuroutuminen järven tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 89 g/m². Siitä hiilen osuus on ollut 4,0 g/m². Höytiäisen purkauksen järven kauva-aineen keskimääräinen varastointinospeus on ollut 190 g/m² ja hiilen varastointinospeus 5,2 g/m². Kuiva-aineen suuri varastointinospeus on johtuen kuroutumisen yhteydessä järven huhtoutuneesta minerallaineeksesta. Hiilen hieman keskimääräistä suurempia varastointinospeus on ainaikin osittain näennäistä, sillä hiilen hajoamista on vielä kesken sedimentin hapekkassa pintaosassa.

Kuroutumisen järkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 89 g/m². Siitä hiilen osuus on ollut 4,0 g/m². Höytiäisen purkauksen järven kauva-aineen keskimääräinen varastointinospeus on ollut 190 g/m² ja hiilen varastointinospeus 5,2 g/m². Kuiva-aineen suuri varastointinospeus on johtuen kuroutumisen yhteydessä järven huhtoutuneesta minerallaineeksesta. Hiilen hieman keskimääräistä suurempia varastointinospeus on ainaikin osittain näennäistä, sillä hiilen hajoamista on vielä kesken sedimentin hapekkassa pintaosassa.
12 %:n tason runsaan 2 m:n syvyydessä. Maksimivaiheen jälkeen hiilipitoisuus laskee runsaan 6 %:n tasolle ja pysyy siinä lähes pintaan saakka.

Kuten edelliselläkin pisteellä johtuu hiilipitoisuuden voimakas kohoaminen rantasoista erodoituneen aineksen kerrostumisesta syvänteeseen. Pitoisuuden voimakas lasku 2,0–1,5 m:n syvyydessä liittyy Vuoksen puhkeamiseen ja sitä seuranneeseen sedimenttien uudelleen kerrostumiseen. Höytiäisen purkauksen yhteydessä Paasselälle kulkeutunut mineraalialuus alentaa pintaosan hiilipitoisuutta.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 45 g/m². Siitä hiilen osuus on ollut 3,1 g/m². Höytiäisen purkauksen jälkeen kuiva-aineen keskimääräinen varastotumisnopeus on ollut 70 g/m²/v ja hiilen vastaava varastotumisnopeus 3,6 g/m²/v. Kuten edellisellä pisteellä johtuu suurempi kuiva-aineen varastotumisnopeus enimmäkseen purkauksen yhteydessä kulkeutuneesta mineraalialuudesta ja hiilen suurempi varastotumisnopeus siitä, että pintaosassa eloperäisen aineksen hajoaminen on vielä kesken.

Vaikka tutkimuspisteet 1 ja 3 ovat 30 km:n päässä toisistaan, ovat niiden tiheys- ja hiilipitoisuuskäyrät...
Hannu Pajunen

(kuvat 40 ja 41) hyvin samankaltaisia. Savonselän pohjoisosassa sedimentaationopeus on ollut suurempi kuin Paasselällä, mutta käyrissä on havaittavissa samat muutokset.

Tutkimuspiste 2 sijaitsee järven itäosassa Mustanselällä, missä veden syvyys oli 6,3 m. Pitkä näyte ulottuu sedimentin pinnasta 7,79 m:n syvyyteen. Näytteen alaosan (7,79–7,20 m) on lustosavea. Sen päällä on savea (7,20–5,55 m), saviliejua (5,55–5,10 m) ja liejua (5,10–0 m). Kuroutumisajankohtaa vastaava syvyys on 5,55 m (kuva 42). Sen yläpuolella hillipitoisuus kohoaa ja vakiintuu aluksi 8 %:n tasolle. Runsaan 4 m:n syvyydessä pitoisuus alkaa nopeasti ja saavuttaa 38 %:n tasoon 3,9 m:n syvyydessä. Maksimitason yläpuolella hillipitoisuus laskee hitaasti ja päätyy lopulta 8 %:n tasolle.

Mustanselän kehitys on todennäköisesti alkanut itsenäisenä altaana. Hillipitoisuuskäyrän alaosassa on havaittavissa kuroutumisen jälkeinen vakiintumisvaihe ja siitä seuraanut vakaan sedimentaation vaihe. Sedimentaatio-olot kuitenkin häiriintyivät Suur-Saimaan tulvan ulottuessa Mustanselän altaaseen. Selkää ympäröivät alavat maat olivat jo ehtineet soistua, ja kohoavan vedenpinnan takia rantavoimat alkoivat...

Kuva 42. Oriveden tutkimuspisteeltä 2 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 42. The composition, density and carbon content of the long core taken from survey point 2 in Lake Orivesi. Top right shows the carbon content of the surface core.

Kuva 42. Oriveden tutkimuspisteeltä 2 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 42. The composition, density and carbon content of the long core taken from survey point 2 in Lake Orivesi. Top right shows the carbon content of the surface core.

Kuroutumisen jälkeen tutkimuspisteeseen 2 paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 94 g/m2. Siitä hiilen osuus on ollut 11 g/m2.

Oriveden pohjasta noin 40 % on järvedensämenen, ja ne sisältävät kuiva-ainetta noin 110 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 200 kg/m2, ja sen keskimääräinen varastointisopeus on ollut 19 g/m2/v. Kuiva-aineesta on haittaa noin S500 milj. kg. Koko pinta-alalle laskettuna keskimääräinen hiilivarasto on 16 kg/m2, mutta keskimääräinen varastointisopeus 1,5 g/m2/v.
Kallavesi

Mannerjäättikön reunan peräännytyä ulottui mui
kąinen Itämeri Kallaveden altaaseen ja sen vedenpinta oli järven eteläosassa noin 50 m ja pohjoisosassa noin 80 m nykyisen vedenpinnan yläpuolella. Maankuo-
ren kohotessa vedenpinta laski ja Kallavesi kuroutui Itämerestä Ancylusjärvivi-\-aiheen aikaan noin 9500 vuotta sitten. Kuroutumisen jälkeen Kallaveden vedet laskivat luoteeseen. Koska laskukynnys sijaitsee järven luoteispuolella, kohosi vedenpinta vähitellen ja Kallavesi liittyi osaksi muinaista Suur-Saimaita. Vedenpinta oli korkeimmillaan noin 7000 vuotta sitten ennen eteläisten lasku-uomien puhkeamista. Eteläosassa vedenpinta oli tällöin noin 17 m ja pohjoisosassa noin 23 m nykyistä ylemmän. Vedenpinta kääntyi laskuun Lappeenrannan uoman puhjettua noin 6300 vuotta sitten. Vuoksen puhkeaminen noin 5700 vuotta sitten sitten laski Suur-Saimaita vedenpintaan nopeasti noin 3 m. Alkuviheessa vedenpinnan lasku oli muuten-
kin nopeaa, sillä laskukyynys sijaitsee ensimmäisellä Salpauselällä saakka. Vedenpinnan lasku hidasti merkittävästi Kallaveden laskukynynksen siirtyttä aluksi Varkauteen ja sitten Leppävirralle.

Tutkimuspisteitä on neljäntoista (kuva 43). Näyt-

Tutkimuspiste 1 sijaitsee Laivonsaaren länkipuolella järven pohjoisosassa, missä veden syvyys oli 20,7 m. Pitkänäyte ulottui sedimentin pinnasta 3,94 m:n syvyy-
teen. Näytteen alaosa (3,94–3,32 m) on lustosavea. Sen päällä on savilieju (3,32–2,45 m) ja savilieju (2,45–0 m). Kuroutumisajankohtaa vastaavaa syvyyttä (kuva 46). Sen yläpuolella hiiliptoisuus kohtaa 3 %:n tasolle, laskee sitten 2 %:n tasolle ja kohoaa uudelleen saavuttaen 5 %:n tason läheillä pinta. Hiiliptoisuu-
den käänynyttenä laskuun 1,9 m:n syvyydessä liittyty todennäköisesti Vuoksen puhkeamista seuranneeseen vedenpinnan laskuun ja sedimenttien uudelleen kerro-
tumiseen. Hiiliptoisuuden lasku pitkänäyteen ylä-
osassa liittyty valuma-alueen maankäytön muutoksiin. Pintanäyte osoittaa lievähiiliptoisuuden kohoomista. Se on kuitenkin näennäistä, sillä eloperäisen aineksen hajoaminen on vielä kesken lähellä sedimentin pintaa.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 61 g/m². Siitä hiilen osuus on ollut 2,1 g/m². Tutkimuspiste 1 sijaitsee Sotkanselällä järven ete-
ñosassa, missä veden syvyys oli 9,0 m. Pitkänäyte ulottuu sedimentin pinnasta 3,10 m:n syvyyteen. Näytteen alaosa (3,10–0,7 m) on lustosavea ja yläosa (0,7–0 m) savilieju. Lustosavi rajoittuu suoraan saviliejuihin, joten näyte ei ole ajallisesti aukoton. Kuroutumisajankohtaa vastaavaa syvyyttä on 0,7 m:n syvyydessä taas liittyty eroosion voimistumiseen valuma-alueella. Kulttuurikerroksen yläpuolella hiiliptoisuus kohoaa nopeasti. Osa siitä on näennäistä, kuten edellisellä pisteellä, mutta osa poihtuksen kohoomaista on jäädytyspyyväksi.
Fig. 43. The location of echo-sounding transects and survey points in Lake Kallavesi. Top right shows the location of the lake in the drainage basin delimited by the outlet.
Kuva 44. Kallaveden tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 44. The composition, density and carbon content of the long core taken from survey point 1 in Lake Kallavesi. Top right shows the carbon content of the surface core.

Kuva 45. Kallaveden tutkimuspisteeltä 14 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 45. The composition, density and carbon content of the long core taken from survey point 14 in Lake Kallavesi. Top right shows the carbon content of the surface core.

Kuva 46. Kallaveden tutkimuspisteeltä 2 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 46. The composition, density and carbon content of the long core taken from survey point 2 in Lake Kallavesi. Top right shows the carbon content of the surface core.
Pyhäselkä

dessä ja pysyy siinä paria pientä poikkeusta lukuun ottamatta pintaan saakka.

Hiilipitoisuuden aleneminen 6 m:n syvyydessä voi liittyä Vuoksen puhkeamista seuranneeseen vedenpinnan alenemiseen ja sedimenttien uudelleen kerrostumiseen. Ennen Vuoksen puhkeamista olisi vuosittain varastoitunut kuiva-ainetta keskimäärin 117 g/m² ja sen jälkeen 210 g/m². Vastaavat hiilen varastoitumisnopeudet ovat 8,5 g/m² ja 12 g/m². Kuiva-aineen varastoitumisnopeuksien ero kuvastaa kohoavan ja alenevan vedenpinnan vaikutusta. Vedenpinnan kohotessa syvänteisiä ei juurikaan tapahdu uudelleen kerrostumista. Sen sijaan vedenpinnan alentuessa matalaan veteen joutuneet sedimentit kuluvat rantavoimien vaikutuksesta ja kerrostuvat uudelleen syvänteisiin. Vuoksen puhkeamisen jälkeen syntyneen kerroksen hiilipitoisuus pysyy jatkuvalt samalla tasolla, mikä viittaa hyvin vakaisiin sedimentaatio-oloihin. Kuroutumisen jälkeen tälle päälle on varastoitunut vuosittain

Kuva 48. Pyhäselän tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 48. The composition, density and carbon content of the long core taken from survey point 1 in Lake Pyhäselkä. Top right shows the carbon content of the surface core.

Kuva 49. Pyhäselän tutkimuspisteeltä 2 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 49. The composition, density and carbon content of the long core taken from survey point 2 in Lake Pyhäselkä. Top right shows the carbon content of the surface core.
Järvisedimentit kuiva-aineen ja hiilen varastona

kuiva-ainetta keskimäärin 160 g/m2. Siitä hiilen osuus
on ollut 11 g/m2.
Pisteeltä 1 otettuun pitkään näytteeseen ei saatu
Höytiäisen purkauksen jälkeen syntynyttä kerrosta.
Jotta viimeaikaista varastoitumisnopeutta voitaisiin
verrata pitkän aikavälin tuloksiin, täydennettiin aineistoa ottamalla sedimentin pinnasta mäntäkairanäyte.
Höytiäisen purkauskerros on tällä paikalla 7 cm paksu,
ja sen päällä on 26 cm paksu liejukerros. Purkauksen
jälkeen on varastoitunut vuosittain kuiva-ainetta
keskimäärin 370 g/m2. Siitä hiiltä on ollut 15 g/m2.
Molemmatvarastoitumisnopeudetovatpitkänaikavälin
nopeuksia suurempia. Kuiva-aineen osalta se johtuu
siitä, että purkauksen yhteydessä matalaan veteen
joutunutta hienoa mineraaliainesta edelleen kulkeutuu
syvänteisiin.Hiilenhiemankeskimääräistäsuuremman
varastoitumisnopeuden selittää ainakin osittain se, että
eloperäisen aineksen hajoaminen lähellä sedimentin
pintaa on vielä kesken. Hiilen osalta tulokset eivät
siten ole täysin vertailukelpoisia.
Tutkimuspiste 2 sijaitsee järven eteläosassa Jänisselän puolella, missä veden syvyys oli 22,9 m. Pitkä
näyte ulottuu sedimentin pinnasta 5,86 m:n syvyyteen.
Näytteenalaosa(5,86–2,93m)onlustosavea.Senpäällä
on savea (2,93–2,00 m), liejusavea (2,00–1,40 m), saviliejua (1,40–1,20 m), liejua (1,20–0,40 m) ja saviliejua
(0,40–0 m). Kuroutumisajankohtaa vastaava syvyys
on 2,00 m (kuva 49). Sen yläpuolella hiilipitoisuus
on alhainen, noin 1,5 %. Runsaan metrin syvyydessä
hiilipitoisuus kohoaa nopeasti runsaan 5 %:n tasolle ja
pysyy siinä lähes pintaan saakka. Höytiäisen purkaus-

kerros on täällä 1 cm paksu, ja sitä peittää 10 cm paksu
saviliejukerros. Kuroutumisen jälkeen tälle paikalle
on varastoitunut vuosittain kuiva-ainetta keskimäärin
47 g/m2. Siitä hiilen osuus on ollut 1,7 g/m2.
Pyhäselän pääaltaan ja Jänisselän näytteiden
kerrosjärjestys on hyvin erilainen, mikä osoittaa
sedimentaatio-olojen erilaisuutta. Vuoksen puhkeamisen vaikutus on selvästi havaittavissa pääaltaan
näytteessä, mutta Jänisselän näytteestä ei vastaavaa
syvyyttä voida määrittää.Vedenpinnan laskiessa selkiä
yhdistävät salmet ovat kaventuneet muuttaen virtausja sedimentaatio-oloja Jänisselän puolella.
Kuiva-aineen ja hiilen varastoituminen on ollut
pääaltaassa huomattavasti nopeampaa kuin Jänisselällä. Valuma-alueelta kulkeutuva kiintoaines pyrkii
aina kerrostumaan ensimmäiseen sopivaan altaaseen,
tässä tapauksessa pääaltaaseen. Järven ympäristön
herkimmin erodoituvat mineraalimaat ovat Pyhäselän
pohjoispuolella ja Pielisjoen varsilla. Vedenpinnan
laskiessa sieltä on irronnut runsaasti kiintoainesta,
joka on kerrostunut enimmäkseen pääaltaan laajaan
syvänteeseen.
Pyhäselän pohjasta on järvisedimenttejä noin 35 %,
ja ne sisältävät kuiva-ainetta noin 74 milj. tn. Koko
pinta-alalle laskettuna kuiva-ainetta on keskimäärin
210 kg/m2, ja sen keskimääräinen varastoitumisnopeus on ollut 19 g/m2/v. Kuiva-aineesta on hiiltä noin
3700 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 10 kg/m2 ja keskimääräinen
varastoitumisnopeus 0,95 g/m2/v.

Puruvesi
Puruvesi sijaitsee Vuoksen vesistöalueen eteläosassa ja kuluu Kerimäen, Punkaharjun ja Kesälahden
kuntiin. Järven pinta-ala on 330 km2 ja pinnan korkeus
75,7 m. Järvi on lukuisten saarien ja niemien takia
melko hajanainen (kuva 50). Puruvesi on tyypiltään
latvajärvi. Järven pohjoisosaan tulee Raikuun kanavan
kautta jonkin verran Oriveden vesiä.
Perääntyvän mannerjäätikön reunan ehdittyä Puruveden itäosaan ulottui muinaisen Itämeren Baltian
jääjärvi -vaihe Puruveden altaaseen ja sen pinta oli
runsaat 20 m järven nykyistä pintaa ylempänä. Jäätikön reunan perääntyessä Baltian jääjärven pinta laski
nopeasti lähes 30 m. Vedenpinnan laskiessa syntyi
Puruveden kohdalle jäätikön reunan patoama jääjärvi.
Jäätikön reunan perääntyessä edelleen jääjärvi purkautui ja Puruvesi kuroutui ItämerestäYoldiameri-vaiheen
aikaan noin 11 000 vuotta sitten. Kuroutumisen jälkeen
vedenpinta oli nykyistä alempana ja vedet laskivat
Raikuun kautta Oriveteen. Maankuoren kallistuessa
kaakkoon kohosi Puruveden pinta aluksi hitaasti.
Vedenpinnan kohoaminen kuitenkin nopeutui, kun

Suur-Saimaan tulva tavoitti Puruveden tason. Vedenpinnan kohotessa pohjoinen lasku-uoma muuttui salmeksi ja lisäksi järvelle avautui salmiyhteys luoteessa
Haukiveteen ja lounaassa Pihlajaveteen. Vedenpinnan
kohoaminen hidastui, kun Saimaan alueen vesille
puhkesi ensimmäinen eteläinen lasku-uoma, ja se
päättyi Lappeenrannan uoman puhkeamiseen noin
6300 vuotta sitten. Vedenpinta ehti kohota Puruveden
kaakkoisosassa noin 6 m ja luoteisosassa noin 8 m
nykyistä korkeammalle. Vuoksen uoman puhjettua
noin 5700 vuotta sitten vedenpinta kääntyi laskuun.
Laskukynnyksen kulumisen takia vedenpinta laski
nopeasti noin 3 m, mutta myöhemmin vedenpinnan
lasku on jatkunut hitaana. Vedenpinnan laskiessa
salmiyhteydet madaltuivat ja lopulta Puruveden yhteydet Haukiveteen ja Oriveteen katkesivat ja järvi jäi
Saimaan yhteyteen Punkaharjun kautta.
Vedenpinnan vaihtelun lisäksi Puruvesi on kokenut merkittäviä valuma-alueen ja läpivirtaaman
muutoksia. Ennen Suur-Saimaan tulvaa Puruvesi oli
nykyistä pienempi latvajärvi, jossa läpivirtaama oli

51


Kuva 50. Luotauslinjojen ja tutkimuspisteiden sijainti Puruvedellä. Ylhäällä vasemmalla järven sijainti luusuaan rajoittuvalla valuma-alueella.

Fig. 50. The location of echo-sounding transects and survey points in Lake Puruvesi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Tutkimuspisteitä on kuusi (kuva 50). Näyteet laboratoriomäärityksiä varten otettiin kahdesta pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa. Kaikuluotauslinjaa on yhteensä 50 km. Tutkimuspiste 1 sijaitsee järven itäosassa Hummonselällä, missä veden syvyys oli 21,1 m. Pitkä näyte ulottuu sedimentin pinnasta 5,40 m:n syvyysteen. Näytteen alaosaa (5,40–4,36 m) on lustosavea. Sen päällä on savea (4,36–4,00 m), liejusavea (4,00–3,80 m), saviliejua (3,80–3,44 m) ja liejua (3,44–0 m). Kuroutumisajankohtaan vastaava syvyys on 4,00 m (kuva 51). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 4 %:n tasolle. Runsaan 3 m:n syvyydessä pitoisuus kohoaa...
Järvedimentit kuiva-aineen ja hiilen varastona

nopeasti 10 %:n tasolle, laskee sitten 7 %:n tasolle ja pysyy sillä tasolla sedimentin pintaan saakka.

Kuroutumisen jälkeen tällä paikalla on varastoitunut vuosittain kuiva-ainetta keskimäärin 89 g/m². Siitä hiilen osuus on ollut 5,7 g/m².

Kuva 51. Puruveden tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Tutkimuspiste 2 sijaitsee järven länsiosassa Saimailla, missä veden syvyys oli 21,4 m. Pitkä näyte ulottuu sedimentin pinnasta 4,52 m:n syvyteen. Näytteen alosa (4,52–3,90 m) on lustosavea. Sen päällä on savea (3,90–3,63 m), saviheijua (3,63–3,30 m) ja liejua (3,30–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,63 m (kuva 52). Sen yläpuolella hiljaispitoisuus kohoaa aluksi 3 %:n tasolle, kohoaa sitten nopeasti 16 %:n tasolle, laskee lähä yhtä nopeasti 8 %:n tasolle ja pysyy sillä tasolla pintaan saakka.

Kuroutumisen jälkeen tällä paikalla on varastoitunut vuosittain kuiva-ainetta keskimäärin 50 g/m². Siitä hiilen osuus on ollut 4,1 g/m².

Höytiäinen

Höytiäinen sijaitsee Vuoksen vesistöalueen keskiosassa ja kuuluu Kontiolahden, Polvijärven ja Juuan kunnit. Sen pinta-ala on 293 km² ja pinna korkeus 87,3 m. Järven eteläosa on melko avoin, ja sen pohjoisosassa on kolme kapeaa lahtea (kuva 53). Järvi rajoittuu etelässä Jaamankankaan reunamuodon saaressa, josta lähtee katkonaisia pitkittäisharjuja luoteeseen. Savikkoja on luoteeseen suuntautuvien lahtien ympäristössä. (Frosterus 1910.) Höytiäinen on tyypiltään latvajärvi.

Tutkimuspisteitä on kahdeksan (kuva 53). Näytteet laboratoriomäärityksiä varten otettiin kolmelta sitä, ettei Puruvedellä tällöin ollut Punkaharjun kautta yhteyttä Pihlajaveteen.

Puruveden pohjasta noin 35 % on järvisedimenttejä, ja ne sisältävät kuiva-ainetta noin 44 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 130 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 12 g/m²/v. Kuiva-aineesta on hiiltä noin 3200 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 9,8 kg/m² ja keskimääräinen varastoitumisnopeus 0,89 g/m²/v.

![Kuva 53. Luoteaalinjojen ja tutkimuspisteiden sijainti Höytiäisellä. Yläkäällä oikealla järven sijaini luusaan rajottuvalla valuma-alueella.](https://example.com/fig33.png)

Fig. 53. The location of echo-sounding transects and survey points in Lake Höytiäinen. Top right shows the location of the lake in the drainage basin delimited by the outlet.
pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa. Kaikuluotauslinjaa on yhteensä noin 50 km.

Tutkimuspiste 2 sijaitsee järven eteläosassa Punkarikoskenselällä, missä veden syvyys oli 23,5 m. Pitkä näyte ulottuu sedimentin pinnasta 4,13 m:n syvyykseen. Näytteen alaosa (4,13–1,91 m) on lustosavea. Sen päällä on savea (1,91–1,50 m), liejusavea (1,50–1,30 m), savilieju (1,30–0,25 m), lieju (0,25–0,07 m) ja liejusavea (0,07–0 m). Kuroutumisajankohtaa vastaava syvyys on 1,50 m (kuva 54). Sen yläpuolella hiilipitoisuus kohoa melko tasaisesti ja saavuttaa maksimiarvon lähellä sedimentin pintaa. Pitoisuus alenee jyrkästi pinnan liejusavicinkroksessa, joka syntyi vuoden 1859 jälkeen matalaan veteen joutuneiden alueiden erodoituessa ja sedimenttien kerrostuessa uudelle syvänteeseen.

Järvesimenttikerros on ohut, mutta mitä todennäköisimmin avoimen. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 33 g/m². Siitä hiilen osuus on ollut 1,0 g/m².

Tutkimuspiste 1 sijaitsee järven keskiosassa Kintaisenselällä, missä veden syvyys oli 11,4 m. Pitkä näyte ulottuu sedimentin pinnasta 5,55 m:n syvyykseen. Näytteen alaosa (5,55–3,85 m) on lustosavea. Sen päällä on savea (3,85–3,10 m), liejusavea (3,10–2,60 m), savilieju (2,60–0,50 m), lieju (0,50–0,09 m) ja savea (0,09–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,10 m (kuva 55). Sen yläpuolella hiilipitoisuus kohoa 2 %:n tasolle, laskee 1 %:n tasolle ja alkaa kohota uudelleen. Pitoisuus on korkeimmillaan Höytiäisen purkauksen jälkeen syntynyt savikerroksen alapuolella.

Vuoden 1859 tapahtumien seurauksena vesinäppä on ollut, mutta mitä todennäköisimmin avoimen. Kuva 54. Höytiäisen tutkimuspisteeltä 2 otetun näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pinta-avun yleisä lihapiirustus. Yläpinta otettiin pinta-avun yleisä lihapiirustus. Fig. 54. The composition, density and carbon content of the long core taken from survey point 2 in Lake Höytiäinen. Top right shows the carbon content of the surface core.

Vuoden 1859 tapahtumien seurauksena vesinäppä on ollut, mutta mitä todennäköisimmin avoimen. Kuva 55. Höytiäisen tutkimuspisteeltä 1 otetun näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pinta-avun yleisä lihapiirustus. Yläpinta otettiin pinta-avun yleisä lihapiirustus. Fig. 55. The composition, density and carbon content of the long core taken from survey point 1 in Lake Höytiäinen. Top right shows the carbon content of the surface core.
Tutkimuspiste 8 sijaitsee järven pohjoisosassa Reposelällä, missä veden syvyys oli 4,6 m. Pitkä näyte ulottuu sedimentin pinnasta 4,44 m:in syvyteen. Näytteen alaosa (4,44–3,76 m) on savea. Sen päällä on saviliejua (3,76–3,50 m), liejusavea (3,50–3,30 m), saviliejua (3,30–0,14 m), savea (0,14–0,08 m) ja liejusavea (0,08–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,76 m (kuva 56). Sen yläpuolella hiilipitoisuus kohoa 3,5 %:n tasolle, laskee nopeasti 2 %:n tasolle, josta alkaa kohta uudelleen päätyen 5 %:n tasolle vajaan 3 m:n syvydessä. Purkauksen jälkeen syntyneessä kerroksessa pitoisuus alenee.

Kuroutumisen jälkeen otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus.

Fig. 56. The composition, density and carbon content of the long core taken from survey point 8 in Lake Höytiäinen.

Vastaavanlaiset poikkeavat kerrokat ovat havaittavissa myös tutkimuspisteillä 1 ja 2. Pisteellä 1 alempi kerros näyttää hiilipitoisuuden alenemisesta ja tiheyden kasvuun. Pisteellä 2 on poikkeuksellisesti korkeampi alin pohjoispääähän, missä kerros on selvimmin havaittavissa. Höytiäisen ja Pielisen tiedetään olleet jäänteitä muinaisista meteoriittikraattereista. Kukkarinselällä on eräs Suomen järvien syvimpiä kohtia. Merikartan mukaan vettä olisi peräti 102 m. Tarkistusmittauksissa syvyyden on kuitenkin todettu jäävän noin 10 m pienemmäksi. Haapaselän puolella maksimisyvyys on vain 37 m. Keskimääräinen koko on 210 kg/m², ja sen keskimääräinen varastotuloste on ollut 19 g/m²/v. Kuiva-aineesta on hiiltä noin 2300 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 7,7 kg/m² ja keskimääräinen varastotuloste 0,70 g/m²/v.

Suvasvesi

Tutkimuspisteitä on yksi, ja siltä otettiin näytteet laboratoriomäärityksiä varten (kuva 57). Kaikuluotuslinjaa on yhteensä 25 km.Tutkimuspiste 1 sijaitsee Haapaselän pohjoisosassa, missä veden syvyys oli 24,5 m. Pitkä näyte ulottuu sedimentin pinnasta 3,87 m:n syvyyteen. Näytteen alaosa (3,87–2,55 m) on lustosavea. Sen päällä on savea (2,55–1,85 m), liejusavea (1,85–1,70 m) ja saviliejua (1,70–0 m). Kerrostuminen on tällä paikalla ollut jatkuvaa, vaikka kerrostumisnopeus on ollut varsin hidas. Kuroutumisajankohtaa vastaava syvyys on 1,85 m (kuva 58). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 6 %:n tasolle, alenee sitten 4 %:n tasolle ja kohoaa uudelleen kerrostuman yläosassa. Hiilipitoisuuden nopea lasku runsaan metrin syvyydessä liittyy Vuoksen puhkeamista seuranneeseen vedenpinnan laskuun ja sedimenttien uudelleen kerrostumiseen. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 44 g/m². Siitä

Kuva 57. Luotauslinjojen ja tutkimuspisteen sijainti Suvasvedellä. Yhdessä oikealla järven sijainti luusaan rajoitettava valuma-alueella. Fig. 57. The location of echo-sounding transects and survey point in Lake Suvasvesi. Top right shows the location of the lake in the drainage basin delimited by the outlet.
hiilen osuus on ollut 1,9 g/m².

Sedimentaatio-olot ovat pysyneet varsin vakaina suurten selkien syvissä keskiosissa. Sen sijaan selkien reunamilla voimakas aallokko on aiheuttanut vedenpinnan laskun jaPALUUTERO

Suvasveden pohjasta noin 30% on järvisementtejä, ja ne sisältävät kuiva-aineet noin 28 milj. tn. Koko pinta-alle laskettuna kuiva-aineet on keskimäärin 100 kg/m², ja sen keskimääräinen varastoituismomento on ollut 11 g/m²/v. Kuiva-aineesta on hiiltä noin 1200 milj. kg. Koko pinta-alle laskettuna keskimääräinen hiilivarasto on 4,4 kg/m² ja keskimääräinen varastoituismomento 0,46 g/m²/v.

Pyhäjärvi

Kuva 58. Suvasveden tutkimuspisteeltä I otetun pitkänäytteenkoostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintayhteytten hiilipitoisuus. Fig. 58. The composition, density and carbon content of the long core taken from survey point 1 in Lake Suvasvesi. Top right shows the carbon content of the surface core.

Mannerjätikön reunan perääntymyyta ulottuu muinaisen Itämeren rannasta pohjoiseen, ja sen pinta oli noin 20 m järven syvyyteen noin 23,5 m. Pitkä näyte ulottuu sedimentinpinnasta 6,90 m syvyyteen. Nsdk. 4 m syvyydessä sedimentin hiilipitoisuus on nousuessa 19% noin järven pohjoisosan poikki. Pyhäjärven pohjoisosan kohdalla sedimentin hiilipitoisuus järven kokoon verrattuna on noin 1,6%.

Vedenpinnan laskuun johtuen on paljon hiiliperäistä siiven kerrostumista. Vedenpinnan laskuun johtuen on paljon hiiliperäistä siiven kerrostumista. Vedenpinnan laskuun johtuen on paljon hiiliperäistä siiven kerrostumista.
voi liittyä Vuoksen puhkeamiseen. Vastaavanlaisen
pitoisuuden alennimen sedimentin pinnassa taas liitty
1800-luvun alkupuolella toteutettuun vedenpinnan
laskuun. Molemmat tapahtumat aiheuttivat matalaan
veteen joutuneiden alueiden eroosiota ja sedimenttien
uudelleen kerrostumista. Kuroutumisen jälkeen tälle
paikalle on vuosittain kuiva-ainetakesäärään
96 g/m². Siitä hiilen osuus on ollut 11 g/m².

Kajoonselällä, missä veden syvyys oli 20,2 m. Pitkä
näyte ulottuu sedimentin pinnasta 7,36 m:n syvyysen.
Näytteen alaosa (7,36–6,80 m) on lustosavea. Sen pääällä
on savea (6,80–5,60 m), liejusavea (5,60–5,20 m),
saviliejua (5,20–1,95 m) ja liejua (1,95–0 m). Kuroutu-
imisajankohtaa vastaava syvyys on 5,60 m (kuva 61).
Sen yläpuolella hiilipitoisuus kohoaa, mutta jää huomattavasti alemmalle tasolle kuin edellisellä pisteellä.

Kuroutumisen jälkeen tälle paikalle on varastoitunut

Kuva 59. Luotauslinjojen ja tutkimus-
pisteiden sijainti Pyhääjärvelle. Ylhäällä
oikealla järven sijainti luusauden jaloit-
tuvalta valuma-alueella.

Fig. 59. The location of echo-sounding
transects and survey points in Lake
Pyhäjärvi. Top right shows the loca-
tion of the lake in the drainage basin
delimited by the outlet.
vuosittain kuiva-ainetta keskimäärin 150 g/m². Siitä hiilen osuus on 7,9 g/m².

Pyhäjärven pohjasta noin 50% on järvisedimenttejä ja ne sisältävät noin 68 milj. tn kuiva-ainetta. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 280 kg/m², ja sen keskimääräinen varastoitumisno-

peus on ollut 25 g/m²/v. Kuiva-aineesta on hiiltä noin 5400 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 22 kg/m² ja keskimääräinen varastoitumisnopeus 2,0 g/m²/v.

Kuva 60. Pyhäjärven tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 60. The composition, density and carbon content of the long core taken from survey point 1 in Lake Pyhäjärvi. Top right shows the carbon content of the surface core.

Kuva 61. Pyhäjärven tutkimuspisteeltä 2 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 61. The composition, density and carbon content of the long core taken from survey point 2 in Lake Pyhäjärvi. Top right shows the carbon content of the surface core.
Juojärvi

Juojärvi sijaitsee Vuoksen vesistöalueen keskiosassa ja kuuluu Tuusniemen, Heinäveden ja Outokummun kuntiin. Järven pinta-ala on 228 km² ja pinnan korkeus 101,0 m. Järvi on noin 40 km pitkä ja suuntautunut luoteesta kaakkoiseen (kuva 62). Juojärvi on tyyppiltään reittijärvi.

Fig. 62. The location of echo-sounding transects and survey points in Lake Juojärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.
Kohonnut maankuoren kallistumisen takia.

Tutkimuspisteitä on viisi (kuva 62). Kahdeltapisteeltä otettiin näytteet laboratoriomäärityksiä varten ja kolmella pisteellä sedimentin kerrosjärjestys määritettiin maastossa. Kaikuluotauslinjaa on yhteensä 32 km.

Tutkimuspiste 1 sijaitsee järven pohjoisosassa, missä veden syvyys oli 30,8 m. Pitkä näyte ulottuu sedimentin pinnasta 5,53 m:n syvyteen. Näytteen alaosa (5,53–3,70 m) on lustosavea. Sen päällä on savea (4,35–3,70 m), liejusavea (3,70–3,41 m), savilieju (3,41–1,35 m) ja liejua (1,35–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,70 m (kuva 63). Sen yläpuolella hiilipitoisuus kohoaa vähitellen ja on korkeimmillaan lähellä pintaa. Pitoisuuden tilapäinen aleneminen 3,1 m:n syvyydessä voi liittyä eteläisen lasku-oman puhkeamiseen, vaikka siihen liittyvää vedenpinnan alenemista ei toistaiseksi olekaan todistettu. Pintanäytteiden alin hiilipitoisuus on 15–10 cm:n syvyydessä. Se viittaa mahdolliseen vedenpinnan laskuun tai maankäytön muutoksiin valuma-alueella. Kuroutumisen jälkeen tällä paikalla on varastotunnut vuosittain kuiva-ainetta keskimäärin 87 g/m². Siitä hiilen osuus on ollut 4,4 g/m².

Tutkimuspiste 2 sijaitsee järven keskiosassa, missä veden syvyys oli 37,3 m. Pitkä näyte ulottuu sedimentin pinnasta 5,63 m:n syvyteen. Näytteen alaosa (5,63–3,30 m) on lustosavea. Sen päällä on savea (3,30–2,90 m), savilieju (2,90–2,50 m) ja liejua (2,50–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,90 m. Sen yläpuolella hiilipitoisuus kohoaa nopeasti, saavuttaa 7 %:n tason 2,3 m:n syvyydessä ja pysyy sillä tasolla pintaan saakka (kuva 64). Kuroutumisen jälkeen talle paikalle on varastotunut vuosittain kaunaisena ja vaiva-ainetta keskimäärin 45 g/m². Siitä hiilen osuus

Kuva 63. Juojärven tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 63. The composition, density and carbon content of the long core taken from survey point 1 in Lake Juojärvi. Top right shows the carbon content of the surface core.

Kuva 64. Juojärven tutkimuspisteeltä 2 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 64. The composition, density and carbon content of the long core taken from survey point 2 in Lake Juojärvi. Top right shows the carbon content of the surface core.
Järvisedimentit kuiva-aineen ja hiilen varastona

Tutkimuspiste 5 sijaitsee järven itäreunalla keskellä Laitasaaren ja Pitkäniemen rajaamaa lahteaa, missä veden syvyys oli 8,3 m. Maastossa tutkittu näyttesarja ulottuu sedimentiin pinnasta 2,35 m:n syvyyteen. Näyttesarjan alaosaa (2,35–2,20 m) on savea, saven päällä turvetta (2,20–1,60 m) ja turpeen päällä liejua (1,60–0 m). Järven kaakkoisosan vedenpinta on siten ollut noin 10 m nykyistä alempana.

Toinen todiste nykyistä alemmasta vedenpinnasta on saatu maltitutkimusten yhteydessä Riihilahdesta, joka sijaitsee noin 11 km tutkimuspisteen 5 luoteeseen ja josta löydetiin veden alle jäänyt turvekerros (Sandberg 1978). Turpeen kasvilajikasvutumuksesta ja turpeesta tehdyn radiohiihtajoituksesta perustellaan vedenpinnan päätelä olleen runsaat 10 000 vuotta sitten (9150 BP) ainakin 4,2 m nykyistä alempana. Juvoräven pohjasta noin 30% on järvisedimenttejä, ja ne sisältävät noin 23 milj. kg kuiva-ainetta. Koko pinta-alalla laskettuna kuiva-ainetta on keskimäärin 100 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 9,8 g/m²/v. Kuiva-aineesta on hiiltä noin 1400 milj. kg. Koko pinta-alalla laskettu keskimääräinen hiilivarasto on 6,1 kg/m² ja keskimääräinen varastoitumisnopeus 0,60 g/m²/v.

Koitere

Koitere syntyi mannermäättöön reunan perääntytyyn alueelta noin 11 500 vuotta sitten. Järvi sijaitsee niin korkealla, etteivät muinaisen Itämeren vaiheet ole

![Kuva 65. Luotaaulinojen ja tutkimus- pisteen sijainti Koiterella. Yhällä vasemmassa järven sijainti luusuaan rajoittuvalla valuma-alueella.](image)

Fig. 65. The location of echo-sounding transects and survey point in Lake Koitere. Top left shows the location of the lake in the drainage basin delimited by the outlet.
ulottuneet sinne.

Näytteet laboratoriomääryksä varten otettiin yhdeltä tutkimuspiisteltä (kuva 65). Kaikuluotaulin on yhteensä 24 km.

Tutkimuspiiste 1 sijaitsee järven pohjoisosassa, missä veden syvyys oli 19,7 m. Pitkä näyte ulottuu sedimentiin pinnasta 6,74 m:n syvyyteen. Näytteen alapää (6,74–6,65 m) on silttiä. Sen päällä on lieju- ja saviliejua (6,50–5,20 m) ja lieju (5,20–0 m). Kuroutumisajankohtaa vastaava syvyys on 6,65 m. Sen yläpuolella hiilipitoisuus on nopeasti 5 %:n tasolle ja jälkeen hitaammin saavuttaen 9 %:n tason 2,5 m:n syvyydessä (kuva 66). Kuroutumisen jälkeen päälle paikalle on varastoitunut vuosittain kuiva-aineetta keskimäärin 100 g/m². Siitä hiilen osuus on ollut 7,5 g/m².

Koitereen pohjasta noin 35 % on järvesedimenttejä, ja ne sisältävät kuiva-aineetta noin 38 milj. tn. Koko pinta-alalle laskettuna kuiva-aineetta on keskimäärin 380 kg/m². Koitereen kuiva-aineista on hiiltä noin 2800 milj. kg. Koko pinta-alalle laskettuna niestä keskimääräinen hiilivarasto on 17 kg/m² ja keskimääräinen varastoitumisnopeus on 1,5 g/m²/v.

Juurusvesi

Juurusvesi sijaitsee Kuopion koillispuolella ja kuuluu Kuopion lisäksi Siilinjärvien, Nilsiän ja Juankosken kuntosi. Järven pinta-ala on 159 km² ja pinnan korkeus 81,8 m. Se on saarinen ja niemien takia varsin rikkonainen (kuva 67). Siurin yhteenäinen takaa on järven länsiosassa. Juurusvesi on yypillään reittiäjärvä.

Mannerjäättikön reunan peräännytä Juurusvesi oli osa muinaista Itämerta ja sen pinta oli noin 60 m järven nykyistä pintaa ylempänä. Maankuoren kohotessa vedenpinta laski ja Juurusvesi kuroutui Itämerestä Ancylusjärvii-vaiheen aikana noin 9500 vuotta sitten. Kuroutumisen jälkeen Juurusveden vedet laskivat muiden Saimaan alueen vesien tavoin Pihlakulmaan kautta Pohjanlahteen. Koska useimpien suurten järven laskukynnystä sijaitsevat nopeimman maankohoamisen alueella, alkoi yksittäisten järven vedenpinta kohota. Vähitellen järvet yhtyivät, ja niistä muodos-

Tutkimuspiste 1 sijaitsee järven länsiosassa, missä veden syvyys oli 36,1 m. Pitkä näyte ulottuu sedimentin pinnasta 6,20 m:n syvyyteen. Näytteen alaosa (6,20–4,74 m) on lustosavea. Sen päällä on punertava savea (4,74–4,50 m), harmaata savea (4,50–3,80 m) ja saviliejua (3,80–0 m). Kuroutumisajankohta vastaava syvyys on 3,80 m (kuva 68). Sen yläpuolella hiilipitoisuus kohoaa nopeasti runsaan 3 %:n tasolle, mutta alkaa sitten laskea päätyen 2 %:n tasolle 3 m:n syvyydessä. Hiilipitoisuus alkaa kuitenkin kohota uudelleen ja on korkeimmillaan lähellä sedimentin pintaa. Pinnassa hiilipitoisuus taas alenee ja tiheys kasvaa. Kuroutumisen jälkeen tälle paikalle on varastotunut vuosittain kuiva-aineista keskimäärin 150 g/m². Siitä hiilen osuus on ollut 4,2 g/m².

Vuoksen puhkeamisen vaikutus on selvästi havaittavissa monissa Saimaan alueen sedimenttisarjoissa, mutta tästä Juurusveden näyttesarjasta ei puhkeamisajankohta vastaavaa syvyttä voida varmuudella määrittää. Jos Vuoksen puhkeamisajankohta vastaava syvyys on 3,5 m, ei pitkä näyte voi olla ajallisesti yhtenäinen, vaan järven kehityksen alku vaiheen aikana tälle paikalle syntynyt sedimentit ovat jostain syystä erodoituneet pois. Eroosion mahdollisuuteen viitattaa...
myös hiilipitoisuuden ja tiheyden jyrkä muutos kuroitumissyydysessä. Hiilipitoisuuden aleneminen ja tiheyden kasvu sedimentin pinnassa liittyy todennäköisesti maankäytön varhaisiin muutoksiin valuma-alueella.

Juurusveden pohjasta noin 70 % on järvesidementtejä, ja ne sisältävät noin 72 milj. t kuiva-ainetta. Koko pinta-alalle laskettuna kuiva-ainetta on 460 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 48 g/m²/v. Kuiva-aineesta on hiiltä noin 2000 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 13 kg/m² ja sen keskimääräinen varastoitumisnopeus 1,3 g/m²/v.

Viinijärvi

Viinijärvi sijaitsee Vuoksen vesistöalueen keski­osassa ja kuuluu Liperin, Outokummun ja Polvijärven kuntiin. Sen pinta-ala on 148 km² ja pinnan korkeus 78,8 m. Järvi rajoittuu etelässä jäätikköjokien kasumoon, ja sen länsi- ja itäpuolella on pitkittäisharju. Suurin osa valuma-alueesta on kuitenkin moreeni- ja turvemaa. (Frosterus 1910.) Viinijärvi on tyyppiltään latvajärvi.

Mannerjäätikön reunan peräännyttäytyä Viinijärven alueelta ulottui muinainen Itämeri Viinijärven altta­seen. Sen vedenpinta oli aluksi runsaat 30 m järven nykyistä pintaa ylempänä. Maankuoren kohotessa vedenpinta laski ja Viinijärvi kuroutui Itämerestä Yoldiamer­ven yhteydessä noin 5700 vuotta sitten. Vedenpinta aleni nopeasti noin 3 m. Vedenpinnan lasku jatkui hitaana, ja lopulta Viinijärvi kuroutui Orivedestä itsenäiseksi altaaksi.

Tutkimuspiste 1 sijaitsee järven pohjoisosassa, missä veden syvyys oli 4,1 m. Pitkä näyte ulottuu sedimentin pinnasta 3,02 m:n syvyyteen. Näytteen alaosa (3,02–2,05 m) on lustosavea. Sen päällä on savea (2,05–1,25 m), liejusavea (1,25–0,83 m), liejua (0,83–0,65 m) ja saviliejua (0,65–0 m). Kuroutumisajankohtaa vastaava syvyys on 1,25 m. Senyläpuolella hiilipitoisuus kohoaa nopeasti 6 %:n tasolle, mutta aleneesitteltyä nopeasti (kuva 70). Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 37 g/m². Siitä hiilen osuus on ollut 1,0 g/m².

Veden syvyys on vaihdellut tällä tutkimuspiesteellä huomattavasti (4–16 m), mikä on vaikuttanut myös sedimentaatio-oloihin. Kuroitumisen jälkeen veden syvyys vastasi suunnilleen nykyistä ja kerrostumien oli hyvin hidastuva. Saimaan tulvan syvyyttä vastaava syvyys oli 9,25 m. Saimaan tulvan kanssa veden syvyys kasvoi nopeasti koko järven alueella. Onkivesi on järven eteläosassa, noin 35% on järven pohjoisosassa, ja sen pinta-ala on 120 km² ja pinnan korkeus 84,7 m. Järvien pinta-ala on 30 km², 10 km leveä ja lukuisia saaria ja niemen rikkoma (kuva 71). Onkivesi on tyyppiltään reittijärvi.

Onkivesi sijaitsee Vuoksen vesistöalueen pohjoisosassa ja kuuluu Lapinlahden ja Maaningan kuntiin. Sen pinta-ala on 120 km² ja pinnan korkeus,84,7 m. Järvi on noin 30 km pitkä, 10 km leveä ja lukuisten saarien ja niemen rikkoma (kuva 71). Onkivesi on tyyppiltään reittijärvi.

Onkivesi

Onkivesi sijaitsee Vuoksen vesistöalueen pohjoisosassa ja kuuluu Lapinlahden ja Maaningan kuntiin. Sen pinta-ala on 120 km² ja pinnan korkeus 84,7 m. Järvi on noin 30 km pitkä, 10 km leveä ja lukuisten saarien ja niemen rikkoma (kuva 71). Onkivesi on tyyppiltään reittijärvi.

Mannerjäätikon reunan peräännyttilä ulottui mui-
korkeudella olleet järvet yhtyivät ja niistä muodostui
vähitellen Iisalmen pohjoispuolelta Lappeenrantaan
ulottuva muinainen Suur-Saimaa. Saimaan tulva
kohosi Onkiveden eteläosassa noin 22 m ja pohjois-
osassa noin 25 m järven nykyistä pintaa korkeammalle.
Vedenpinnan kohoaminen päättyi, kun Saimaan
vesille puhkesi ensimmäinen eteläinen lasku-umo.
Ristiinaan noin 6900 vuotta sitten. Vedenpinta alkoi
laskea Lappeenrannan uoman puhjettua ja Pielaveden
lasku-uoman kuivuttua noin 6300 vuotta sitten. Vuok-
sen uoman puhkeamisen yhteydessä noin 5700 vuotta
sitten vedenpinta laski nopeasti noin 3 m. Sen jälkeen
vedenpinnan lasku on jatkunut hidastuvana. Osa
hidastumisesta johtui laskukynnyksen siirtymisestä
Imatralta aluksi Varkauteen ja sitten Maaningalle, osa
taas maankuoren kallistumisen hidastumisesta.
Vedenpinnan vaihtelujen lisäksi Onkivesi on koke-
nut merkittävää valuma-alueen ja läpivirtaaman muu-
tokia. Kuroutumisen jälkeen sen valuma-alue ulottui
Ensimmäiselle Salpausselälle saakka. Huomattavasti
nykyistä laajemman valuma-alueen takia läpivirtaama
oli suurempi. Ristiinan uoman puhkeamisen ja Pielave-
den uoman kuivumisen välillä vallitsi bifurkaatioaihe,
jonka aikaisista valuma-aluetta on vaikea määrittää.
Pielaveden uoman kuivumisen jälkeen Onkivedellä
on ollut nykyinen valuma-alue.
Tutkimuspisteitä on kaksikymmenä (kuva 71). Yhdeltä
pisteeltä otettiin näytteet laboratoriamäärityk-
siä varten ja muilla pisteillä sedimentin kerrosjärjestys
määritettiin maatunnossa. Kaikuluotsalinja on yhteensä
35 km. Sedimentin kaasupitoisuus vaikeutti luotaimen

Tutkimuspiste 16 sijaitsee Karvaselällä järven keskiossa, missä veden syvyys oli 11,3 m. Pitkä näyte ulottuut sedimentin pinnasta 6,35 m:n syvyyteen. Näytteen alaosa (6,35–5,36 m) on lustosavea. Sen päällä on savea (5,36–4,64 m), liejusavea (4,64–4,30 m) ja saviliejuja (4,30–4,10 m), liejusavea (4,10–1,40 m) ja saviliejuja (1,40–0 m). Kuroutumisajankohta vastaava syvyys on 4,64 m (kuva 72). Sen yläpuolella hiilipitoisuus kohoa päätyen 2 %:n tason 4,2 m:n syvyydessä, alenee sitten runsaan 1 %:n tason ja kohoa uudelleen lähellä pintaia. Hiilipitoisuuden nopea aleneminen 4 m:n syvyydessä liittyi todennäköisesti Vuoksen puheemista seuranneeseen vedenpinnan alenemiseen ja sedimenttien uudelleen kerrostumiseen.

Kuroutumisen jälkeen järvedempiteen kertyminen oli hyvin hidasta tai voimakas virtaus esti sen kokonaan. Edellytykset aineksen kerrostumiselle paranivat vasta Saimaan tulvan nostuessa vedenpintaa ja hidastaessa virtausnopeutta. Merkittävä parannus sedimentaatio-oloissa tapahtui vasta valuma-alueen ja läpivirtaaman pienennettyä. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 210 g/m². Siitä hiilen osuus on ollut 4,0 g/m².

Onkivedenpohjastaan 60 % on järvedempitejä, ja ne sisältävät noin 51 milj. tn kuiva-ainetta. Koko pinta-alalle laskettuna kuiva-ainetta keskimäärin 420 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 45 g/m²/v. Kuiva-ainetta on hiiltä noin 970 milj. kg. Koko pinta-alueella laskettu keskimääräinen hiilivarasto on 8,1 kg/m² ja keskimääräinen varastoitumisnopeus 0,85 g/m²/v.

fig. 73. The location of echo-sounding transects and survey point in Lake Luonteri. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Luonteri

Luonteri sijaitsee Vuoksen vesistöalueen eteläosassa ja kuuluu Mikkelin ja Juvan kunnille. Sen pinta-ala on 108 km² ja pinnan korkeus 75,7 m. Luonteri on noin 20 km pitkä, ja siinä on useita lounaasta koilliseen suuntautuvia selkiä ja lahtia (kuva 73). Lukuisten saarien takia pinta on muodoltaan hajana. Se on osa Saimaan järvekokonaisuutta ja on tyypiltään reittijärvi.

Näytteet laboratoriomääritystä varten otettiin yhdeltä tutkimuspisteeltä (kuva 73). Kaikuluotaus-
linjaa on yhteensä 31 km.

Tutkimuspiste sijaitsee järven pohjoisosassa, missä veden syvyys oli 33,0 m. Pitkä näyte ulottuu sedimentin pinnasta 4,56 m:n syvyyteen. Näytteen alaosaa (4,56–3,25 m) on lustosavea. Sen päällä on savea (3,25–2,42 m) ja liejusavea (2,42–2,20 m). Liejusaven päällä vuorottelevat savilieju- ja liejukerrokset seuraavasti: savilieju (2,20–2,00 m), lieju (2,00–1,70 m), savilieju (1,70–1,50 m), lieju (1,50–0,20 m) ja savilieju (0,20–0 m). Kuroutumisasjankohdta vastaava syvyys on 2,42 m (kuva 74). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 8 %:n tasolle ja pysyy sillä tasolla kahta alenemaa lukuun ottamatta. Pitoisuuden tilapäinen aleneminen 1,6 m:n syvyydessä liittyy Vuoksen puhkeamista seuranneeseen vedenpinnan laskuun ja sedimenttien uudelleen kerrostoneeseen. Pitoisuuden tilapäinen aleneminen sedimenttikerroksen pinnassa taas liittyy maankäytön muutoksiin valuma-alueella.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 50 g/m². Siitä hiilen osuus on ollut 3,5 g/m². Vuonterin pohjasta noin 40 % on järvedimenttejä, ja ne sisältävät noin 13 milj. tn kuiva-ainetta. Koko pinta-alalle laskettuna kuiva-ainetta on 50 g/m². Siitä hiilen osuus on ollut 3,5 g/m². Luonterin pohjasta noin 40 % on järvedimenttejä, ja ne sisältävät noin 13 milj. tn kuiva-ainetta. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 120 kg/m² ja sen keskimääräinen vaaratotumisnopeus on ollut 11 g/m²/v. Kuiva-aineesta on hiiltä noin 890 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 8,3 kg/m² ja keskimääräinen vaaratotumisnopeus 0,77 g/m²/v.

Kuva 74. Luonterin tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Fig. 74. The composition, density and carbon content of the long core taken from survey point 1 in Lake Luonteri. Top right shows the carbon content of the surface core.

Unnukka

Unnukka sijaitsee Vuoksen vesistöalueen keski- osassa ja kuuluu Leppävirran ja Varkauden kunniksi. Sen pinta-ala on 103 km² ja pinnan korkeus 81,3 m. Järvi on hajanainen ja siinä on useita luoteesta kaakkoiseen suuntautuneita kapeita altaata (kuva 75). Unnukka on tyyppiltään reittijärvi.

Suur-Saimaan lasku-oman muutokset muuttivat Unnukan vesien virtaussuuntaa. Kuroutumisasjankohdasta Ristiinaan lasku-oman puhkeamiseen virtaussuunta oli luoteeseen, ja Pielaveden lasku-oman

Tutkimuspiste 1 sijaitsee järven pohjoisosassa Mäntyisellä, missä veden syvyys oli 13,8 m. Pitkä näyte ulottuu sedimentin pinnasta 5,53 m:n syvyteen. Näytteen alaosa (5,53–4,57 m) on lustosavea. Sen päällä on savea (4,57–3,02 m), saviliejua (3,02–2,70 m), liejua (2,70–2,57 m) ja uudelleen saviliejua (2,57–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,02 m (kuva 76). Sen yläpuolella hiilipitoisuus kohoaa nopeasti runsaan 6 %:n tasolle, alenee sitten vähintään 3 %:n tasolle ja pysyy siinä sedimentin pintaan saakka.

Hiilipitoisuuden nopea aleneminen 2,5 m:n syvyydessä liittyy todennäköisesti Vuoksen puhkeamista seuranneeseen vedenpinnan laskuun ja sedimenttien uudelleen kerrostumiseen. Sitä ennen ehti tällä paikalla kertyä vain 0,5 m järvesedimenttejä. Pitkässä näytteessä on todennäköisesti ajallinen aukko saven ja saviliejun välissä. Kuroutumisen jälkeen virtaukset estivät sedimenttien kerrostumisen ja paikka pysyi savipohjaisena. Virtausolot muuttuivat järvesedimenttien kerrostumisen kannalta edullisiksi vasta Suur-Saimaan tulvan nostettua vedenpinnan riittävän korkealle.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 80 g/m². Siitä hiilen osuus on ollut 2,6 g/m². Veden puhkeamisen jälkeiselle ajalle laskettuna varastoitumisnopeudet ovat lähedesaksinkertaisia.

Virtausten vaikutusta sedimenttaatio-oloihin kuvasivat myös muilla tutkimuspisteillä tehdyt maastomääritykset, sillä tavanomaisesta poiketen järvesedimenttikerroksen paksuus ohenee veden syvyyden lisääntymässä. Paikoin myös sedimentin kerrosjärjestys on poikkeava.

Tutkimuspiste 2 sijaitsee järven pohjoisosassa Kalmalahdessa, missä veden syvyys oli 5,1 m. Kairaustulot veivät sedimentin pinnasta 3,10 m:n syvyteen ja päätyivät saveen. Sen päällä oli liejesavea (3,10–2,90 m), saviliejua (2,90–2,25 m), turpeen säkästä hiekkaa (2,25–2,05 m), hiekkää (2,05–2,00 m), saviliejua (2,00–0,80 m) ja liejua (0,80–0 m).

virtausnopeus kasvoi ja salmen pohjaan kerrostunut hieka kulkeutui Kalmalahden pohjaan. Virtausnopeuden hidastuttua päätyi hiekan kulkeutuminen ja saviliejun kerrostuminen Kalmalahteen alkoi uudelleen. Liejun kerrostuminen tuli mahdolliseksi vasta, kun salmen pohja kohosi vedenpinnan yläpuolelle ja läpivirtaus Kalmalahdessa päätyi.

Unnukan pohja on noin 60 % järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 29 milj. tn. Koko pintaläheiselle laskettuna kuiva-ainetta on keskimäärin 280 kg/m², ja sen keskimääräinen varastointisnopeus on ollut 30 g/m²/v. Kuiva-ainetusta on hiiltä noin 960 milj. kg. Koko pintaläheiselle laskettuna keskimääräinen varastointisnopeus on 0,97 g/m²/v.

Kangasjärvi

Kangasjärvi sijaitsee Vuoksen vesistöalueen länsireunalla ja kuuluu Hämeenlinnan, Mikkelin, Juvan ja Pieksämäen kuntaan. Sen pinta-ala on 19,5 km² ja pinnan korkeus 105,2 m. Järvi on matala. Peruskartan mukaan sen suurin syvyys on 6,8 m. Valuma-alue on voimakkaasti soistunut mereen. Turvekerrokset peittävät alavimpia paikoja, ja ne on lähes kauttaaltaan kuivan kartastusta tai turvetuotantoa varten. Kangasjärvi on tyyppilä宁kä latvajärvi.

Mannerjärvön reunan peräännyttä järven korkeutta määrittää muita maankestävien demografien mukaan. Kangasjärvenaltaan ja sen pinta ala on noin 15 m järven ryhmyistä pintaa korkeammalla. Maankorkeuden kohtaan vedenpinta on 6,4 m. Valuma-alue on voimakkaasti soistunut mereen. Turvekerrokset peittävät alavimpia paikoja, ja ne on lähes kauttaaltaan kuivan kartastusta tai turvetuotantoa varten. Kangasjärvi on tyyppilä宁kä latvajärvi.

Mannerjärvön reunan peräännyttä järven korkeutta määrittää muita maankestävien demografien mukaan. Kangasjärvenaltaan ja sen pinta ala on noin 15 m järven ryhmyistä pintaa korkeammalla. Maankorkeuden kohtaan vedenpinta on 6,4 m. Valuma-alue on voimakkaasti soistunut mereen. Turvekerrokset peittävät alavimpia paikoja, ja ne on lähes kauttaaltaan kuivan kartastusta tai turvetuotantoa varten. Kangasjärvi on tyyppilä宁kä latvajärvi.

Kuva 76. Unnukan tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus.

Fig. 76. The composition, density and carbon content of the long core taken from survey point 1 in Lake Unnukka. Top right shows the carbon content of the surface core.
on varastoituutun vuosittain kuiva-ainetta keskimäärin 49 g/m². Siitä hiilen osuus on ollut 5,9 g/m².

Kangasjärven pohjasta noin 85 % on järvesidmentejä, ja ne sisältävät kuiva-ainetta noin 8,4 milj. t. Koko pinta-alueelle laskettuna kuiva-ainetta on keskimäärin 430 kg/m², ja sen keskimääräinen varastoimisnopeus on noin 40 g/m²/v. Kuiva-ainetta on hiiltä noin 1000 milj. kg. Koko pinta-alueelle laskettu keskimääräinen hiilivarasto on 51 kg/m² ja keskimääräinen varastoimisnopeus 4,8 g/m²/v.
Kolkonjärvi

Mannerjätkön reunan perääntytypyöllöt ruohon muinaisen Itämeren Kolkonjärven altaaseen ja sen pinta oli noin 10 m järven nykyistä pintaa ylempänä. Maankuoren kohottaminen pintaan kulki noin 10 500 vuotta sitten. Siitä alkaen luoteispään laskeutumisesta nykyinen vesialue on tyypillinen laskeutuneen tasolle ja se on säilynyt nykyistä pinnasta 6 m. Nykyinen pinnan korkeus on 98,2 m. Järven vedenpinta on 76 m. Järven vedenpinta on säilynyt nykyistä pinnasta 6 m. Nykyinen pinnan korkeus on 98,2 m. Järven vedenpinta on 76 m.

Mannerjätkön reunan perääntytyyn ilmastonmuutosten vaikutuksesta virtaa luoteispään laskeutumisesta noin 10 500 vuotta sitten. Siitä alkaen luoteispään laskeutumisesta nykyinen vesialue on tyypillinen laskeutuneen tasolle ja se on säilynyt nykyistä pinnasta 6 m. Nykyinen pinnan korkeus on 98,2 m. Järven vedenpinta on 76 m. Järven vedenpinta on säilynyt nykyistä pinnasta 6 m. Nykyinen pinnan korkeus on 98,2 m. Järven vedenpinta on 76 m.

Tutkimuspiste 6 sijaitsee järven luoteispäässä, missä veden syvyys oli 8,8 m. Pitkä näyte ulottuu sedimentin pinnasta 2,51 m:n syvyyteen. Näytteen alaosa (2,51–2,31 m) on lustosavea. Sen päällä on saviliejua (2,31–2,21 m) ja liejua (2,21–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,31 m (kuva 80). Sen yläpuolella hiilipitoisuus on nopeasti 10 %:n tasolle ja pysyy korkeana pintaan saakka. Kuroutumisen jälkeen talle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 33 g/m². Siitä hiilen osuus on ollut noin 3,3 g/m².

Kolkonjärven pitkässä näytteessä siirtyy luostasavien rajoitettua saviliejua (2,31–2,21 m) ja liejua (2,21–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,31 m (kuva 80). Sen yläpuolella hiilipitoisuus on nopeasti 10 %:n tasolle ja pysyy korkeana pintaan saakka. Kuroutumisen jälkeen talle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 33 g/m². Siitä hiilen osuus on ollut noin 3,3 g/m².

Järven luoteispään rajoittua luostasavien rajoittua saviliejua (2,31–2,21 m) ja liejua (2,21–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,31 m (kuva 80). Sen yläpuolella hiilipitoisuus on nopeasti 10 %:n tasolle ja pysyy korkeana pintaan saakka. Kuroutumisen jälkeen talle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 33 g/m². Siitä hiilen osuus on ollut noin 3,3 g/m².

Kolkonjärven pitkässä näytteessä luostasavien rajoitettua saviliejua (2,31–2,21 m) ja liejua (2,21–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,31 m (kuva 80). Sen yläpuolella hiilipitoisuus on nopeasti 10 %:n tasolle ja pysyy korkeana pintaan saakka. Kuroutumisen jälkeen talle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 33 g/m². Siitä hiilen osuus on ollut noin 3,3 g/m².

Kolkonjärven pitkässä näytteessä luostasavien rajoitettua saviliejua (2,31–2,21 m) ja liejua (2,21–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,31 m (kuva 80). Sen yläpuolella hiilipitoisuus on nopeasti 10 %:n tasolle ja pysyy korkeana pintaan saakka. Kuroutumisen jälkeen talle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 33 g/m². Siitä hiilen osuus on ollut noin 3,3 g/m².

Kolkonjärven pitkässä näytteessä luostasavien rajoitettua saviliejua (2,31–2,21 m) ja liejua (2,21–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,31 m (kuva 80). Sen yläpuolella hiilipitoisuus on nopeasti 10 %:n tasolle ja pysyy korkeana pintaan saakka. Kuroutumisen jälkeen talle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 33 g/m². Siitä hiilen osuus on ollut noin 3,3 g/m².

Kolkonjärven pitkässä näytteessä luostasavien rajoitettua saviliejua (2,31–2,21 m) ja liejua (2,21–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,31 m (kuva 80). Sen yläpuolella hiilipitoisuus on nopeasti 10 %:n tasolle ja pysyy korkeana pintaan saakka. Kuroutumisen jälkeen talle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 33 g/m². Siitä hiilen osuus on ollut noin 3,3 g/m².

Kolkonjärven pitkässä näytteessä luostasavien rajoitettua saviliejua (2,31–2,21 m) ja liejua (2,21–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,31 m (kuva 80). Sen yläpuolella hiilipitoisuus on nopeasti 10 %:n tasolle ja pysyy korkeana pintaan saakka. Kuroutumisen jälkeen talle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 33 g/m². Siitä hiilen osuus on ollut noin 3,3 g/m².
Keyritty

Keyritty sijaitsee Vuoksen vesistöalueen pohjoisosassa Rautavaaralla. Sen pinta-ala on 18,2 km² ja pinnan korkeus 120,1 m. Järvi on noin 15 km pitkä, 1–2 km leveä ja suuntautunut pohjois-länsi eteläkaakko (kuva 81). Järvi rajoittuu lännestä ja idästä mäkijonoon, joka kohoaa runsaat 100 m järven pinnan yläpuolelle. Valuma-alue on moreeni- ja turvemaata. Keyritty on tyyppiltään latvajärvi.

Mannerjäätikön reunan perääntyvää alueelta ulottui muinainen Itämeri Keyrityn altaaseen. Sen vedenpinta oli korkeimmillaan noin 30 m ärven nykyistä vedenpintaan ylempänä. Maankuoren kohotessa vedenpinta laski ja Keyritty kuroutui lätämerestä Ancylusjärvi-vaiheen alkaa'en noin 10 000 vuotta sitten. Sen jälkeen järven laskukynnyssä on säädetty vedenpinnan tasoa. Maankuoren kallistumisen takia vedenpinta on laskenut varsinkin pohjoisosassa. Vuonna 1862 myönnettiin lupa Keyrityn pinnan laskemiseen laskukynnystä perkaamalla. Laskun seurauksena vedenpinta aleni 2,1 m ja lisämaata paljastui lähes 500 ha.

Näytteet laboratoriomäärityksiä varten otettiin yhdeltä tutkimuspisteeltä (kuva 81). Kaikuluotuslinjaa on yhteensä 9 km.

Tutkimuspiste 1 sijaitsee järven pohjoisosassa, missä veden syvyys oli 24,5 m. Pitkä näyte ulottuu sedimentin pinnasta 4,34 m:n syvyyteen. Näytteen alapäässä 4,34–4,30 m on savea. Sen päällä on saviliejua 4,30–4,15 m, liejua 4,15–0,10 m, liejusavea 0,10–0,06 m ja saviliejua 0,06–0 m. Kuroutumisajankohtaa vastaava syvyys on 4,15 m

Kuva 81. Luotuslinjojen ja tutkimuspisteen sijainti Keyrityllä. Ylhäällä okealla järven sijainti luusuaan rajoittuvalla valuma-alueella. Fig. 81. The location of echo-sounding transects and survey point in Lake Keyritty. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 82. Keyrityn tutkimuspisteeltä 1 otetun näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä okealla pintaaluettaan hiilipitoisuus. Fig. 82. The composition, density and carbon content of the long core taken from survey point 1 in Lake Keyritty. Top right shows the carbon content of the surface core.
Nerkoonjärvi

Nerkoonjärvi sijaitsee Vuoksen vesistöalueen pohjoisosassa ja kuuluu lisälajeen ja Lapinlahden kuntiin. Sen pinta-ala on 15,5 km² ja pinnan korkeus 85,8 m. Järvi on noin 10 km pitkä, 1–2 km leveä ja suunnattuna pohjoisluoteeseen eteläkaakkoon (kuva 83). Järven itäpuolella on pitkittäihin harjut. Hienojakoisia joisosissa ja kuuluu Iisalmen ja Lapinlahden kuntiin. Sen pinta-ala on 15,5 km² ja suunnan pääsyliikennepiste 2,5 km:n päähän. Järven seutuväestö on noin 1000 asukasta.

Nerkoonjärvi on noin 10 km pitkä, 1–2 km leveä ja suunnattuna pohjoisluoteeseen eteläkaakkoon (kuva 83). Järven itäpuolella on pitkittäihin harjut. Hienojakoisia joisosissa ja kuuluu Iisalmen ja Lapinlahden kuntiin. Sen pinta-ala on 15,5 km².

Järven seutuväestö on noin 1000 asukasta.

• Nerkoonjärvi
 - Pinta-ala: 15,5 km²
 - Pinnan korkeus: 85,8 m
 - Pitkä: noin 10 km
 - Leveä: 1–2 km

Järven seutuväestö on noin 1000 asukasta.

Nerkoonjärvi

Nerkoonjärvi

Nerkoonjärvi

Nerkoonjärvi

Nerkoonjärvi

näyte ulottuu sedimentin pinnasta 5,00 m:n syvyteen. Näytteen alaosaa (5,00–4,30 m) on lustosavea. Sen päällä on savea (4,30–3,50 m), liejusavea (3,50–2,00 m) ja saviliehua (2,00–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,50 m. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 140 g/m². Siitä hiilen osuus on ollut 2,8 g/m². Näyte on mitä todennäköisimmin täydellinen, joskin varastoitumisnopeudet ovat vaihdelleet veden syvyyden ja virtausolojen mukaan.

Nerkoonjärven sedimentaatio-olot ovat vaihdelleet merkittävästi veden syvyyden ja läpivirtauksen voimakkuuden mukaan. Järven ympäristössä on runsaasti hiekkavaikutusta, mikä on johtanut suurin partia kuiva-ainen varastoitumisnopeuksiin siellä, missä kerrostuminen ylipäänsä on ollut mahdollista.

Nerkoonjärven järvedimentit sisältävät kuiva-ainetta noin 17 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 1100 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 120 g/m²/v. Kuiva-aineesta on hiiltä noin 420 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 27 kg/m² ja keskimääräinen varastoitumisnopeus 2,8 g/m²/v.

Kuva 83. Luotauslinjojen ja tutkimusluojien sijainti Nerkoonjärvellä. Ylhäällä oikealla järvien sijainti luosuun rajoittuvala valuma-alueella. Fig. 83. The location of echo-sounding transects and survey points in Lake Nerkoonjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 84. Nerkoonjärven tutkimusluojista 1 otetun pitkän näytteen koostumus, tiheyys ja hiilipitoisuus. Ylhäällä oikealla pinta-näytteen hiilipitoisuus. Fig. 84. The composition, density and carbon content of the long core taken from survey point 1 in Lake Nerkoonjärvi. Top right shows the carbon content of the surface core.
Ätäskö

Ätäskö sijaitsee Vuoksen vesistöalueen itäosassa Kiteellä Toisen Salpausselän kaakkoispuolella. Sen pinta-ala on 13,0 km² ja pinnan korkeus 79,6 m. Järvi on noin 9 km pitkä, 1–2 km leveä ja suuntautunut pohjoisluoteeseen eteläkaakoon (kuva 85). Allas on melko tasapohjainen ja matala, suurin syvyys 7,5 m. Valuma-alueen luotesi- ja koilliseunalla on laajittuutta ainesta ja eteläosassa enimmäkseen moreenia. Valuma-alueen keskiosassa on laajoja saattoita. Ätäskö on tyypiltään latvajärvi.

Mannerjäätikön reunan peräännytys ulottui muinaiseen Itämeriin. Ätäskön altaan nykyinen pinta on noin 79,6 m. Järvi on noin 9 km pitkä, 1–2 km leveä ja suuntautunut pohjoisluoteesta eteläkaakkoon. Allas on melko tasapohjainen ja matala, suurin syvyys 7,5 m. Valuma-alueen luotesi- ja koilliseunalla on laajittuutta ainesta ja eteläosassa enimmäkseen moreenia. Ätäskö on tyypiltään latvajärvi.

Mannerjäätikön reunan peräännytys ulottui muinaiseen Itämeriin. Ätäskön altaan nykyinen pinta on noin 79,6 m. Järvi on noin 9 km pitkä, 1–2 km leveä ja suuntautunut pohjoisluoteesta eteläkaakkoon. Allas on melko tasapohjainen ja matala, suurin syvyys 7,5 m. Valuma-alueen luotesi- ja koilliseunalla on laajittuutta ainesta ja eteläosassa enimmäkseen moreenia. Ätäskö on tyypiltään latvajärvi.

Mannerjäätikön reunan peräännytys ulottui muinaiseen Itämeriin. Ätäskön altaan nykyinen pinta on noin 79,6 m. Järvi on noin 9 km pitkä, 1–2 km leveä ja suuntautunut pohjoisluoteesta eteläkaakkoon. Allas on melko tasapohjainen ja matala, suurin syvyys 7,5 m. Valuma-alueen luotesi- ja koilliseunalla on laajittuutta ainesta ja eteläosassa enimmäkseen moreenia. Ätäskö on tyypiltään latvajärvi.

Tutkimuspiteitä on neljätoista (kuva 85). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maankuoren tavanomaista enemmän, sillä suurimmassa osassa allasta luotainen signaali ei läpäissyt sedimenttikerrosta.

Tutkimuspiste 14 sijaitsee järven keskiosassa, missä veden syvyys oli 7,6 m. Pitkä näyte ulottuu sedimentin pinnasta 6,99 m:n syvyteen (kuva 86). Näytteen alaosa (6,99–4,50 m) on savilejua. Sen päällä on liejua (4,50–3,50 m), savilejua (3,50–2,00 m) ja liejua (2,00–0 m). Kuroutumisajankohtaa vastaava syvyys on noin 7,6 m. Hiilipitoisuus näytteen alaosaan on 4,50 m:n syvydessä 4,5 m:n syvyydessä 420 g/m², ja sen keskimääräinen varastoitumisnopeus on ollut 43 g/m²/v. Kuiva-aineesta on hiiltä noin 440 milj. kg/m²/v.

Nurmijärvi

Tutkimuspiste 14 sijaitsee järven keskiosassa, missä veden syvyys oli 7,6 m. Pitkä näyte ulottuu sedimentin pinnasta 6,99 m:n syvyteen (kuva 86). Näytteen alaosa (6,99–4,50 m) on savilejua. Sen päällä on liejua (4,50–3,50 m), savilejua (3,50–2,00 m) ja liejua (2,00–0 m). Kuroutumisajankohtaa vastaava syvyys on noin 7,6 m. Hiilipitoisuus näytteen alaosaan on 4,50 m:n syvydessä 4,5 m:n syvyydessä 420 g/m², ja sen keskimääräinen varastoitumisnopeus on ollut 43 g/m²/v. Kuiva-aineesta on hiiltä noin 440 milj. kg/m²/v. Kuiva-aineesta on hiiltä noin 440 milj. kg/m²/v.
Nurmijärven pohjasta noin 55 % on järvesedimenttejä, ja ne sisältävät kuiva-ainetta noin 1,8 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 180 kg/m², ja sen keskimääräinen varastointisnopeus on ollut 16 g/m²/v. Kuiva-aineesta on hiiltä noin 140 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarastot on 14 kg/m² ja keskimääräinen varastointisnopeus 1,2 g/m²/v.

Kuva 87. Luotauslinjojen tutkimuspaikka järven pohjasta. Ylhäällä vasemmalla järven sijainti luusuan rajoittuvalla valuma-alueella.

Fig. 87. The location of echo-sounding transects and survey point in Lake Nurmijärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 88. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Nurmijärvi. Top right shows the carbon content of the surface core.

Kuonanjärvi

Kuonanjärvi sijaitsee Vuoksen vesistöalueen eteläosassa Kerimäellä. Sen pinta-ala on 5,88 km² ja pinnan korkeus 76,3 m. Kuonanjärvi on noin 5 km pitkä, 1,5 km leveä ja suuntautunut luoteesta kaakkoiseen (kuva 89). Kuonanjärven vedet laskevat noin 0,6 m alempaan Puruveden. Kuonanjärvi on tyyppiläinen reittijärvi.

Jaervedimentit kuiva-aineen ja hiilen varastona

(2,50–2,12 m) ja liejua (2,12–0 m). Kuroutumisajan-kohtaa vastaava syvyys on 2,80 m (kuva 90). Sen yläpuolella hiilipitoisuus kohoaa aluksi hitaasti, mutta sitten nopeasti ja on korkeimmillaan (24 %) kahden metrin syvyydessä. Sen yläpuolella pitoisuus taas laskee nopeasti 10 %:n tasolle.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 69 g/m². Siitä hiilen osuus on ollut 6,5 g/m².

Kuonanjärven järidgedimentit sisältävät noin 3,9 milj. tn kuiva-ainetta. Koko pinta-alalta kuiva-ainetta on keskimäärin 670 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 64 g/m²/v. Kuiva-aineesta on hiiltä noin 380 milj. kg. Koko pinta-alalta laskettu keskimääräinen hiilivarasto on 65 kg/m² ja keskimääräinen varastoitumisnopeus 6,2 g/m²/v.

Kevätön

Kevätön sijaitsee Vuoksen vesistöalueen pohjoisosassa Siilinjärvellä. Sen pinta-ala on 4,07 km² ja pinnan korkeus 90,3 m. Veden syvyys on suurimmassa osassa järveä pari, kolme metriä. Viidessä pienessä altaassa syvyys ylittää 6 m, ja suurin syvyys on 8,8 m. Valuma-alue rajoittuu harjuun idässä ja etelässä. Järven itä- ja lounaispuolella on hienojakoista lajittunutta aineesta ja luonaispuolella moreenia (Huttunen 2001a, 2001b). Kevätön on tyyplään latvajarvi.
Kuva 91. Luotauslinjojen ja tutkimuspisteiden sijainti Kevättömäällä. Yhtäällä oikealla järven sijainti luuansa rajoittavalla valuma-alueella.

Fig. 91. The location of echo-sounding transects and survey points in Lake Kevätön. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 92. Kevättömän tutkimuspisteeltä 1 otetun näytteen koostumus, tiheys, hiilipitoisuus ja radiohiiliajoitusten tulos. Yhtäällä oikealla pintanäytteen hiilipitoisuus.

Fig. 92. Composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Kevätön. Top right shows the carbon content of the surface core.

Tutkimuspiste 1 sijaitsee järven keskosassa, missä veden syvyys oli 6,3 m. Pitkä näyte ulottuu sedimentin pinnasta 5,60 m:n syvyyteen ja on saviliejua (5,60–0,15 m) ja liejua (0,15–0 m). Näyte ei ulotu kuroutumisajankohtaa vastaavaan syvyyteen saakka, vaan käsitettää jälkimmäisen puolikon järven historiasta. Näytteen alaosassa hiilipitoisuus on 3 %:n tasolla, josta kohoaa hitaasti pintaa kohti (kuva 92). Pitoisuus ylittää 4 %:n tason 3,3 m:n syvyydessä ja saavuttaa 5 %:n tason 1 m:n syvyydessä. Sen yläpuolella pitoisuus alenee nopeasti runsaan 2 %:n tasolle, mutta kohoaa uudelleen lähellä sedimentin pintaa.

Pitkän näytteen alaosa on syntynyt Suur-Saimaan tulvan laskussa hitaasti ja Kevättömän vähitellen eristäytymisenä itsenäiseksi altaaksi. Hiilipitoisuuden nopea aleneminen ja tiheyden kasvu 0,9 m:n syvyydessä liittyy todennäköisesti ensimmäisiin viljelytoimiin järven valuma-alueella ja vastaavat muutokset 0,2 m:n syvyydessä sata vuotta sitten toteutettuun vedenpinnan laskuun.

Viimeksi kuluneiden 4900 vuoden aikana tälle paikalle on varastoitunut vuosittain kuivaa-ainetta keskimäärin 420 g/m². Siitä hiilien osuus on ollut 17 g/m². Radiohiiliajoitusten perusteella jaettujen kerrosten keskimääräiset kuiva-aineen ja hiilen varastoitumis-
nopeudet pienenevät nykyaikaa kohti.

Järvesedimenttien kerrostuminen on keskittynyt syvänenteisiin, joita oli alunperin nykyistä enemmän ja jotka olivat huomattavasti nykyistä syvemmämpiä. Sitä vastoin matalilla alueilla järvesedimenttikerros on ollut tai se puuttuu kokonaan. Syvänenteiden nopeaa täyttymistä ovat edesautanneet valuma-alueen hienojakoisen mineraalilainen ja vedenpinnan voimakas vaihtelu, joka on tuonut rantavoinnin ulottuville aina uutta materiaalia.

Kevättömän järvesedimenttisisältävät kuiva-ainetta noin 2,0 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 480 kg/m², ja sen keskimääräinen valastutusnopeus on ollut 51 g/m²/v. Kuiva-aineeosta on hiiltä noin 79 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 19 kg/m² ja keskimääräinen valastutusnopeus 2,0 g/m²/v.

Ihalanjärvi

Ihalanjärvi sijaitsee Vuoksen vesistöalueen eteläosassa Ruokolahdella. Sen pinta-ala on 2,83 km² ja pinnan korkeus 98,2 m. Valuma-alueelle ovat tyyppillisä moreenipeitteiset kalliomäet. Ihalanjärvi on tyyppiltään reittijärvi.

Mannerjäätikönreunanperään ulottuiminen Itämeri Ihalanjärven altaaseen järven pinta oli noin 10 m järven nykyistä pinnasta. Maankuoren kohotessa vedenpinta laski nopeasti ja Ihalanjärvi kuroutui Itämerestä Baltian jääjärvi -vaiheen aikaan noin 11 500 vuotta sitten.

Näytteet laboratoriomäärityksiä varten otettiin yhdeltä tutkimuspisteeltä (kuva 93). Kaikuluotaulinjaa on yhteensä 11 km.

Tutkimuspiste 1 sijaitsee järven eteläosassa, missä veden syvyys oli 19,9 m. Pitkä näyte ulottuu sedimentin pinnasta 2,18 m:n syvyyteen. Näytteen alapäässä (2,18–2,10 m) on savea. Sen päällä on saviliejua (2,10–1,95 m) ja liejua (1,95–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,10 m (kuva 94). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 16 %n tasolle ja pysyy korkeana pintaan saakka.

Kuroutumisen jälkeen päälle on varastotunut vuosittain kuiva-ainetta keskimäärin 18 g/m². Siitä hiilen osuus on ollut 2,8 g/m². Kun pitkä näyte jaetaan kuroutumistason ja kahden ajoitetun syvyyden mukaan kolmeen osaan, valuma-alueen karboksidihiilen keskimääräinen varastotumisnopeus on ollut 0,317 g/m²/v. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 19 kg/m² ja keskimääräinen varastotumisnopeus 2,0 g/m²/v.

Kuva 93. Luotauslinjojen ja tutkimuspisteen sijainti Ihalanjärvellä. Ylhäällä oikealla järven sijainti luusaan rajoittuvalla valuma-alueella. Fig. 93. The location of echo-sounding transects and survey point in Lake Ihalanjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 94. Ihalanjärven tutkimuspisteet 1 otetun pitkän näytteen syvyystaulutus ja radiohiilijoukusten tulokset. Ylhäällä oikealla pinna- ja pinnatunnetut hiilipitoisuudet. Fig. 94. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Ihalanjärvi. Top right shows the carbon content of the surface core.
Ihalanjärven pohjasta noin 75 % on järvisementtejä, ja ne sisältävät kuiva-ainetta noin 0,37 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 130 kg/m², ja sen keskimääräinen varastotoitumisnopeus on ollut 11 g/m²/v. Kuiva-aineesta on hiiltä noin 55 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 20 kg/m² ja keskimääräinen varastotoitumisnopeus 1,7 g/m²/v.

Räimäjärvi

Räimäjärvi sijaitsee Vuoksen vesistöalueen pohjoisosassa noin 15 km Kuopiosta pohjoiseen ja kuuluu Siilinjärven kuntaan. Järven pinta-ala on 1,29 km² ja pinnan korkeus 82,3 m. Järvi on noin 4 km pitkä, noin 300 m leveä ja suuntautunut luoteesta kaakkoona (kuva 95). Se on tyyppiläin reittiä rvi.

Vuoksen puhkeamisen yhteydessä noin 5700 vuotta sitten vedenpinta laski nopeasti noin 3 m, mutta sen jälkeen lasku on jatkunut hidastuvana. Nykyisin Räimäjärvi on 0,5 m Kallaveden pintaa ylemmän, joten sen yhteys Kallaveteen on katkennut lopullisesti vasta vajaat 1000 vuotta sitten.

Kuva 95. Luotauslinjojen ja tutkimuspisteiden sijainti Räimäjärvellä. Ylhäällä oikealla järven sijainti luusuaan rajoittuvalla valuma-alueella. Fig. 95. The location of echo-sounding transects and survey points in Lake Räimäjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 96. Räimäjärven tutkimuspisteellä 1 otetun pitkän näytteen koostumus, tieys, hiilipitoisuus ja radiokarbondatun tulokset. Ylhäällä oikealla pintatäytteen hiilipitoisuus. Fig. 96. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Räimäjärvi. Top right shows the carbon content of the surface core.
Tutkimuspiesteitä on 30 (kuva 95). Näytteet laboratorimäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosojan määritettiin maastossa. Kaikuluotauslinja on yhteensä 4,5 km.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 31,4 m. Pitkä näyte ulottuu sedimentin pinnasta 6,26 m:n syvyyteen (kuva 96). Näytteen alaosa (6,26–6,00 m) on savea. Sen päällä vuorottelevat kerrokset seuraavasti: liejusavi (6,00–4,80 m), savilieju (4,80–4,40 m), liejusavi (4,40–3,50 m), savilieju (3,50–2,20 m), lieju (2,20–0,60 m), savilieju (0,60–0,48 m), liejusavi (0,48–0,36 m), savilieju (0,36–0,21 m), savi (0,21–0,13 m) ja ylinnä savilieju (0,13–0 m). Kuroutumisajankohtaa vastaa syvyys 6,00 m. Sen yläpuolella hiilipitoisuus laskee nopeasti 2 %:n tasolle, alkaa kohota uudelleen 3,0 m:n syvyydessä ja on korkeimmillaan 1,0 m:n syvyydessä. Sedimenttiokerroksen yläosassa pitoisuus taas alenee 2 %:n tasolle. Hiilipitoisuus- ja tiheyskäyrän muodosta päätellen järven sedimenttiota olot ovat vaihdelleet vuosittahansien kuluessa merkittävästi.

Kuva 97. Kuiva-aineen ja hiilen varastoitumisnopeus pitkällä aikavälillä Räimäjärven tutkimuspisteellä 1.

Fig. 97. The long-term accumulation rate of dry matter and carbon at survey point 1 in Lake Räimäjärvi.

Fig. 98. Recent accumulation rate of dry matter and carbon at survey point 1 in Lake Räimäjärvi.

kevan ja hiilen varastoitumisnopeus kasvavan. Hiilen varastoitumisnopeuden kasvu on ainakin osittain näennäistä, sillä lähes sellä samalla vedenkesten pinta on eloperäisen alueen hajoaminen on vielä kesken.

Räimäjärven järvedisetititit sisältävät kuiva- ainetta noin 2,4 milj. m³. Koko pinta-ala laskettuna kuiva-ainetta on keskimäärin 1900 kg/m², ja sen kes- kemääräinen varastoitumisnopeus on ollut noin 200 g/m². Kuiva-aineesta on hiiltä 89 milj. kg. Koko pinta-ala laskettuna kuiva-ainetta on keskimäärin 25 kg/m² ja keskimääräinen varastoitumisnopeus on 7,3 g/m². Veden koskemattomalle alueelle on rakennettu myllyn toimintaan liittyen (P. Väänänen, henkilökohtainen tiedonanto, kesä 2003). Tapauksten yhteydessä sedimenttikerroksen pintaosalen rakenteeseen ei vielä voitu todistaa.

Räimäjärven järvedisetititit sisältävät kuiva- ainetta noin 2,4 milj. m³. Koko pinta-ala laskettuna kuiva-ainetta on keskimäärin 1900 kg/m², ja sen kes- kemääräinen varastoitumisnopeus on ollut noin 200 g/m². Kuiva-aineesta on hiiltä 89 milj. kg. Koko pinta-ala laskettuna kuiva-ainetta on keskimäärin 25 kg/m² ja keskimääräinen varastoitumisnopeus on 7,3 g/m². Veden koskemattomalle alueelle on rakennettu myllyn toimintaan liittyen (P. Väänänen, henkilökohtainen tiedonanto, kesä 2003). Tapauksten yhteydessä sedimenttikerroksen pintaosalen rakenteeseen ei vielä voitu todistaa.

Räimäjärven järvedisetititit sisältävät kuiva- ainetta noin 2,4 milj. m³. Koko pinta-ala laskettuna kuiva-ainetta on keskimäärin 1900 kg/m², ja sen kes- kemääräinen varastoitumisnopeus on ollut noin 200 g/m². Kuiva-aineesta on hiiltä 89 milj. kg. Koko pinta-ala laskettuna kuiva-ainetta on keskimäärin 25 kg/m² ja keskimääräinen varastoitumisnopeus on 7,3 g/m². Veden koskemattomalle alueelle on rakennettu myllyn toimintaan liittyen (P. Väänänen, henkilökohtainen tiedonanto, kesä 2003). Tapauksten yhteydessä sedimenttikerroksen pintaosalen rakenteeseen ei vielä voitu todistaa.

Kalliojärvi

Kalliojärvi sijaitsee Vuoksen vesistöalueen poh- joisosa eloon Juuassa. Sen pinta-ala on 1,13 km² ja pinnan korkeus 180,3 m. Järven valuma-alueella on runsaasti pieniä, herkkä laadukkaita kalliomääriä. Mäkien väliset painanteet ovat voimakkaat. Kalliojärvi on tyyppistyvä betonipäästä.

Kalliojärvi syntyi mannerjäätikön reunan perään- nytynä alueella noin 11 200 vuotta sitten. Siitä alkaen vedenpinta on pysynyt laskukynnynkynsen säättämällä tasolla.

Fig. 99. The location of survey points in Lake Kalliojärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 100. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 3 in Lake Kalliojärvi. Top right shows the carbon content of the surface core.
Hiilipitoisusukäyrän perusteella on järven kehityksesissä havaittavissa kaksi vaihetta. Käyrän voimakkaasti kohoava alaosa kuvastaa pinta-ajoitustasoa vartalo-alueella. Sille on tyyppillistä järven kulkeutuvan mineraalinaiksen väheneminen, mikä johtuu osittain mineraalimaiden huhtoutumisesta, osittain laaksojen soistumisesta. Käyrän pystysuora osa taas kuvastaa vakaita sedi-
mentaatio-oloja.

Kalliojärven järvedimenttisisältävät kuiva-ainetta noin 0,23 milj. tn. Koko pinta-alueelle laskettuna kuiva-ainetta on 200 kg/m², ja sen keskimääräinen varastoituinnopeus on ollut 18 g/m²/v. Kuiva-aineesta on hiiltä noin 48 milj. kg. Koko pinta-alueelle laskettu keskimääräinen hiilivarasto on 42 kg/m² ja keskimääräinen varastoituinnopeus 3,8 g/m²/v.

Ylä-Siikajärvi

Ylä-Siikajärvi sijaitsee Vuoksen vesistöalueen pohjoissosassa Nilsiässä. Järven pinta-ala on 1,11 km² ja pinnan korkeus 95,9 m. Noin 50 m leveä alkamiehdistää sen eteläpuolelle olevaan Valkeiseen. Ylä-Siikajärvi on tyyppillään reititjärvi.

Mannerjätkön reunan peräennyttyä ulottui mui

Tutkimuspisteitä on seitsemän (kuva 101). Näytteet laboratoriomääritystä sijaitsevat yhdeltä pisteeltä, ja muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa. Kaikuluotauslinjaa on yhteensä 3,3 km.

Tutkimuspiste 1 sijaitsee järven itäosan syvänenteessä, missä veden syvyys on 15,4 m. Pitkä näyte ulottuu sedimentin pinnasta 8,6 m:n syvyyteen. Näytteen alaosaa (8,6–7,3 m) on lustosavea (kuva 102). Sen päälä on liejusavea (7,3–6,80 m), saviliejuha (6,80–5,60 m) ja liejua (5,60–0 m). Tämän paikan kerrosjärjestys on poikkeuksellinen, sillä lustosaven päällä puuttuu homogeneisesti saven kerros ja järvedimenttikerros on lustorakenteinen. Kuroutumisajankohtaa vastaava syvyys on 7,30 m. Sen yläpuolella hiilipitoisuus kohoaa, saavuttaa noin 10 %:n tason 4,5 m:n syvyydessä ja pysyy runsaan 10 %:n tason lähelle sedimentin pintaan. Pinnassa pitoisuus taas alenee.

Pitkästä näytteestä ajoitettiin kolme osanäytettä radiohiilimenetelmällä. Alimman näytteen ajoitus-
tulos 11 140 cal BP on kehitystilannetta päättelyn kuroutumisajankohtaan nähden pari tuhasta vuotta liian vahva. Samansä toilet peräisin muissa näytteissä, mutta niissä mahdollisen virheen suuruutta on vaikea määrittää. Kuroutumisen jälkeen tälle paikalle on vuosittain varastoidun kuiva-ainetta 203 g/m². Siitä hiilen osuus on ollut 18 g/m².

Kuva 101. Luotauslinjojen ja tutkimuspisteiden sijainti Ylä-Siikajärvellä. Ylä-Siikajärven järven sijainti luusuaan rajoittuvalla valuma-alueella. Fig. 101. The location of echo-sounding transects and survey points in Lake Ylä-Siikajärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.
Ylä-Siikajärven järvedimentit sisältävät kuiva-ainetta noin 0,69 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on 630 kg/m², ja sen keskimääräinen varastoittumisnopeus on ollut 64 g/m²/v. Kuiva-aineesta on hiiltä noin 63 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 57 kg/m² ja keskimääräinen varastoittumisnopeus 5,9 g/m²/v.

Fig. 102. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Ylä-Siikajärvi. Top right shows the carbon content of the surface core.
Muntsurinjärvi

Muntsurinjärvi sijaitsee Vuoksen vesistöalueen pohjoisosassa Lieksassa. Sen pinta-ala on 1,05 km² ja pinnan korkeus 115,5 m. Järven muotoon vaikuttavat luoteesta kaakkoiseen suuntautuneet moreeniselänteet (kuva 103). Valuma-alue on moreeni- ja turvemaata. Muntsurinjärvi on tyyppiltään latvajärvi.

Tutkimuspisteitä on kuusi (kuva 103). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa. Tutkimuspiste 1 sijaitsee järven keskosassa, missä veden syvyys oli 4,8 m. Pitkä näyte ulottuu sedimentin pinnasta 4,16 m:n syvyyteen. Näytteen alaosa (4,16–3,00 m) on siiltä. Sen päällä on liejua (3,00–2,35 m), savilieju (2,35–1,85 m) ja lieju (1,85–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,0 m (kuva 104). Sen yläpuolella hiilipitoisuus kohoa aluksi hitaasti, mutta alkaa sitten kohota nopeammin, saavuttaen 8 %:n tason 1,7 m:n syvyydessä ja pysyy sillä tasolla sedimentin pintaan saakka. Pitkä näyte on jaettavissa sedimentaatio-ojelojen muutosten mukaan kolmeen osaan. Alin osa kerrostui Pielisen lahteen, ja sitä kuvaa haittaa kohova hiilipitoisuus. Keskimääräinen osa syntyi järven kuroututtua erilliseksi pieneksi altaaksi. Tätä vakiintumisvaihetta kuvaa nopeasti kohova hiilipitoisuus. Ylimmän osan kerrostuen sedimentaatio-olet olivat vakaat, mitä osoittaa hiilipitoisuuden ja tiheyden vakiintuminen.

Itämerestä kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 70 g/m². Siitä osoittaa, että vuosittain kuiva-ainetta kohoa hiilipitoisuus. Ylimmän osan kerrostuen sedimentaatio-olet olivat vakaat, mitä osoittaa hiilipitoisuuden ja tiheyden vakiintuminen.

Itämerestä kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 70 g/m². Siitä osoittaa, että vuosittain kuiva-ainetta kohoa hiilipitoisuus. Ylimmän osan kerrostuen sedimentaatio-olet olivat vakaat, mitä osoittaa hiilipitoisuuden ja tiheyden vakiintuminen.

Fig. 103. The location of survey points in Lake Muntsurinjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 104. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Muntsurinjärvi. Top right shows the carbon content of the surface core.

89
Kuiva-aineesta on hiiltä noin 21 milj. kg. Koko pinta-­alalle laskettu keskimääräinen hiilivarasto on 20 kg/m² ja keskimääräinen varastoitumisnopeus 1,8 g/m²/v.

Iso-Lyly

Iso-Lyly sijaitsee Vuoksen vesistöalueen keski­osassa Kaavilla. Sen pinta­ala on 0,98 km² ja pinnan korkeus 116,5 m. Lyly­niemen jakaa järven kahteen, lähes yhtä suureen osaan (kuva 105). Iso-Lyly on tyyppiltään latvajärvi.

Mannerjäätikön reunan perääntyttyä ulottui muina­nen Itämeri Ison-Lylyn altaaseen ja sen pinta oli noin 24 m järven nykyistä pinnalta. Vedenpinta kuitenkin nopeasti ja Iso-Lyly kuroutui Itämerestä Ancylusjärvi­vuorokauden aikana noin 10 400 vuotta sitten.

Tutkimuspisteitä on seitsemän (kuva 105). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentikerroksen määritettiin maastossa.

Tutkimuspiste 1 sijaitsee järven kaakkoisosassa, missä veden syvyys oli 6,8 m. Pitkä näyte ulottuu sedimentin pinnasta 4,42 m:n syvyteen. Näytteen alaosaa (4,42 - 4,26 m) on lustosavea. Sen päällä on savea (4,26 - 4,13 m), liejus­savea (4,13 - 3,70 m), saviliejua (3,70 - 3,05 m) ja liejua (3,05 - 0 m). Kuroutumisajankohtaa vastaava syvyys on 4,13 m (kuva 106). Sen yläpuolella tiheys pienenee ja hiili­pitoisuus kohoa vähitellen. Hiilipitoisuus saavuttaa runsaan 20 %:n tason sedimentikerroksen yläosassa. Kuroutumisen jälkeen tielle paikalle on varastotunut vuosittain kuiva-aineetta keskimäärin 89 g/m². Siitä hiilen osuus on ollut 11 g/m².

Myös maastossa tutkitut näytteet ulottuvat sedimentin pinnasta lustosaveen. Lustosaven päällä on homogeenista savea ja sen päällä järvedimentit, paitsi pisteillä 4 ja 5, missä lustosavi rajoittuu suoraan järvedimenttiin.

Ison-Lylyn järvedimentit sisältävät kuiva-aineetta noin 0,42 milj. tn. Koko pinta-­alalle laskettuna kuiva­aineetta on keskimäärin 430 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 41 g/m²/v. Kuiva­aineesta on hiiltä noin 50 milj. kg. Koko pinta-­alalle laskettu keskimääräinen hiilivarasto on 51 kg/m² ja keskimääräinen varastoitumisnopeus 4,9 g/m²/v.

Fig. 106. The composition, density and carbon content of the long core taken from survey point 1 in Lake Iso-Lyly. Top right shows the carbon content of the surface core.
Pitkäjärvi

Tutkimuspisteitä on kolmestoista (kuva 107). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 12,3 m. Pitkä näyte ulottuu Pitkäjärveen kuiva-aineen ja hiilen varastona.
Lyhenjärvi

Järvesiedemintit kuiva-aineen ja hiilen varastona

Kuva 110. Lyhyenjärven järvesiedemintit sekä kuiva-aineen ja hiilen varastona.

Ristijärvi

Ristijärvi sijaitsee Vuoksen vesistöalueen pohjoisosassa Valtimolla. Sen pinta-ala on 0,30 km² ja pinnan korkeus 106,1 m. Järvi rajoittuu ohuen moreenikerroksen peittämiin kalliomäkiin, joista suurin, Ristivaara, kohoaa yli 100 m järven pinnan yläpuolelle. Ristijärvi on tuottanut seitsemän tutkimus- ja yhteisötyössä olevia sen pinta-alaan laskettavia kuiva-ainetta noin 0,36 milj. tn. Koko pinta-alaan laskettu kuiva-ainetta on keskimäärin 600 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 63 g/m²/v. Kuiva-aineesta on hiiltä noin 22 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 36 kg/m² ja keskimääräinen varastoitumisnopeus 3,8 g/m²/v.

Kuva 110. Lyhyenjärven järvesiedemintit kuiva-aineen ja hiilen varastona.

Ristijärvi

Lyhyenjärven järvesiedemintit sisältävät kuiva-ainetta noin 0,36 milj. tn. Koko pinta-alaan laskettuna kuiva-ainetta on keskimäärin 600 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 63 g/m²/v. Kuiva-aineesta on hiiltä noin 22 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 36 kg/m² ja keskimääräinen varastoitumisnopeus 3,8 g/m²/v.

Ristijärvi

93
Kuva 111. Tutkimuspisteiden sijainti Ristijärvellä. Ylhäällä oikealla järven sijainti luuasuan järven alueella.

Fig. 111. The location of survey points in Lake Ristijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 112. The composition, density and carbon content of the long core taken from survey point 1 in Lake Ristijärvi. Top right shows the carbon content of the surface core.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 14,2 m. Pitkä näyte ulottuu sedimentin pinnasta 5,26 m:n syvyteen. Näytteen alaosa (5,26–4,55 m) on saviliejua. Sen päällä on liejusavetta (4,55–4,40 m), saviliejua (4,40–1,00 m), liejua (1,00–0,57 m) ja saviliejua (0,57–0 m). Kuroutumisajankohtaa vastaavaa syytettä ei tavoitettu (kuva 112). Hiilipitoisuus on näytteen alapäässä 3 %-n tasolla, laskee aluksi hieman, mutta alkaa sitten kohota hitaasti pintaan kohti. Käyrästä havaittavan yleisen suuntauksen lisäksi hiilipitoisuus ja tiheys vaihtelevat voimakkaasti.

Koijärvi

Koijärvi sijaitsee Vuoksen vesistöalueen eteläosassa Karimäellä. Sen pinta-ala on 0,26 km² ja pinnan korkeus 88,4 m. Järvi on kilometrin pituinen, pari sataa metriä leveä ja suuntautunut luoteesta kaakkoon (kuva 113). Koijärvi on tyyppilään latvajärvi. Valuma-alue on järven kokoon nähden pieni.

Tutkimuspisteitä on kymmenen (kuva 113). Näyt- teet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 10 sijaitsee järven keskiosassa, missä veden syvyys oli 4,7 m. Pitkä näyte ulottu sedan sedimentin pinnasta 3,90 m:n syvyteen saakka. Näytteen alaosa (3,90–3,82 m) on silttiä, ja siltin päällä oleva kerros (3,82–0 m) on kokonaan liejua. Kuroutumisajankohtaa vastaava syvyys on 3,82 m. Sen yläpuolella olevan järvisedimenttikerroksen hiilipitoisuus on noin 20 % (kuva 114). Hiilipitoisuus on samalla tasolla jo alim- massa näytteessä, mikä osoittaa nopeaa siirtymistä merestä itsenäiseksi pikku järveksi.

Kuroutumisen jälkeen tälle paikalle on varastoi- tunut vuosittain kuiva-ainetta keskimäärin 39 g/m². Siitä hiilen osuus on ollut 8,1 g/m². Keskimääräiset varastoitumisnopeudet laskettiin arvioidun kuroutu- misajankohtan mukaan, sillä järvisedimenttikerroksen pohjalta ajoitetun näytteen ikä on kehitystason perusteella arvioitu kuroutumisajankohtaan nähden liian vanha. Jos ylemmän osanäytteen ikä oletetaan oikeaksi, ovat varastoitumisnopeudet viimeksi kuluneiden neljän vuosittuhatun aikana olleet keskimäärää- räitä pienempiä.

Koijärven järvisedimenttisit sisältävät kuiva-ainetta noin 71 000 tn. Koko pinta-alleen laskettuna kuiva-ainetta on keskimäärin 270 kg/m², ja sen keskimää- räinen varastoitumisnopeus on ollut 24 g/m²/v. Kuiva-aineesta on hiiltä noin 15 milj. kg. Koko pinta-alleen laskettu keskimääräinen hiilivarasto on 57 kg/m² ja keskimääräinen varastoitumisnopeus 5,1 g/m².

Fig. 113. The location of survey points in Lake Koijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.
Ruuhilampi

Ruuhilampi sijaitsee Vuoksen vesistöalueen länsiosassa Pieksämäellä. Sen pinta-ala on 0,15 km² ja pinnan korkeus 102,6 m. Lampi sijaitsee kalliomäkiön juurella, jäätilon tulosuun painavaan ensimmäiseen painantoon. Valuma-alue on moreenimaata, missä selänteiden väliset painanteen otot ovat osittain soistuneet. Ruuhilampi on tyyppiltään reittijärvi.

Mannerjäätikön reunan peräänmyytyä ulottuu muinaisen Itämeren Ruuhilammen altaaseen. Sen pinta-ala on 0,15 km² ja pinnankorkeus 102,6 m. Lampi on kalliomäkiön juurelle, jäätilon tulosuun painavaan ensimmäiseen painantoon. Valuma-alue on moreenimaata, missä selänteiden väliset painanteen otot ovat osittain soistuneet. Ruuhilampi on tyyppiltään reittijärvi.

Mannerjäätikön reunan peräänmyytyä ulottuu muinaisen Itämeren Ruuhilammen altaaseen. Sen pinta-ala on 0,15 km² ja pinnankorkeus 102,6 m. Lampi on kalliomäkiön juurelle, jäätilon tulosuun painavaan ensimmäiseen painantoon. Valuma-alue on moreenimaata, missä selänteiden väliset painanteen otot ovat osittain soistuneet. Ruuhilampi on tyyppiltään reittijärvi.

Mannerjäätikön reunan peräänmyytyä ulottuu muinaisen Itämeren Ruuhilammen altaaseen. Sen pinta-ala on 0,15 km² ja pinnankorkeus 102,6 m. Lampi on kalliomäkiön juurelle, jäätilon tulosuun painavaan ensimmäiseen painantoon. Valuma-alue on moreenimaata, missä selänteiden väliset painanteen otot ovat osittain soistuneet. Ruuhilampi on tyyppiltään reittijärvi.

Mannerjäätikön reunan peräänmyytyä ulottuu muinaisen Itämeren Ruuhilammen altaaseen. Sen pinta-ala on 0,15 km² ja pinnankorkeus 102,6 m. Lampi on kalliomäkiön juurelle, jäätilon tulosuun painavaan ensimmäiseen painantoon. Valuma-alue on moreenimaata, missä selänteiden väliset painanteen otot ovat osittain soistuneet. Ruuhilampi on tyyppiltään reittijärvi.
hiilikäyrän laskuun.

Kuroutumisen jälkeen tutkimuspisteen 1 paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 69 g/m². Siitä hiilen osuus on ollut keskimäärin 17 g/m². Jos järvedimenttikerros jaetaan kahteen osaan ylemmän ajoitetun osanäytteen kohdalta, havaitaan keskimääräisten varastoimisnopeuksien pienentyneen merkittävästi. Nopeuksien pienemiseen on kuitenkin syytä suhtautua varauksellisesti, sillä ylemmän osanäytteen on voinut joutua kerrastumisjankohdasta vanhempaan hiilitä. Merkittävimmin varastoimisnopeuden muutokset ovat todennäköisesti tapahtuneet lammen vakiintumisvaiheen aikana. Tiheys- ja hiiliipitoisuskäyrän perusteella voidaan olettaa varastoimisnopeuksien vakiintuneen 5 m:n syvyyttä vastaavana ajankohtana.

Ruuhilammen järvedimenttit sisältävät kuiva-ainetta noin 57 000 tn. Koko pinta-alueelle laskettuna kuiva-ainetta on 380 kg/m², ja sen keskimääräinen varastoimisnopeus on ollut 35 g/m²/v. Kuiva-aineesta on huoltanut hiilivarasto noin 91 kg/m² ja keskimääräinen varastoimisnopeus 8,5 g/m²/v.

Haukilampi

Haukilampi sijaitsee Vuoksen vesistöalueen län sireunalla Ristiinassa. Sen pinta-ala on 0,08 km² ja pinnan korkeus 90,6 m. Lampi on noin 700 m pitkä, noin 100 m leveä ja suunnattu eteläkoilliseen pohjoiskoilliseen (kuva 117). Haukilampi on tyyppiltään latvajärvi.

Mannerjäättöön reunan peräennäyttöä ulottuini muinaisen Itämeri Haukilammen altaaseen ja sen pinta oli noin 20 m lammen nykyisen vedenpinnan yläpuolella. Maankuoren kohtessa vedenpinta laski nopeasti ja Haukilampi kuroutui Itämerestä Ancylusjärven-vaiheen aikaan noin 10 600 vuotta sitten. Sen jälkeen lammen laskukynnys on säädetty vedenpinnan tasoa. Erosen ja Hallan (1990b) esittämän kartan mukaan muinaisen Saimaan tulva ulottui viereiseen, kolme metriä alempana olevaan Lahnajärveen, mutta ei enää Haukilampeen.

Tutkimuspisteitä on kolme (kuva 117). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeeltä, ja muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 1 sijaitsee lammen keskosassa, missä veden syvyys oli 6,0 m. Pitkä näyte ulottuu sedimentin pinnasta 3,07 m:n syvyteen. Näytteen alapäässä (3,07–3,00 m) on lustosavea, sen päällä on savieja (2,80–2,57 m), savileijua (2,57–2,38 m) ja liejua (2,38–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,80 m (kuva 118).

Kuva 117. _The location of survey points in Lake Haukilampi. Top left shows the location of the small lake in the drainage basin delimited by the outlet._

Kuva 118. Haukilammen tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys, hiiliipitoisuus ja radiollisäätäisten tulokset. Ylhäällä oikealla pinta-älempänä hiiliipitoisuus.

Fig. 117. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Haukilampi. Top right shows the carbon content of the surface core.

Tuomaslampi

Tuomaslampi sijaitsee Vuoksen vesistöalueen eteläreunalla Savitaipaleella. Sen pinta-ala on 0,04 km² ja pinnan korkeus 112,7 m. Lampea ympäröivät Toisen Salpausselän hiekk- ja soramaa, josta kohoa paikoin moreeni- ja kalliomäkiä (Rainio & Rainio 1982). Tuomaslampi on tyyppilähdet latvajärvi.

Kuva 119. Tutkimuspisteensijainti Tuomaslammella. Ylhäällä vasemmalla lammen sijainti huussaan rajottuvalla valuma-alueella.

Fig. 119. The location of survey point in Lake Tuomaslampi. Top left shows the location of the small lake in the drainage basin delimited by the outlet.

Kuva 120. Tuomaslammen tutkimuspisteeltä 1 otetut pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilijaotusten tulokset. Ylhäällä oikealla pinnanlähteen hiilipitoisuus.

Fig. 120. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Tuomaslampi. Top right shows the carbon content of the surface core.

Kuva 119: 4 440 cal BP
Kuva 120: 9 770 cal BP
Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 10,6 m. Pitkä näyte ulottuu sedimentin pinnasta 4,22 m:n syvyyteen. Näytteen alapäässä on ohut kerros (4,22–4,17 m) savea. Sen päällä on savilejua (4,17–3,97 m) ja liejua (3,97–0 m). Kurottumisajankohtaa vastaava syvyys on 4,17 m (kuva 120). Sen yläpuolella hiilipitoisuuden kohoa nopeasti 13%:n tasolle ja pysyy sillä tasolla sedimentin pintaan saakka.

Hiilipitoisuuden nopea kohominen osoittaa sedimentaatio-ojoien vakaintuneen nopeasti, sillä hiemanajoista mineraalialainesta on ollut niukasti sääntöä ja tavalla. Hiilipitoisuuden pysyminen samalla tasolla taas osoittaa sedimentaatio-ojojen pysyneen vakain lyhyeksi jääneen vakaintumisvaiheen jälkeen.

Pitkästä näytteestä ajoitettiin radiokarbonmetodilla niin sääntöä, että molemmilla sedimentaatioojojen perusteella arvioidun kuroutumisajankohdan kanssa. Kuroutumisen jälkeen päälle on varastoitunut vuosisiivissä kuiva-ainetta 40 g/m². Ajoitettujen osanäytteiden ja pinnan rajaammilla kahdeksella kerroksella laskettut ketset keskimääräiset varastoitumisnopeudet ovat samalla tasolla ja osoittavat osaltaan sedimentaatio-ojoien vakautta.

Tuomaslammen järvisedimentit sisältävät kuiva-ainetta noin 7900 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 200 kg/m², ja sen keskimääräinen varastointisnopeus on ollut 17 g/m²/v. Kuiva-aineesta on hiiltä noin 1,0 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarastoon 26 kg/m² ja keskimääräinen varastointisnopeus 2,2 g/m²/v.

Musti

Musti sijaitsee Vuoksen vesistöalueen keskiosassa Tuusniemellä. Sen pinta-ala on 0,04 km² ja pinna korkeus 105,6 m. Järvi on avoin ja suuntautumaton pohjoiskoilliseen etelä-opisiin. Musti on tyyppisten laivajärveinä.

Mannerjäätikön reunan peräännyttäytytä vesi muistutti mui- nainen Itämeri Mustin altaaseen ja sen pinta oli noin 30 m lammenni kykyistä lintuvaltaköynnöksiä. Maankuoren kohotessa veden syvyys nostui ja Musti kuroutui noin 10 200 vuotta sitten. Kuroutumisen jälkeen muinaisen Juojärven vedet laskivat Mustiin ja taas pintoihin. Maankuoren kallistumisen jälkeen kuiva-ainetta kulkevasi Mustiin ja Mustin valuma-alue oli nykyiseen saakka. Musti sijaitsee järven pohjoisosassa, missä veden syvyys oli 3,9 m. Kairaus tehtiin paikalla olevasta järven pohjoisosasta, ja se päätyi soraan. Pitkä näyte ulottuu sedimentin pinnasta 1,82 m:n syvyyteen

![Hiilipitoisuus % Carbon content %](image)

Kuva 121. Tutkimuspisteiden sijainti Mustilla. Ylhäällä vasemmalla lammenni kykyistä lintuvaltaköynnöksiä. Mustin sijainti markoituksella valuma-alueella.

Kuva 122. Mustin tutkimuspisteidän sijaan on ollut pitkän näytteen osa toiminnan koostumus, tyhjä, hiilipitoisuus ja radiokarbonmetodin tuloksia. Musti sijaitsee järven pohjoisosassa, missä veden syvyys oli 3,9 m. Kairaus tehtiin paikalla olevasta järven pohjoisosasta, ja se päätyi soraan. Pitkä näyte ulottuu sedimentin pinnasta 1,82 m:n syvyyteen

Kuva 121. Tutkimuspisteiden sijainti Mustilla. Ylhäällä vasemmalla lammenni kykyistä lintuvaltaköynnöksiä. Mustin sijainti markoituksella valuma-alueella.

Fig. 121. The location of survey points in Lake Musti. Top left shows the location of the small lake in the drainage basin delimited by the outlet.
ja on kokonaan liejua (kuva 122). Hiilipitoisuus on näytteen alapäässä jo 11 %:n tasolla, kohoa ylöspäin ja on korkeimmillaan 0,3 m:n syvyydessä. Sedimentin pinnassa pitoisuus laskee lähétasolle.

Pitkän näytteen alla oleva sorakerros on muinaisen lasku-uman pohjaa. Sen päälle alkoi kerrostua liejua vasta sitten, kun Juojärven vesien virtaus Mustin kautta päätyi. Liejukerroksen pohjalta tehdyin radiohiililajitukseen mukaan se tapahtui noin 7200 vuotta sitten. Läpivirtauksen päätyttyä tälle paikalle on varastoinut vuosittain kuiva-ainetta keskimäärin 35 g/m². Siitä hiilen osuus on ollut 5,7 g/m². Tutkimuspiste 2 sijaitsee noin 50 m edelliseltä pisteeltä alajuoksulle päin. Veden syvyys oli 4,0 m ja kairaus ulottui sedimentin pinnasta 1,75 m:n syvyyteen. Näytteen alaosa (1,75–1,30 m) on silttiä, jossa on ohuita kasvinjäänteiden muodostamia raitoja. Sen päällä (1,30–1,0 m) vuorottelevat kasvinjäänteitä sisältävät liejukerrokset ja hieta- tai hiekkakerrokset. Näytteen yläosa (1,0–0 m) on tasalaatuista liejua.

Postilampi

Postilampi sijaitsee Vuoksen vesistöalueen keskiosassa Nilsiässä. Sen pinta-ala on 0,03 km² ja pinnan korkeus 84,9 m. Lampi on noin 3 m läheistä Juuruvettä korkeammalle. Postilampi on avoin ja muodoltaan yhtenäinen (kuva 123), ja sen valuma-alue on erittäin kallistuneena sedimen tikerros. Valuma-alueen pyöristysmaa on noin 44 % se on raivattu peloluki. Postilampi on tyyppiltään latvajärvi.

Näytteet laboratoriomäärityksiä varten otettiin yhdeksi tutkimuspisteeltä (kuva 123).

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 4,3 m. Pitkä näyte ulottuu sedimentin pinnasta 4,87 m:n syvyyteen. Näytteen alaosa (4,87–4,38 m) on lustosavea. Sen päällä on savea (4,38–3,24 m), savielaja (3,24–1,65 m) ja liejua (1,65–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,24 m (kuva 124). Sen läpupuolella hiilipitoisuus ja tiheys vaihtelevat voimakkaasti järven kehitysvaiheiden mukaan.

Hiilipitoisuuden alennetun ja tiheyden kasvu 2,0 m:n syvyydessä liittyy Vuoksen puhkeamista.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 120 g/m². Siitä hiilen osuus on ollut 7,5 g/m². Varastoitumisnopeuden muutosten selvittämiseksi pitkä näyte voidaan jakaa kolmeen osaan kuroutumistason ja kahden radioniihlimiteljmällä ajoitettun osanäytteen mukaan. Kuiva-aineen ja hiilen keskimääräinen varastoitumisnopeus on suurimmillaan keskimääräisessä kerroksessa.

Postilammen järvi tutkimuksissa sisältävät kuiva-ainetta noin 22 000 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 750 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 79 g/m²/v. Kuiva-aineesta on hiiltä noin 1,4 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivastarova on 48 kg/m² ja keskimääräinen varastoitumisnopeus 5,0 g/m²/v.

Kuva 124. Postilammen tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiliajoitusten tulokset. Ylhäällä oikealla pintananäytteen hiilipitoisuus. Fig. 124. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Postilampi. Top right shows the carbon content of the surface core.

KYMIOJEN VESISTÖALUE (14)

Kymijoen vesistöalue sijaitsee Järvij-Suomen keskiosassa ja ulottuu pohjoisessa Oulunlääniin rajalle saakka (kuva 125). Vesistöalueen pinta-ala on noin 37 000 km². Suurin osa alueen vesistä kerääntyy Päijänteen ja laskee sieltä Kymijoen kautta Suomenlahteen. Vesistöalueen keskimääräinen korkeus on 120 m. Muinaisen Itämeren ylin vedenpinnan taso on noin 100 m vesistöalueen kaakkoisosassa, mutta kohoaan luoteeseen pääntätyy 200 m:n tasolle Kiivijärven luoteispuolella. Vedenkoskemattomia alueita on saarekkeina koko vesistöalueella. Maankuoren kallistumuksen takia vesistöalueen suuret järvet ovat kokeneet merkittäviä sedimentaatio-olojen muutoksia.

Maalajikasemaa on Kymijoen vesistöalueella hyvin samanlainen kuin Vuoksen vesistöalueella. Moreeniekaan osuus on Kymijoen vesistöalueella 55 %, vesistöjen 20 % ja turvemaid 8 %. Sora- ja hiekkamaata on 6 % ja savikkoja 4 %. Sedimentaatio-olojen kannalta merkittävää on vesistöjen runsaus ja turvemaiden ja savikkojen vähys.

Kymijoen vesistöalueelta tutkittiin 29 järveä, joista kymmenen on suuria yli 100 km²:n järviä.
Kuva 125. Kymjien vesistöalueelta tutkittujen järvien sijainti.
Fig. 125. The location of the studied lakes in the Kymijoki River drainage basin.
Päijänne

Kuva 126. Luotauslinjojen ja tutkimuspisteiden sijainti Päijänteellä. Ylhäällä vasemmalla järven sijainti huusaan rajoittuvalla valuma-alueella.

Fig. 126. The location of echo-sounding transects and survey points in Lake Päijänne. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Tutkimuspisteitä on viisi, joista neljältä otettiin näytteet laboratoriomäärityksiä varten (kuva 126). Kaikuluotauslinjaa on yhteensä 116 km.

Tutkimuspiste 1 sijaitsee järven keskiosassa Vanhanselällä, missä veden syvyys oli 39,5 m. Pitkä näyte ulottuu sedimentin pinnasta 4,48 m:n syvyyteen. Näytteen alaosaa (4,48–2,30 m) on lustosavea. Sen päällä on savea (2,30–1,50 m), liejusavea (1,50–1,30 m) ja saviliejua (1,30–0 m). Kuroutumisajankohtaa vastaava syvyys on 1,50 m (kuva 127). Sen yläpuolella hiilipitoisuus kohoaa 2,5 %:n tasolle, mutta alenee sedimenttikerroksen pinnassa. Pintanäytteen hiilipitoisuus on alimmillaan 10–15 cm:n syvyydessä. Hiilipitoisuuden tilapäinen aleneminen 0,7 m:n syvyydessä liittyy todennäköisesti Heinolan harjun puhkeamista seuranneeseen vedenpinnan laskuun ja sedimenttien uudelleen kerrostumiseen. Pitoisuuden aleneminen sedimenttikerroksen pinnassa taas liittyy järven pinnan keinotekoiselle laskuun ja maankäytön muutoksiin valuma-alueella.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta noin 49 g/m². Siitä hiilen osuus on ollut 1,1 g/m². Tässä paksuudessa hiilipitoisuus kohoaa 4 %:n tasolle 0,2 m:n syvyydessä. Eteläisen lasku-umman puhkeamista seurannut vedenpinnan lasku ja sedimenttien uudelleen ker-

Kuva 126. Päijätjänne tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 127. The composition, density and carbon content of the long core taken from survey point 1 in Lake Päijätjänne. Top right shows the carbon content of the surface core.

Kuva 128. Päijätjänne tutkimuspisteeltä 4 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 128. The composition, density and carbon content of the long core taken from survey point 4 in Lake Päijätjänne. Top right shows the carbon content of the surface core.
rostuminen näkyy tässä näytteessä hiilipitoisuuden kohoaismisen hidastumisena. Sitä vastoin viimeaikainen ihmistoiminta näkyy selvästi hiilipitoisuuden laskuna.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 45 g/m². Siitä hiilen osuus on ollut 1,3 g/m². Tutkimuspaikalla on järven lounaisosa Virmailanselällä, missä veden syvyys oli 25,3 m. Kuroutuminen näkyy näytteessä hiilipitoisuuden hidastumisena. Sitä vastoin viimeaikainen ihmistoiminta näkyy selvästi hiilipitoisuuden laskuna.

Kuroutumisen jälkeen tälle paikalle on kertynyt sedimenttia vain 0,62 m, joten keskimääräinen kuroutumisnopeus jää hyvin pieneksi (0,07 mm/v). Tutkimuspaikalla on syntynyt ennen eteläisen lasku-uoman puhkeamista ja läpivirtaamista, joten keskimääräinen kuroutumisnopeus jää hyvin pieneksi (0,07 mm/v). Tutkimuspaikalla on järven länsiosassa Leheselällä. Selkä on Jämsänjoen edustalla sivussa veden pääasialliselta läpivirtaamalta. Tutkimuspaikalla on syntynyt ennen eteläisen lasku-uoman puhkeamista ja läpivirtaamista, joten keskimääräinen kuroutumisnopeus jää hyvin pieneksi (0,07 mm/v). Tutkimuspaikalla on järven lounaisosa Virmailanselällä, missä veden syvyys oli 25,3 m. Kuroutuminen näkyy näytteessä hiilipitoisuuden hidastumisena. Sitä vastoin viimeaikainen ihmistoiminta näkyy selvästi hiilipitoisuuden laskuna.

Hiiplitosuos % Carbon content %

![Diagram](image1)

Kuva 129. Päijänne-geolodina Tutkimuskuntoista 5 otetun pitäen näytteen koostumus, tiheys ja hiiplitosuus. Ylhäällä oikealla pintayytteen hiiplitosuus. **Fig. 129.** The composition, density and carbon content of the long core taken from survey point 5 in Lake Päijänne. Top right shows the carbon content of the surface core.

Hiiplitosuos % Carbon content %

![Diagram](image2)

Kuva 130. Päijänne-geolodina Tutkimuskuntoista 2 otetun pitäen näytteen koostumus, tiheys ja hiiplitosuus. Ylhäällä oikealla pintayytteen hiiplitosuus. **Fig. 130.** The composition, density and carbon content of the long core taken from survey point 2 in Lake Päijänne. Top right shows the carbon content of the surface core.

Fig. 131. The location of echo-sounding transects and survey points in Lake Keitele. Top right shows the location of the lake in the drainage basin delimited by the outlet.
aleneminen runsaan 2 m:n syvyydessä liittyy vedenpinnan nopeaa alenemista seuranneeseen sedimenttien uudelleen kerrostumiseen. Kuroutumisen jälkeen tälle paikalle on varastoitu vuosittain kuiva-ainetta keskimäärin 120 g/m². Siitä hiilen osuus on ollut 3,4 g/m².

Tutkimuspiste 3 sijaitsee Karttuselän eteläosassa, missä veden syvyys oli 19,5 m. Pitkä näyte ulottuu sedimentin pinnasta 3,49 m:n syvyyteen. Näytteen alaosa on lustosavea (3,49–2,90 m). Sen pääällä on savea (2,90–2,00 m), liejusavea (2,00–1,55 m), saviliejua (1,55–1,07 m), liejusavea (1,07–0,55 m) ja saviliejua (0,55–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,00 m (kuva 134). Sen yläpuolella hiilipitoisuuksensa kohoaa vähitellen 3 %:n tasolle, alenee 1 m:n syvyydessä 1,5 %:n tasolle ja kohoaa uudelleen läheisesti sedimentin pintaa. Hiilipitoisuuskäyrä on hyvin samankaltainen kuin Kivenkorvanselällä. Onhan Karttuselkä kokonut samat vedenpainin ja virtaaman muutokset. Kuroutumisen jälkeen tälle paikalle on varastoitu vuosittain kuiva-ainetta keskimäärin 92 g/m². Siitä hiilen osuus on ollut 2,3 g/m².

Tutkimuspiste 4 sijaitsee Ukonselällä järven eteläosassa, missä veden syvyys oli 25,7 m. Pitkä näyte ulottuu sedimentin pinnasta 4,56 m:n syvyyteen. Näytteen alaosa (4,56–4,30 m) on lustosavea. Sen pääällä on savea (4,30–2,65 m), liejusavea (2,65–1,30 m) ja saviliejua (1,30–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,65 m (kuva 135). Sen yläpuolella hiilipitoisuuksensa kohoaa 2 %:iin, laskee 2,0 m:n syvyydessä 1,6 %:n tasolle ja kohoaa taas 1,5 m:n syvyydestä alkaen. Kuroutumisen jälkeen tälle paikalle on varastoitu vuosittain kuiva-ainetta keskimäärin 92 g/m². Siitä hiilen osuus on ollut 2,5 g/m².

Vaikka Keitele on laaja, monesta eri altaasta muodostunut järvä, ovat alttajoukkoihin liittyvät sedimenttikerrokset hyvin samanlaissiksi. Heinolan harjun puhkeamista seuranneen vedenpinnan laskun vaikutukset näkyvät kaikissa tutkimuksissa, ja tutkimuspaikkojen väliset varastoituksenmuutokset ovat pieniä.

Keiteleen pohjasta noin 45 % on järvesidementtejä, ja ne sisältävät kuiva-ainetta noin 110 milj. tn. Koko pintatähteistä laskettuna kuiva-ainetta on keskimäärin 210 kg/m², ja sen keskimääräinen varastoituksennopeus on alle 25 m:n syvyydessä liki 2 g/m².
Puula

Tutkimuspiste 1 sijaitsee järven pohjoisosassa Vuojaselällä, missä veden syvyys oli 17,8 m. Pitkä näyte ulottuu sedimentin pinnasta 5,55 m:n syvyyteen. Näytteen alaosa (5,55–5,23 m) on lustosavea. Sen päällä on savea (5,23–4,90 m), liejusavea (4,90–4,75 m), saviliejua (4,75–4,45 m) ja liejua (4,45–0 m). Kuroutumisajankohtaa vastaava syvyys on 4,90 m (kuva 137).

Kuroutumistason yläpuolella hiilipitoisuus kohoaa nopeasti, saavuttaa 10 %:n tason 4 m:n syvyydessä ja pysyy sitten korkeana pintaan saakka. Alaosan voimakkaasti kohoava hiilikäyrä kuvaa noin 2000 vuotta kestänyttä vakiintumisvaihetta järven kehityksessä. Vakiintumisvaiheen jälkeen järven kehityksessä on
Järvesidementit kuiva-aineen ja hiilen varastona tapahtunut kaksi muutosta, jotka ilmenevät hiilipitoisuuden alenemisenä 3,1 m:n ja 0,4 m:n syvyydessä. Alempi muutos voi liittyä Tainionvirran puhekeamista seuranneeseen vedenpinnan laskuun ja sitä seuranneeseen sedimenttien kulmumiseen ja uudelleen kerrostumiseen. Ylempi hiilipitoisuuden aleneminen taas liittyy Puulan pinnan laskuun noin 150 vuotta sitten. Valuma-alueen maankäytön muutokset ja Läsänkosken kanavan kaivamine ovat myös lisänneet mineraalirakenneen kulkeutumista Vuojaselälle.

Pitkästä näytteestä on tehty kolme radiohiilialoitusta, joten ajoitusten ja kurointumistason perusteella keskimääräiset varastoitumisnopeudet voidaan laskea neljälle kerrokselle. Kuiva-aineen varastoitumisnopeus on alimmassa vakiintumisvaiheen aikana syntyneessä kerroksessa keskimääräisenä nähden kaksinkertainen, ja se pienenee aluksi nopeasti sitten hidastuen pintaa kohti (kuva 138). Hiilen varastoitumisnopeus on suurin toiseksi alimmassa kerroksessa ja pienenee hitaasti pintaa kohti. Kurointumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-aineen keskimäärin 70 g/m². Siitä hiilen osuus on ollut 6,5 g/m².

Tutkimuspiste 2 sijaitsee järven keskiosassa Simpiänselällä, missä veden syvyys oli 42,3 m. Pitkä näyte ulottuu sedimentin pinnasta 3,86 m:n syvyyteen. Näytteen alaosa (3,86–2,82 m) on lustosavetta. Sen päällä on savea (2,82–2,10 m), liejusavea (2,10–1,90 m), saviliejua (1,90–1,50 m) ja liejua (1,50–0 m). Kurointumisajankohtaa vastaava syvyys on 2,10 m (kuva 139). Sen yläpuolella hiilipitoisuus laskee tilapäisesti 1,0 m:n syvyydessä. Se voi liittyä Tainionvirran puhekeamista seuranneeseen vedenpinnan laskuun ja sedimenttien uudelleen kerrostumiseen. Sen sijaan Puulan vedenpinnan lasku noin 150 vuotta sitten ei näy Simpiänselän pitkässä näytteessä. Kurointumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 37 g/m². Siitä hiilen osuus on ollut 2,5 g/m².

Kuva 137. Puulan tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilialoitusten tulokset. Ylhäällä oikealla pintaanäytteen hiilipitoisuus.

Kuva 138. Kuiva-aineen ja hiilen pitkän aikavälin varastoitumisnopeus Puulan tutkimuspisteeltä 1. Fig. 137. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Puula. Top right shows the carbon content of the surface core.

Fig. 138. The long-term accumulation rate of dry matter and carbon at survey point 1 in Lake Puula.

Puulan pohjasta noin 60 % on järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 61 milj. t. Koko pinta-alalle laskettuna kuiva-ainetta on 190 kg/m², ja sen keskimääräinen varastotunnusnopeus on ollut 18 g/m²/v. Kuiva-aineesta on hiiltä noin 4800 milj. kg. Koko pinta-alalle laskettua keskimääräinen hiilivarasto noin 15 kg/m² ja keskimääräinen varastotunnusnopeus 1.4 g/m²/v.

Kuva 139. Puulan tutkimuspisteeltä 2 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus.

Konnevesi

Kuva 139. The composition, density and carbon content of the long core taken from survey point 2 in Lake Puula. Top right shows the carbon content of the surface core.
Kuva 140. Luotauslinjojen ja tutkimuspisteiden sijainti Konnevedellä. Ylhäällä oikealla järven sijainti luusuaan rajoittuvalla valuma-alueella.

Fig. 140. The location of echo-sounding transects and survey points in Lake Konnevesi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

(3.33–2.72 m) on lustosavea. Sen päällä on savea (2.72–1.90 m), liejusavea (1.90–1.43 m), saviliejua (1.43–1.00 m) ja liejua (1.00–0 m). Kuroutumis-ajankohtaa vastaava syvyys on 1.90 m (kuva 141). Sen yläpuolella hiilipitoisuus kohoa aluksi hitaasti myöhemmin nopeutuen ja on korkeimmillaan lähellä sedimentin pintaa.

Heinolan lasku-uoman puhkeamiseen liittyvää vedenpinnan alenemisen aiheuttama matalaveden alueilla pohjan eroosio ja irroneen aineksen kerrostumista syvää säännöstöä, mikä näkyy hiilipitoisuuden kohtauksen ja tiheyden pienentämisen hidastumisena 1.3 m:n syvyydessä. Pian sen jälkeen valuma-alue ja läpivirtaama pienivät nykyiselle tasolle ja kerrostuvan sedimentin hiilipitoisuus alko kohota. Kuroutumisen jälkeen tilanteen palvele on varastoitu vuosittain kuiva-ainetta keskimäärin 46 g/m². Siitä hiilen osuus on ollut n. 850 milj. kg. Koko pinta-alalle laskettuna keskimääräinen hiilivarasto on 4,5 kg/m² ja keskimääräinen varastoitumisnopeus 0,48 g/m².

Fig. 141. The composition, density and carbon content of the long core taken from survey point 1 in Lake Konnevesi. Top right shows the carbon content of the surface core.
Nilakka

Nilakka sijaitsee Kymijoen vesistöalueen pohtjoisosassa ja kuuluu Keiteleen, Pielaveden ja Tervon kuntiin. Sen pinta-ala on 163 km² ja pinnan korkeus 102,3 m. Järvi on noin 40 km pitkä, keskosasta noin 10 km leveä ja suuntautuneet luoteesta kaakkoon (kuva 142). Nilakka on tyypiltään reittijärvi. Valuma-alueen suurin järvi on samalla tasolla oleva Pielavesi.

Mannerjäätkön reunan peräännyttyä ulottui muihainen Itämeri Nilakan altaaseen ja sen pinta oli noin 60 m järvien nykyistä pinta ylempänä. Maankuoren kohotessa vedenpinta laski ja Nilakka kuroutui Itämerestä Ancylusjärvi-vaiheen aikaan noin 9500 vuotta sitten. Kuroutumisen jälkeen Nilakan valuma-alue oli

Kuva 142. Luotauslinjojen ja tutkimuspisteiden sijainti Nilakalla. Ylhäällä oikealla järven sijainti luusuaan rajoittuvalla valuma-alueella. Fig. 142. The location of echo-sounding transects and survey points in Lake Nilakka. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuvan 143. Nilakan tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Yläpänälä oikealla pintanäytteen hiilipitoisuus. Fig. 143. The composition, density and carbon content of the long core taken from survey point 1 in Lake Nilakka. Top right shows the carbon content of the surface core.

Nilakan vedenpinta oli kuroitumisen jälkeen eteläosassa suunnilleen nykyisellä tasolla, mutta luoteisosaan huomattavasti nykyistä korkeammalla. Maankuoren kallistumisen takia Nilakan vedenpinta laski. Kuitenkin useimpien Päijänneen pohjoispohjal

Kivijärvi

Kivijärvi sijaitsee Kymijoen vesistöalueen pohjoisosassa ja kuuluu Kinnulan, Kivijärven ja Kannankosken kuntiin. Sen pinta-ala on 155 km² ja pinnan korkeus 130,8 m. Järvi on noin 45 km pitkä, ja sen uscimmit niemet ja lahdet ovat suuntautuneet luoteesta kaakkoon (kuva 144). Kivijärven on tyyppitään latvajärvi.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä...
veden syvyys oli 23,7 m. Pitkä näyte ulottuu sedimentin pinnasta 4,66 m:n syvyyteen. Näytteen alaosa (4,66–4,52 m) on lustosavea. Sen päällä on savea (4,52–3,60 m), liejusavea (3,60–3,00 m), saviliejua (3,00–0,80 m), liejua (0,80–0,20 m) ja saviliejua (0,20–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,60 m (kuva 145). Sen yläpuolella sedimentin hiilipitoisuus kohoaa saavuttaen 7 %:n tason 0,5 m:n syvyydessä. Lähellä pinta pitoisuus taas alenee ja on pientä, mukaan alimmillaan runsaan 10 cm:n syvyydessä. Pitoisuuksien aleneminen viittaa eroosion voimistumiseen valuma-alueella tai vedenpinnan laskuun. Kuroutumisen jälkeen tälle paikalle on varastoitu vuosittain kuiva-ainetta keskimäärin 88 g/m². Siitä hiilen osuus on ollut 3,8 g/m².

Kivijärven pohjasta noin 60 % on järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 49 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 320 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuiva-aineesta on hiiltä noin 2100 milj. kg. Koko pinta-alalle laskettua keskimääräinen hiilivarasto on 14 kg/m² ja keskimääräinen varastoitumisnopeus 1,4 g/m²/v.

Kuva 144. Luotauslinjojen ja tutkimuspisteiden sijainti Kivijärvellä. Ylhäällä oikealla järven sijainti luusuaan rajoittuvalla valuma-alueella. Fig. 144. The location of echo-sounding transects and survey points in Lake Kivijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 145. Kivijärven tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintaanlyötteen hiilipitoisuus. Fig. 145. The composition, density and carbon content of the long core taken from survey point 1 in Lake Kivijärvi. Top right shows the carbon content of the surface core.
Suontee

Kuva 146. Luotauslinjojen ja tutkimuspaikojen sijainti Suontelella. Ylhäällä oikealla järven sijainti luusaan rajoittuvala valuma-alueella.

Fig. 146. The location of echo-sounding transects and survey points in Lake Suontee. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 147. The composition, density and carbon content of the long core taken from survey point 1 in Lake Suontee. Top right shows the carbon content of the surface core.
vaikuttaneet Suonteen sijainiin suhteessa valuma-
alueen muuhin järvien. Muinais-Puula oli tyyppilä-
lavajarvi. Noin 5100 vuotta sitten syntynyt Suontee
oli taas reittijärvi. Reittijärvivaihe kesti vuoteen 1854
saakka, jolloin Puulan vesien virtaamisen Suonteeen
päätyi lopullisesti. Viimeksi kenttelut 150 vuotta
Suontee on ollut lavajarvi. Suonteen muuttuminen
reittijärveksi ja sittenkin takaisin lavajärveksi on
vaikuttanut lähinnä järven luoteisosan sedimenta-
tio-oloihin. Sitä vastoin vuosina 1846 - 47 toteutettu
vedenpinnan lasku 1,8 m:llä (Blomqvist 1911) muutti
sedimenttaatio-oloja koko järven alueella.
Tutkimuspiisteitä on kuusi (kuva 146). Näyteet
laboratoriomäärittykkää varten otettiin yhdeltä pisteeltä.
Muilla pisteillä sedimentin kerrosjärjestys määritettiin
maastossa. Kaikuluotaislinjaa on yhteensä 36 km.
Tutkimuspiiste 1 sijaitsee järven keskiosassa
Kataasella, missä veden syvyys oli 13,0 m. Pitkä
näyte ulottuu sedimentin pinnasta 4,50 m:n syyvy-
teen. Näyteen alaosaa (4,50–3,75 m) on lustosava.
Sen pääällä on savea (3,75–3,00 m), liejusavea
(3,00–2,69 m), saveliejuja (2,69–2,25 m) ja liejua
(2,25–0 m). Kuroutumisajankohtaa vastaava syyvyys
on 3,00 m (kuva 147). Sen yläpuolella hiilipitoisuus
kohoaa, ja se saavuttaa lähes 8 %:n tason 2 m:n
syyvyydessä. Pitoisuus laskee runsaan prosenttikiskön
verran 2 m:n yläpuolella ja lähtee taas kohoamaan
hitasti saavuttaen korkeimmat arvot liejukerroksen
yläosassa.
Hiilipitoisuuden nopea alennus on 2 m:n syvyys-
dessä liittyi todennäköisesti Tainionvirran puhkea-
miseen noin 5100 vuotta sitten (Tiikkanen 1995).
Se seurauksena Suonteen vedenpinta laski nopeasti
runsaat 3 m ja matalaan veteen joutuneet sedimentit
alooivat kultaa ja kerrostuvat uudelleen syvänteisiin.
Kuroutumisen jälkeen tällä paikalla on varastotunut
vuosittain kuiva-ainetta keskimäärin 59 g/m². Siitä
hiilen osuus on ollut 3,7 g/m². Jos hiilipitoisuuden ale-
nemisyvyvyydelle annetaan Tainionvirran puhkeamisen
ikä, saadaan kuiva-aiheen keskimääräiski varasto-
tumisnopeudeksi sedimenttikerroksen pohjaosassa
67 g/m² ja pintaosassa 50 g/m². Ero puhkeavan
ja pintaosan välillä olisivat suuremmat ilman vedenpin-
nan alennisen aiheuttamaa sedimenttien uudelleen
kerrostumista. Vastaavat hiilen varastotumisnopeudet
ovat 2,9 g/m² ja 3,8 g/m².
Suonteen pohjasta noin 70 % on järvesedimenttejä,
ja ne sisältävät kuiva-ainetta noin 34 milj. tn. Koko
pinta-alalle laskettuna kuiva-ainetta on keskimäärin
230 kg/m², ja sen keskimääräinen varastotumisno-
peus on ollut 22 g/m². Kuiva-aineesta on hiiltä noin
2100 milj. kg. Koko pinta-alalle laskettu keskimäärä-
rainen hiilivarasto on 14 kg/m². Kerrosjärjestys
vaikuttaa Seurauksena Suonteen vedenpinta
voimakkaasti laajenee.Tässä on helppo ymmärtää
järven kehityssä. Sen aikana
materiaa kulkeutui syvänteisiin. Vakiintumis-
kieltoihin. Vakiintumiskieltä seurasi hyvin vakaun
kehityksen vaihe, jota
kohdellaan mitä on ollut suurimmat muutoksia. Tässä
syynä liittyy todennäköisesti Tainionvirran puhkeamiseen
naa, koska hiilipitoisuus käyvaa keskimäärin
hiilen varastotumisnopeudet ovat 2,9 g/m² ja 3,8 g/m².
Kyyvesi
Kyyvesi sijaitsee Kymijoen vesistöalueen itäosassa
ja kuuluu Haukivuoreen, Kangasniemen ja Mikkeli-
kuniin. Sen pinta-ala on 133 km² ja pinnan korkeus
100,6 m. Järviä on saarten ja niemien takia rikkonainen
markkina, joka on ollut mahdollista, koska Kyyvesi
muista Järvi-Suomen suurista järvistä
poiketen ei ole kokenut suuria luontaisia vedenpinnan
muutoksia. Tiheyden kasvu ja hiilipitoisuuden alenneminen

Kyyvesi on siitä pisteilä sedimentin kerrosjärjestys määritettiin
maastossa. Kaikuluotaislinjaa on yhteensä 36 km.
Tutkimuspiiste 1 sijaitsee järven keskiosassa
Kataasella, missä veden syvyys oli 13,0 m. Pitkä
näyte ulottuu sedimentin pinnasta 4,50 m:n syyvy-
teen. Näyteen alaosaa (4,50–3,75 m) on lustosava.
Sen pääällä on savea (3,75–3,00 m), liejusavea
(3,00–2,69 m), saveliejuja (2,69–2,25 m) ja liejua
(2,25–0 m). Kuroutumisajankohtaa vastaava syyvyys
on 3,00 m (kuva 147). Sen yläpuolella hiilipitoisuus
kohoaa, ja se saavuttaa lähes 8 %:n tason 2 m:n
syyvyydessä. Pitoisuus laskee runsaan prosenttikiskön
verran 2 m:n yläpuolella ja lähtee taas kohoamaan
hitasti saavuttaen korkeimmat arvot liejukerroksen
yläosassa.
Hiilipitoisuuden nopea alennus on 2 m:n syvyys-
dessä liittyi todennäköisesti Tainionvirran puhkea-
miseen noin 5100 vuotta sitten (Tiikkanen 1995).
Se seurauksena Suonteen vedenpinta laski nopeasti
runsaat 3 m ja matalaan veteen joutuneet sedimentit
alooivat kultaa ja kerrostuvat uudelleen syvänteisiin.
Kuroutumisen jälkeen tällä paikalla on varastotunut
vuosittain kuiva-ainetta keskimäärin 59 g/m². Siitä
hiilen osuus on ollut 3,7 g/m². Jos hiilipitoisuuden ale-
nemisyvyvyydelle annetaan Tainionvirran puhkeamisen
ikä, saadaan kuiva-aiheen keskimääräiski varasto-
tumisnopeudeksi sedimenttikerroksen pohjaosassa
67 g/m² ja pintaosassa 50 g/m². Ero puhkeavan
ja pintaosan välillä olisivat suuremmat ilman vedenpin-
nan alennisen aiheuttamaa sedimenttien uudelleen
kerrostumista. Vastaavat hiilen varastotumisnopeudet
ovat 2,9 g/m² ja 3,8 g/m².
Suonteen pohjasta noin 70 % on järvesedimenttejä,
ja ne sisältävät kuiva-ainetta noin 34 milj. tn. Koko
pinta-alalle laskettuna kuiva-ainetta on keskimäärin
230 kg/m², ja sen keskimääräinen varastotumisno-
peus on ollut 22 g/m². Kuiva-aineesta on hiiltä noin
2100 milj. kg. Koko pinta-alalle laskettu keskimäärä-
rainen hiilivarasto on 14 kg/m². Kerrosjärjestys
vaikuttaa Seurauksena Suonteen vedenpinta
voimakkaasti laajenee.Tässä on helppo ymmärtää
järven kehityssä. Sen aikana
materiaa kulkeutui syvänteisiin. Vakiintumis-
kieltoihin. Vakiintumiskieltä seurasi hyvin vakaun
kehityksen vaihe, jota
kohdellaan mitä on ollut suurimmat muutoksia. Tässä
syynä liittyy todennäköisesti Tainionvirran puhkeamiseen
naa, koska hiilipitoisuus käyvaa keskimäärin
hiilen varastotumisnopeudet ovat 2,9 g/m² ja 3,8 g/m².
minen pitkän näytteen yläosassa on sitä vastoin ihmisen toiminnan tulosta. Vedenpinnan lasku on aiheuttanut matalaan veteen joutuneiden sedimenttikerrosten kulumin ja irronneen aineksen kerrostumista uudelleen syvänäisiin. Mineraalitien kulkeutumista järven syvänteisiin ovat lisänneet myöskin maankäytön muutokset valuma-alueella.

Kuva 148. Lokelelementtien naapurupaikat Kyyvedellä. Ylhäällä oikealla järven sijainti luusuaan rajoittavalla valuma-alueella. Fig. 148. The location of echo-sounding transects and survey points in Lake Kyyvesi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 149. Kyyveden tutkimuspaikan näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintalanäytteen hiilipitoisuus. Fig. 149. The composition, density and carbon content of the long core taken from survey point 1 in Lake Kyyvesi. Top right shows the carbon content of the surface core.

Vuosittain kuiva-ainetta keskimäärin 94 g/m². Siitä hiilen osuus on ollut 7,7 g/m². Kyyveden pohjasta noin 80% on järvesidementtejä, ja ne sisältävät noin 43 milj. tn kuiva-ainetta. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 320 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 31 g/m²/v. Kuiva-aineesta on hiilitä noin 3500 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 27 kg/m² ja keskimääräinen varastoitumisnopeus 2,5 g/m²/v.
Vesijärvi

![Kuva 150. Luotauslinjojen ja tutkimuspisteiden sijainti Vesijärvellä. Ylhäällä oikealla järven sijainti luusuaan rajoittavalla valuma-alueella. Fig. 130. The location of echo-sounding transects and survey points in Lake Vesijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.](image1)

![Kuva151. Vesijärven tutkimuspisteeltä 1 otetuun pitkäänäytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintananäytteen hiilipitoisuus. Fig. 131. The composition, density and carbon content of the long core taken from survey point 1 in Lake Vesijärvi. Top right shows the carbon content of the surface core.](image2)
Järven syväys on noin 40 m (Kuusisto 1992).

Tutkimuspiste 1 sijaitsee järven pohjoisopossa Kajaanselällä, missä veden syvyys oli 14,2 m. Pitkä näyte ulottuu sedimentin pinnasta 6,44 m:n syvyyteen. Näytteen alaosa (6,44–5,86 m) on lustosavea. Sen päällä on savea (5,86–4,70 m), liejusavea (4,70–1,54 m) ja saviliehua (1,54–0 m). Kuroutumisajankohta vastaava syvyys on 4,70 m (kuva 151). Sen yläpuolella hiilipitoisuuksan alennus nopeasti 1 %:n tasolle, mutta sen jälkeen kohoaminen jatkuu hyvin hitaana. Hiilipitoisuuden alennus ja tiheyden kasvu runsaan 3 m:n syvyydessä (b tai c) liittyy todennäköisesti Heinolan harjun puhkeamista seuranneeseen vedenpinnan lasuun ja sedimenttien uudelleen kerrostumiseen. Vastaatavat muutokset sedimenttkerroksen pinnassa taas liittyvät lasku-uomaan perkaamalla aikaan saatun vedenpinnan lasuun.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 240 g/m². Siitä hiilen osuus on ollut 3,8 g/m². Paleomagneettisen ajoituksen ja sedimentin ominaisuuksien perusteella laskettiin varastotumisnopeudet neljälleentoista kerroksele. Nopeudet vaihtelevat kerroksittain, mutta yleisesti pitkänä aikavälillä on kuiva-ainetta halkaisivat järven syvennys aiheuttamaa varastotumisnopeutta.

Tutkimuspiste 10 sijaitsee järven eteläosassa Kilpiäistenpohjassa, missä veden syvyys oli 1,1 m. Laippakairalla otettu pitkä näyte ulottuu sedimentin pinnasta 2,80 m:n syvyteen. Näytteen alaosassa on raateen jäänteitä sisältäviä ruskosammalmatarvetta. Sen yläpuolella turve muodostuu ruskosammalvaltaiseksi ja siinä on lisätekiöinä järviruon ja varpujen jäänteitä. Ylin 0,2 m on lieju.

Vesijärven valuma-alueelta ja matalan veden alueilta on erodointunut runsaasti hienojakoista mineralia ja saamelaista. Alueen kerros on yleisesti kevyt, mutta sen keskimääräinen vaikutus on voineen huomattava. Aluekaupungissa esimerkiksi Pääjän seutu on muuttunut hyvin voimakkaan jääkauden aikaan.

Vesilajeista on erinomaisen runsaasti esimerkiksi tummansinikia, mutta ihmisten olevat hyvin runsaasti lihanlajia. Alueen kasvillisuus on hyvin vaihtelua, ja se on myös hyvin runsas monimuotoisena. Aineiston kerääminen on hyvin monimutkainen ja vaatii erittäin tarkkaa ja tarkasta tutkimusta.
kerroksessa hiilipitoisuus on 1 %:n tasolla. Pitoisuus kohoa tilapäisesti 4,3 m:n syvyydessä, mutta alkaa kohota nopeammin vasta 2,0 m:n syvyydessä. Sedi-
mentin pinnassa hiilipitoisuus taas alenee.

Pitkän näytteen tiheys- ja hiilipitoisuuskäyrä osoit-
tavat merkittävää sedimentaatio-olentojen muutosta. Kuroutumisen jälkeen läpivirtaus oli voimakasta ja järvi sijaitsi kaukana alajuoksulla. Niissä oloissa
syntyneen sedimentin tiheys on suuri ja hiilipitoisuus
alhainen. Kerrostuvan sedimentin tiheys alko
nytä ja hiilipitoisuus kohota vasta, kun Saimaan vesien
läpivirtaus päättyy ja valuma-alue pieneni nykyisi
n mittoihin. Muutos tapahtuu runsaan 2 m:n syvyydessä,
joten suuren läpivirtaaman aikainen sedimentaatio on
ollut nopeaa. Yleensä voimakas virtaus hidastaa
sedimenttien kertymistä ja estää sen kokonaan. Tälle
paikalle on kuitenkin kinostunut muualta erodoitunut
aistia. Pielavesi ja Nilakka ovat kokeneet samat
sedimentaatio-olentojen muutokset, mikä selittää pitkien
näytteenä tiheys- ja hiilipitoisuuskäyrien yhtäläisyy-
den. Hiilipitoisuuden aleneminen sedimentin pinnassa

johtuu maankäytön muutoksista, joiden seurauksena
mineraaliaineen ja ravinteiden kulkeutuminen jär-
veen lisääntyi. Kuroutumisen jälkeen Pielaveden tutkimuspaikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin
250 g/m². Siitä hiilen osuus on ollut 7,1 g/m². Kuiva-
aineen varastoituminen on ollut nopeinta järveden

Fig. 155. The composition, density and carbon content of the long core taken from survey point 1 in Lake Pielavesi. Top right shows the carbon content of the surface core.
Kolima

Kolima sijaitsee Kymijoen vesistöalueen pohjoisosassa ja kuuluu Pihtiputaan ja Viitasaaren kuntiin. Sen pinta-ala on 101 km² ja pinnan korkeus 111,2 m. Järvi on noin 30 km pitkä ja suuntautunut luoteesta kaakkoon (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyypiltään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosa on matalaa. Kolima on tyyppitään reittijärvi.

Kolima

Kolima sijaitsee Kymijoen vesistöalueen pohjoisosassa ja kuuluu Pihtiputaan ja Viitasaaren kuntiin. Sen pinta-ala on 101 km² ja pinnan korkeus 111,2 m. Järvi on noin 30 km pitkä ja suuntautunut luoteesta kaakkoon (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Kolima sijaitsee Kymijoen vesistöalueen pohjoisosassa ja kuuluu Pihtiputaan ja Viitasaaren kuntiin. Sen pinta-ala on 101 km² ja pinnan korkeus 111,2 m. Järvi on noin 30 km pitkä ja suuntautunut luoteesta kaakkoon (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Kolima

Kolima sijaitsee Kymijoen vesistöalueen pohjoisosassa ja kuuluu Pihtiputaan ja Viitasaaren kuntiin. Sen pinta-ala on 101 km² ja pinnan korkeus 111,2 m. Järvi on noin 30 km pitkä ja suuntautunut luoteesta kaakkoon (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.

Mannerjäätikön reunan perääntyttyä ulottui muihaisen Itämeri Koliman altaaseen. Sen pinta oli kaakkoisosassa noin 60 ja luoteisosassa noin 70 m järven nykyistä pintaan (kuva 157). Koliman keskisyvyys on 6,5 m (Kuusisto 1992). Syvimmät alueet (suurin syvyys 66 m) ovat avoimessa keskiosassa, kun taas kaakkoisosassa on matalaa. Kolima on tyyppitään reittijärvi.
vedet alkoivat virrata etelään, ja sen pinta alkoi laskea hitaasti. Lopulta Muurasjärvi ja Alvajärvi kuroutuivat erillisiksi altaiksi ja Kolima sai nykyisen muotonsa.

Näytteet laboratoriomäärityksiä varten otettiin yhdeltä tutkimuspisteeltä (kuva 157). Kaikuluotauslinjaa on yhteensä 22 km.

Tutkimuspiste 1 sijaitsee järven pohjososassa, missä veden syvyys oli 19,3 m. Pitkä näyte ulottuu sedimentin pinnasta 4,94 m:n syvyyteen. Näytteen alaosa (4,94–4,44 m) on lustosavea. Sen päällä on savea (4,44–3,35 m), liejusavea (3,35–2,80 m), savilieja (2,80–0,60 m) ja liejua (0,60–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,35 m (kuva 158). Sen yläpuolella oleva liejusavikerros on syntynyt voimakkaan läpivirtaaman aikaan ennen Heinolan harjun puhkeamista ja yläosan liejukerrosta taas viimeksi kuluneen vuosituhannen aikana.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 82 g/m². Siitä hiilen osuus on ollut 2,7 g/m². Varastoitumisnopeudet vaihtelevat kerroksittain (kuva 159). Kuiva-aineen keskimääräinen varastoitumisnopeus on hidastunut nykyaikea kohtaa. Hiilen varastoitumisnopeus taas on heilahdellut keskiarvon molemmin puolin.

Koliman pohjasta noin 55 % on järvedimentsit, ja ne sisältävät kuiva-ainetta noin 23 milj. t. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 220 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 24 g/m²/av. Kuiva-aineesta on hiiltä noin 750 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 7,4 kg/m² ja keskimääräinen varastoitumisnopeus 0,78 g/m²/av.

Vuohijärvi

Kuva 160. Luotauslinjojen ja tutkimuspaisteiden sijainti Vuohijärvellä. Ylhäällä oikealla järven sijainti luosuuaan rajoittuvalla valuma-alueella. Fig. 160. The location of echo-sounding transects and survey points in Lake Vuohijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 161. Vuohijärven tutkimuspaisteella 6 otetun pitkän näytteen koostumus, tihesyys ja hiilipitoisus. Ylhäällä oikealla pintanäytteen hiilipitoisus. Fig. 161. The composition, density and carbon content of the long core taken from survey point 6 in Lake Vuohijärvi. Top right shows the carbon content of the surface core.
viimeistä valuma-alueen laajenemista.

Tutkimuspiste 6 sijaitsee järven keskiosassa, missä veden syvyys oli 32,2 m. Pitkä näyte ulottuu sedimentin pinnasta 4,12 m:n syvyyteen. Näytteen alaosa (4,12–2,00 m) on lustosava. Sen päällä on savea (2,00–1,80 m), liejusavea (1,80–1,45 m) ja saviliejua (1,45–0 m). Kuroutumisajankohtaa vastaa syvyys 1,80 m (kuva 161). Sen yläpuolella hiilipitoisuus kohoaa ja saavuttaa lähes 6 %:n tason lähellä pintaa.

Valuma-alueen laajeneminen ja virtaaman vuositietään on mahdollista, kun maankäytön muutosten lisäksi viimeisimpänä valuma-alueen laajenemiseen.

Kuroutumisen jälkeen tällä paikalla on vaarat saasti rivoittunut vuosit tuhat vuotta ennen kuiva-ainetta keskimäärin 42 g/m². Siitä hiilen osuus on ollut 1,8 g/m².

Valuma-alueen laajeneutuminen ja virtaavien vuositaktien teijä, ja niiden kerrokset ovat ohuita. Järvesi määrätään kuiva-ainetta noin 4,4 milj. t:n. Koko pinta-alalta laskettuna kuiva-ainetta on 50 kg/m², ja sen keskimääräinen varastointisopannos on ollut 4,8 g/m²/min. Kuiva-aineista on hiiltä noin 180 milj. t:n. Kokon pinta-alalta laskettuna keskimääräinen hiilivarasto on 2,1 kg/m², ja sen keskimääräinen varastointisopannos 0,20 g/m²/min.

Suontienselkä

Suontienselkä sijaitsee Kymijoen vesistöalueen itä-reunalla ja kuuluu Suonenjoen ja Pieksänmaan kuntiin. Sen pinta-ala on 41 km² ja pinnan korkeus 99,4 m. Järven alue on noin 20 km pitkä ja suuntautunut luoteesta kaakkoiseen (kuva 162). Järven kapeat ja pitkät syvätteet noudattavat samaa suuntaa. Peruskartan mukaan suurin syvyys on 73 m. Valuma-alue on entisärkeen soitetun metsän keskelle, ja järven kevätein järven alueen keskellä on hiilipitoisuus 6 %:n tason lähellä.

Valuma-alueen laajeneutuminen ja virtaavien vuositaktien teijä, ja niiden kerrokset ovat ohuita. Järven virtaavat kuiva-ainetta keskimäärin 42 g/m². Siitä hiilen osuus on ollut 1,8 g/m².

Vedensuutuus on mahdollista, kun maankäytön muutosten lisäksi viimeisimpänä valuma-alueen laajenemiseen.

Kuroutumisen jälkeen tällä paikalla on vaarat saasti rivoittunut vuosituhat vuotta ennen kuiva-ainetta keskimäärin 42 g/m². Siitä hiilen osuus on ollut 1,8 g/m².

Suontienselkä on tyypiltään latvajärvi.

Mannerjäätikön reunan peräpääntää ulottui muinaisen Itämeren vesistöalueen itä-reunaan ja kuului Suonenjoen ja Pieksänmaan kuntiin. Sen pinta-ala on 41 km² ja pinnan korkeus 99,4 m. Järven alue on noin 20 km pitkä ja suuntautunut luoteesta kaakkoiseen (kuva 162). Järven kapeat ja pitkät syvätteet noudattavat samaa suuntaa. Peruskartan mukaan suurin syvyys on 73 m. Valuma-alue on entisärkeen soitetun metsän keskelle, ja järven kevätein järven alueen keskellä on hiilipitoisuus 6 %:n tason lähellä.

Valuma-alueen laajeneutuminen ja virtaavien vuositaktien teijä, ja niiden kerrokset ovat ohuita. Järven virtaavat kuiva-ainetta keskimäärin 42 g/m². Siitä hiilen osuus on ollut 1,8 g/m².

Suontienselkä on tyypiltään latvajärvi.

Mannerjäätikön reunan peräpääntää ulottui muinaisen Itämeren vesistöalueen itä-reunaan ja kuului Suonenjoen ja Pieksänmaan kuntiin. Sen pinta-ala on 41 km² ja pinnan korkeus 99,4 m. Järven alue on noin 20 km pitkä ja suuntautunut luoteesta kaakkoiseen (kuva 162). Järven kapeat ja pitkät syvätteet noudattavat samaa suuntaa. Peruskartan mukaan suurin syvyys on 73 m. Valuma-alue on entisärkeen soitetun metsän keskelle, ja järven kevätein järven alueen keskellä on hiilipitoisuus 6 %:n tason lähellä.

Valuma-alueen laajeneutuminen ja virtaavien vuositaktien teijä, ja niiden kerrokset ovat ohuita. Järven virtaavat kuiva-ainetta keskimäärin 42 g/m². Siitä hiilen osuus on ollut 1,8 g/m².

Suontienselkä on tyypiltään latvajärvi.
Kuva 163. Suontienselän tutkimuspisteeltä 13 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus.

Fig. 163. The composition, density and carbon content of the long core taken from survey point 13 in Lake Suontienselkä.

Kuva 164. Suontienselän tutkimuspisteeltä 14 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus.

Fig. 164. The composition, density and carbon content of the long core taken from survey point 14 in Lake Suontienselkä.

128
Järvesidentin hiilipitoisuus on eteläosassa kaksinkertainen pohjoisosaan verrattuna. Syynä siihen on eteläosaa reunustavien suorantojen erodointi ja ranteiden erodointi. Koska turpeen hiilipitoisuus on noin 50 %, riittää pieniksi määriä turvekerroksista peräisin olevaa eloperäistä ainesta kohottamaan sedimentin hiilipitoisuutta. Kohoava vedenpintakorkeus on pitänyt hiiltä on 5,9 g/m²./v. Todelliset varastointisnoopeudet ovat hieman näitä suuremmat.

Suontienselän pohjasta noin 40 % on järvesidenttejä, ja ne sisältävät kuiva-ainetta noin 9,6 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 230 kg/m², ja sen keskimääräinen varastointisnoopeus on ollut 24 g/m²/v. Kuiva-aineesta on hiiltä noin 670 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on noin 16 kg/m² ja keskimääräinen varastointisnoopeus 1,7 g/m²/v.

Muuratjärvi

Muuratjärvi sijaitsee Kymijoen vesistöalueen keskiosassa ja kuuluu Muuramen ja Petäjäveden kuntiin. Sen pinta-ala on 31,7 km² ja pinnan korkeus 90,1 m. Järvi sijaitsee Keski-Suomen reunoja reunaveden putoamassa altaassa. Se on saarinen takia hajanainen (kuva 165). Pohja on epätasainen, ja valuma-alueella kalliomäet kohoa.”

Mannerjäätikön reunan peräännyttäytyllä ulottui muinaisen Itämeren muuratjärven altaaseen ja sen pinta oli noin 60 m järven nykyistä pinta-alueella. Muuratjärvi kuroutui Itämerestä Ancylusjärvi-vaiheen aikaan noin...

Kuva 165. Luotauslinjojen ja tutkimuspisteen sijainti Muuratjärvellä. Ylhäällä oikealla järven sijainti luusuaan rajoittuvalla valuma-alueella. Fig. 165. The location of echo-sounding transects and survey point in Lake Muuratjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 166. Muuratjärven tutkimuspisteetä 1 otetuinen pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pinta-nyttynytenant hiilipitoisuus. Fig. 166. The composition, density and carbon content of the long core taken from survey point 1 in Lake Muuratjärvi. Top right shows the carbon content of the surface core.

Näytteen laboratoriomäärityksiä varten otettiin yhdeksän tutkimuspaikalta (kuva 165). Kaikuluotau- linjaa on yhteensä 19 km.

Tutkimuspaikkoja tutkittiin järven keskiosassa, missä veden syvyys oli 40,9 m. Pitkät näytteet ulottuivat sedimentin pinnasta 4,93 m:n syvyyteen. Näytteen alaosa (4,93–3,69 m) on lustosavetta. Sen päällä on savea (3,69–2,66 m), liejusavea (2,66–2,20 m), savilie- jua (2,20–1,00 m), liejuva (1,00–0,20 m), saviliejua (0,20–0,09 m) ja savea (0,09–0 m). Kuroutumiskor- kohtaan vastaava syvyys on 2,66 m (kuva 166). Sen yläpuolella hiilipitoisuus kohoaa, pysähtyy joksikin aikaa runsaan 3 %:n tasolle, jatkaa sitten kohoa ja saavuttaa 8 %:n tason lähellä pintaa. Pitkän näytteen pinnassa hiilipitoisuus alenee nopeasti. Hiilipitoisuuden kohoamisen pysähtyminen tapahtuu 2 m:n syvyydessä liittyvän Heinolan harjun puheamista seuranneeseen vedenpinnan nopeaan alennukseen ja sedimenttien uudelleen kerrostumiseen. Pitoisuuden nopea alenneminen sedimenttervojen yläosaassa liittyy todennäköisesti maankäytön muutosten aihe- uttamaan eroosion voimistumiseen valuma-alueella ja vedenpinnan laskuun.

Kuroutumisen jälkeen tälle paikalle on varastotumut vuosittain kuiva-aineen keskimääräinen 86 g/m². Sii- tä hiilen osuus on ollut 3,5 g/m². Paleomagneettisten ajoitusten ja sedimentin ominaisuuksien perusteella yhdessä kerrokselle lasketut varastotumisnopeudet osoittavat kuiva-aineen varastotumisnopeuden pienentyneen nopeasti tarkastelujakson alussa ja pysyneen sitten lähes samalla tasolla (kuva 167).

Hiilen varastotumisnopeus taas on pysynyt samalla tasolla tai hieman kohonnut. Suurin osa altaan pohjalle kerrostuneista sedimenteista on muinaisen Itämeren savia. Järvedimenttejä on syvimmien ala- pohjalta pari metriä paksu kerro. Matalampilla alueilla järvedimenttikerroksen syvyyinen näyttää huomattavasti ohuemempaaksi tai se puuttuu kokonaan. Muuratjärven pohjasta noin 45 % on järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 5,2 milj. tn. Koko pinta-alalle tarkasteltuna kuiva-ainetta on keskimääräinen 160 kg/m², ja sen keskimääräinen varastotumisnopeus on ollut 17 g/m²/v. Kuiva-aineesta on hiiltä noin 210 milj. kg. Koko pinta-alalle laskettu hiilivarasto on 6,7 kg/m² ja keskimääräinen varastotumisnopeus 0,70 g/m²/v.

Pieksänjärvi

Pieksänjärvi sijaitsee Kymijoen vesistöalueen itäosaassa Pieksämäen ja Pieksänmaan alueella. Sen pinta-alaa on noin 21,0 km² ja pinnan korkeus 118,9 m. Järven useimmat niemet ovat luo teesta kaakkoon suuntautuneita moreeniselänteitä (kuva 168). Pieksän- järvi on tyyppiltään latvajärvi.

Valuma-alueen vähiittäinen soistuminen ja järvi-
altaan madaltuminen osittaisen täyttymisen takia ovat vaikuttaneet järven luontaiseen kehitykseen. Madaltumista on lisännyt vedenpinnan laskeminen 1950-luvun puolivälissä. Vedenpintaalaskettiin aluksi 1,2 m, mutta myöhemmin pintaa ruvettiin pitämään ylemmänä, niin että vedenpinnan laskuksi jäi 0,7 m. Laskun seurauksena on ollut että matalaan veteen joutuneista kerrostumista on alkanut kulua ja kerrostua uudelle syvemmille alueille.

Tutkimuspiste 1 sijaitsee järven eteläosassa, missä veden syvyys oli 12,0 m. Pitkä näyte ulottuu sedimentin pinnasta 2,95 m:n syvyyteen. Näytteen alaosa (2,95–2,38 m) on lustosavea. Sen päällä on savillejua (2,38–2,20 m) ja liejua (2,20–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,38 m (kuva 169). Sen yläpuolella hiilipitoisuus kohoa nopeasti 17%:n tasolle ja pysyy korkeana pintaan saakka. Pintan näytteen hiilipitoisuuskäyrän perusteella viimeaikaisen eroosiota kiihdyttävien toimien vaikutukset eivät näy tällä paikalla. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Fig. 169. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Pieksänjärvi. Top right shows the carbon content of the surface core.

ten eroosiota kiihdyttävien toimien vaikutukset eivät näy tällä paikalla. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Pitkä näyteosan määritettiin kahden osanäytteen ikä radiohiilimääritysmäärityksellä. Niihin perusteella laskettuna on ollut tuhannet vuosittain kuiva-ainetta 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Kuvan 168. Luotauslinjojen ja tutkimuspisteiden sijainti Pieksänjärvellä. Ylhäällä vasemmalla järven sijainti luusuaan rajoittava valuma-alueella.

Fig. 168. The location of echo-sounding transects and survey points in Lake Pieksänjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Pitkä näyteosan määritettiin kahden osanäytteen ikä radiohiilimääritysmäärityksellä. Niihin perusteella laskettuna on ollut tuhannet vuosittain kuiva-ainetta 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Tutkimuspiste 1 sijaitsee järven eteläosassa, missä veden syvyys oli 12,0 m. Pitkä näyte ulottuu sedimentin pinnasta 2,95 m:n syvyyteen. Näytteen alaosa (2,95–2,38 m) on lustosavea. Sen päällä on savillejua (2,38–2,20 m) ja liejua (2,20–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,38 m (kuva 169). Sen yläpuolella hiilipitoisuus kohoa nopeasti 17%:n tasolle ja pysyy korkeana pintaan saakka. Pintan näytteen hiilipitoisuuskäyrän perusteella viimeaikaisen eroosiota kiihdyttävien toimien vaikutukset eivät näy tällä paikalla. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Fig. 169. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Pieksänjärvi. Top right shows the carbon content of the surface core.

ten eroosiota kiihdyttävien toimien vaikutukset eivät näy tällä paikalla. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Pitkä näyteosan määritettiin kahden osanäytteen ikä radiohiilimääritysmäärityksellä. Niihin perusteella laskettuna on ollut tuhannet vuosittain kuiva-ainetta 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Kuvan 168. Luotauslinjojen ja tutkimuspisteiden sijainti Pieksänjärvellä. Ylhäällä vasemmalla järven sijainti luusuaan rajoittava valuma-alueella.

Fig. 168. The location of echo-sounding transects and survey points in Lake Pieksänjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Pitkä näyteosan määritettiin kahden osanäytteen ikä radiohiilimääritysmäärityksellä. Niihin perusteella laskettuna on ollut tuhannet vuosittain kuiva-ainetta 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Tutkimuspiste 1 sijaitsee järven eteläosassa, missä veden syvyys oli 12,0 m. Pitkä näyte ulottuu sedimentin pinnasta 2,95 m:n syvyyteen. Näytteen alaosa (2,95–2,38 m) on lustosavea. Sen päällä on savillejua (2,38–2,20 m) ja liejua (2,20–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,38 m (kuva 169). Sen yläpuolella hiilipitoisuus kohoa nopeasti 17%:n tasolle ja pysyy korkeana pintaan saakka. Pintan näytteen hiilipitoisuuskäyrän perusteella viimeaikaisen eroosiota kiihdyttävien toimien vaikutukset eivät näy tällä paikalla. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Tutkimuspiste 1 sijaitsee järven eteläosassa, missä veden syvyys oli 12,0 m. Pitkä näyte ulottuu sedimentin pinnasta 2,95 m:n syvyyteen. Näytteen alaosa (2,95–2,38 m) on lustosavea. Sen päällä on savillejua (2,38–2,20 m) ja liejua (2,20–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,38 m (kuva 169). Sen yläpuolella hiilipitoisuus kohoa nopeasti 17%:n tasolle ja pysyy korkeana pintaan saakka. Pintan näytteen hiilipitoisuuskäyrän perusteella viimeaikaisen eroosiota kiihdyttävien toimien vaikutukset eivät näy tällä paikalla. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 30 g/m². Siitä hiilen osuus on ollut 3,9 g/m².

Fig. 169. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Pieksänjärvi. Top right shows the carbon content of the surface core.
Karijärvi

Mannerjäätikon reunan peräänpyytyyn ulottui muinaisen Itämerin Karijärven altaaseen ja sen pinta oli runsaat 30 m järven nykyistä pinnanpyytyyn. Maankuoren kohotessa vedenpinta laski ja Karijärvi kuroutui Ancylusvaiheena 10 300 vuotta sitten.

Näytteet laboratoriomääritystä erotettiin yhdelta pisteeltä (kuva 170). Kaikuluotauslinjaa on yhteensä 14 km.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 27,3 m. Pitkä näyte ulottuu sedimentin pinnasta 4,17 m:n syvyyteen. Näytteen alaosa (4,17–4,00 m) on lustosavea. Sen päällä on savea (4,00–2,95 m), liejusavea (2,95–2,02 m), saviliejuja (2,02–0,50 m), liejuja (0,50–0,07 m) ja saviliejuja (0,07–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,95 m (kuva 171). Sen yläpuolella hiilipitoisuus pysyy 1 %:n tasolla, alkaa kohota 2 m:n syvyydessä ja saavuttaa 7 %:n tason näytteen yläosassa. Sedimenttikerroksen pinnassa pitoisuus taas alenee. Pintanäytteiden mukaan pitoisuus on alimmillaan 5–10 cm:n syvyydessä.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 98 g/m². Siitä hiilen osuus on ollut 3,1 g/m². Pitkä näyte voidaan jakaa kuroutumistason ja kahden radiohiilimenettelämällä ajoitetun osanäytteen perusteella kolmen lähes yhtä pitkän osaan. Kerroksittain laskettu kuiva-ainen keskimääräisen varastointisopumoeidun pienenevät

![Image](Kuva_170.jpg)

Kuva 170. Luotauslinjojen ja tutkimuspistejen sijainti Karijärvellä. Ylhäällä oikealla järven sijainti luusukan rajoittavalla valuma-alueella. Fig. 170. The location of echo-sounding transects and survey point in Lake Karijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

![Image](Kuva_171.jpg)

Kuva 171. Karijärven tutkimuspisteestä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilialojustosten tulos. Ylhäällä oikealla pintanäytteen hiilipitoisuus.

Fig. 171. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Karijärvi. Top right shows the carbon content of the surface core.
nykyaikaa kohti. Sen sijaan hiilen keskimääräinen varastoittumisnopeus on suurin keskimääräisessä ja pienin alimmassa kerroksessa.

Karijärven pohjasta noin 60 % on järvesedimenttejä, ja ne sisältävät kuiva-ainetta noin 6,7 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 320 kg/m², ja sen keskimääräinen varastoittumisnopeus on ollut 32 g/m²/v. Kuiva-aineesta on hiiltä noin 210 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 11 kg/m² ja keskimääräinen varastoittumisnopeus 1,0 g/m²/v.

Kotajärvi

Kotajärvi sijaitsee Kymijoen vesistöalueen kaakkoisosaan Ensimmäisen ja Toisen Salpausselän välisellä alueella Lemissä. Sen pinta-ala on 3,41 km² ja pinnan korkeus 78,3 m. Järvi on noin 4 km pitkä ja suuntautunut luoteeseen kaakkoiseen (kuva 172). Peruskartan mukaan järven suurin syvyys on 12 m. Valuma-alue rajoittuu pohjoisesta ja idästä harjuun, ja sille ovat tyyppisesti moreenipeitteiset kalliomaat ja niiden väliset savikot (Lappalainen 1962b). Kotajärvi on tyyppiläinen latvajärvi.

Mannerjäätkön peräännytynä ulottui muinainen Itämeri Kotajärven altaaseen ja sen pinta oli runsaat 20 m järven nykyistä pinta korkeammalla. Maankohden kohotessa vedenpinta laski ja Kotajärvi kuroutui Itämerestä Baltian jääjärvi -vaiheen aikaan noin 11 500 vuotta sitten. Siitä alkaen järven laskukynynn

Kuva 172. Luotauslinjojen ja tutkimuspistesien sijainti Kotajärvellä. Ylhäällä oikealla järven sijainti luusaan rajoittuvalla valuma-alueella. Fig. 172. The location of echo-sounding transects and survey points in Lake Kotajärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 173. Kotajärven tutkimuspisteeltä otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radioksiidiohjusten tulokset. Ylhäällä oikealla pinta-alalle pitkäaikainen hiilipohtoon. Fig. 173. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Kotajärvi. Top right shows the carbon content of the surface core.
Johdasjärvi

Johdasjärvi sijaitsee Kymijoen vesistöalueen eteläosassa Jaalassa. Sen pinta-ala on 1,89 km² ja pinnankorkeus 73,2 m. Järvi on noin 3,5 km pitkä ja 100–400 m leveä (kuva 174). Valuma-alueelle ovat tyypillisiä moreenipeitteiset kalliomäet ja avokalliot (Rainio & Rainio 1986). Johdasjärvi on tyypiltään reittijärvi.

Mannerjäätikön reunan peräännytua on muihinaan Itämeri Johdasjärven altaaseen ja sen pinta oli noin 30 m järven nykyistä pintaa korkeammalla.

Fig. 174. The location of echo-sounding transects and survey points in Lake Johdasjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 175. Johdasjärven tutkimusisteet 1 otetut pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiokarboyonten tulokset. Ylhäällä oikealla pintanäytteen hiilipitoisuus.

Fig. 174. The location of echo-sounding transects and survey points in Lake Johdasjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.
Muilla pisteillä sedimentin kerrosjärjestystä määritettiin maastossa. Kaikuluotaustinjäätä on 4 km.

Tutkimuspiste 1 sijaitsee järven koillispuolella, missä veden syvyys oli 16,5 m. Pitkä näyte ulottuu sedimentin pinnasta 2,98 m:n syvyteen. Näytteen alaosa (2,98–2,60 m) on lustosasvea. Sen päällä on savea (2,60–1,99 m), saviliejuja (1,99–1,32 m), liejuja (1,32–0,06 m) ja saviliejuja (0,06–0 m). Kerrostumissaajatunnelma vastaa syvyys on 1,99 m (kuva 175). Sen yläpuolella hiilipitoisuus kohoaa voimakkaasti vaihdellen, saavuttaa 8 %:n tason runsaan metrin syvyydessä ja pysyy sillä tasolla lähes pintaan saakka. Sedimentin pinnassa hiilipitoisuus alenee nopeasti. Pinta-näytteen perusteella alin hiilipitoisuus on 10–5 cm:n syvyydessä.

Haukijärvi

Haukijärvi sijaitsee Kymijoen vesistöalueen koillisreunalla ja kuuluu Tervon ja Maaningan kuniin. Sen pinta ala on 1,52 km² ja pinnan korkeus 131,4 m. Järvi on varsin avoin (kuva 176). Valuma-alue on moreenimaata ja sen alavimmat paikat ovat soistuneet. Haukijärvi on tyyppitie latvajärvi.

Tutkimuspiste 1 sijaitsee järven pohjoisosassa, missä veden syvyys oli 6,1 m. Pitkä näyte ulottuu sedimentin pinnasta 4,62 cm:n syvyyteen. Näytteen alaosa (4,62–4,40 m) on lustosasvea. Sen päällä on liejusavea (4,40–4,05 m), saviliejuja (4,05–3,00 m) ja liejuja (3,00–0 m). Näyteestä puuttuu lustosasven päällä tavallisesti oleva homogeeninen savi. Savikerrosten syntyminen edellyttää yleensä riittävän syvää vettä. Haukijärven kohdalla muinaisen Itämeri oli matala ja merivarhaiset hyötyvä, joten saven kerrostumiselle ei ollut edellytyksiä.

Fig. 176. The location of survey points in Lake Haukijärvi. Topright shows the location of the lake in the drainage basin delimited by the outlet.
Kuroutumisajankohtaa vastaava syvyys on 4,40 m (kuva 177). Sen yläpuolella hiilipitoisuus kohoa tasaisesti ja saavuttaa 9 %:n tason 1,8 m:n syvyydessä. Pitoisuus kohoa nopeasti 14 %:n tasolle 1,6 m:n syvyydessä ja pysyy siinä lähelle sedimentin pintaa. Näytteen yläosassa pitoisuus laskee pari prosenttiy- sikköä.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 91 g/m². Siitä hiilen osuus on ollut 8,1 g/m². Pitkästä näytteestä ajoitettiin radiohiilimenetelmällä kaksi osana. Aleman osanäytteen ikä on kuroutumisajankohtaan nähden liian vanha, mutta samaa "vikaa" voi olla myös ylemmässä osanäytteessä. Kun tarkastellaan kuroutumisajankohtan ja ylemmän ajoitukseen perustuva laskettuja keskimääräisiä vanhetta, havaitaan molempien varastotauksen perusteella merkittävä liikekeskitys. Alaosan verrattuna kuiva-aineen vanhetta varastoitumisnopeus on hidastunut vajaaseen seinemänteen osaan ja hiilen varastointi liian vanhaksi. Jos ikä olisi nuorempi, pienentisivät kero- nesten väliset erot.

Haukijärven järvisementit sisältävät kuiva-ainetta noin 0,64 milj. tn. Koko pinta-alan laskettuna kuiva-ainetta on keskimäärin 420 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 41 g/m²/v. Kuiva-aineesta on hiiltä noin 56 milj. kg. Koko pinta-alalla laskettua keskimääräinen hiilivarasto on 3,7 g/m²/v.

Kaupunki järven eteläosassa, missä veden syvyys oli 4,2 m. Pitkä näyte ulottuu sedimentin pinnasta 6,43 m:n syvyyteen. Näytteen alaosa (6,43–4,98 m) on saviliehua, ja sen päällä on liehua (4,98–0 m). Kuroutumisajankohtaa vastaavaa syvyyttä ei tavoitettu (kuva 179). Hiilipitoisuus on näytteen alapäässä jo 4 %:n tasolla ja kohoa hitaasti pintaan kohti. Jos alapäätä ikäksi oletetaan järven syntyajankohtaa, saadaan kuiva-aineen keskimääräiset varastointisnopeudet 120 g/m²/v. Siitä hiilen osuus on ollut 12 g/m²/v. Koska kuroutumistaso on syvemmällä, ovat todelliset varastointisnopeudet näitä suuremmat.

Saarijärven kehitykseen on valuma-alueen soistumisen lisäksi vaikutunut altakan täyttäminen. Altakan täytymisessä on valuma-alueen alueen peräänvittävä alueelta noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt laskevyyksien säättämällä tasolla.

Tutkimuspisteitä on yhdeksän (kuva 178). Näytteet laboratoriomäärityksissä varten otettiin yhdelta pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa. Tutkimuspiste 9 sijaitsee järven eteläosassa, missä veden syvyys oli 4,2 m. Pitkä näyte ulottuu sedimentin pinnasta 6,43 m:n syvyyteen. Näytteen alaosa (6,43–4,98 m) on saviliehua, ja sen päällä on liehua (4,98–0 m). Kuroutumisajankohtaa vastaavaa syvyyttä ei tavoitettu (kuva 179). Hiilipitoisuus on näytteen alapäässä jo 4 %:n tasolla ja kohoa hitaasti pintaan kohti. Jos alapäätä ikäksi oletetaan järven syntyajankohtaa, saadaan kuiva-aineen keskimääräiset varastointisnopeudet 120 g/m²/v. Siitä hiilen osuus on ollut 12 g/m²/v. Koska kuroutumistaso on syvemmällä, ovat todelliset varastointisnopeudet näitä suuremmat.

Saarijärven kehitykseen on vaikuttanut altakan täyttäminen. Alttakan täytymisessä on valuma-alueen peräänvittävä alueen peräänvittävä alueelta noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt laskevyyksien säättämällä tasolla.
Saarijärven järvedimentit sisältävät kuiva-ainetta noin 0,42 milj. t. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 330 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 31 g/m²/v. Kuiva-ainesta on hiiltä noin 40 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 32 kg/m² ja keskimääräinen varastoitumisnopeus 2,9 g/m²/v.

Pyhäluoma

Pyhäluoma sijaitsee Kymijoen vesistöalueen itäosassa Pieksämäellä. Sen pinta-ala on 1,24 km² ja pinnan korkeus 105,9 m. Järvi on noin 3 km pitkä, 400 m leveä ja suuntautunut luoteesta kaakkoiseen (kuva 180). Sen valuma-alueelle ovat tyypillisiä luoteesta kaakkoiseen suuntautuneet moreeniselänteet (Glückert 1973). Seläntien väliset laakot ovat soistuneet. Pyhäluoma on tyyppiläinen reittijärvi.

Tutkimuspisteitä on kaksi (kuva 180). Näytteet laboratoriomäärityksistä varten otettiin toiselta pisteeltä ja toisella sedimentin kerroksjärjestys määritettiin maastossa. Kaikuluotauslinja on 3 km.

Tutkimuspiste 3 sijaitsee järven eteläosassa, missä veden syvyys oli 2,6 m. Pitkä näyte ulottuu sedimentin pinnasta 4,51 m:n syvyyteen. Näytteen alaosaa (4,51–3,70 m) on savea. Sen päällä on liejusavea (3,70–3,50 m), saviliejua (3,50–2,20 m) ja liejua
(2,20–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,70 m (kuva 181). Sen yläpuolella hiilipitoisuus kohoaa hitaasti, saavuttaa 8 %:n tason 1,6 m:n syvyydessä ja pysyy sillä tasolla pintaan saakka.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 110 g/m². Siitä hiilen osuus on ollut 7,0 g/m². Näyteestä jätettiin radiohiilimentelmätäksi. Radiohiilimäärä on ollut kaksinkertainen ja siihen sääntöön vastaavaa radioksalmaa. Alemmilla kapeilla on radiohiilipitoisuus, mutta lähinnä vastaavan aikajaksun aikana.

Kuva 180. Luotauslinjan ja tutkimuspisteiden sijainti Pyhäluomalla. Ylhäällä oikealla järven sijainti luusuaan jalostamollakin maa-alueella. Fig. 180. The location of echo-sounding transect and survey points in Lake Pyhäluoma. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 181. Pyhäluoman tutkimuspisteeltä 3 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilialoiutusten tulokset. Ylhäällä oikealla pintanaustainen hiilipitoisuus. Fig. 181. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 3 in Lake Pyhäluoma. Top right shows the carbon content of the surface core.

Pyhäluoman järvestä on kuiva-ainetta noin 0,70 milj. t. Koko pintavalon määrä on keskimäärin 560 kg/m², ja sen keskimääräinen varastointisnopeus on ollut 56 g/m² v. Kuiva-ainetta on saatu 44 milj. kg. Koko pintavalon keskimääräinen hiilivarasto on 35 kg/m² ja keskimääräinen varastointisnopeus 3,5 g/m² v.
Tervajärvi

Mannerjätkön reunan peräänjytyttyä Ensimmäiseltä Salpausselälle oli muinainen Itämeri Baltian jäärivä vaiheessa. Sen vedenpinta oli korkeimmillaan noin 50 m Tervajärven nykyisen pinnan yläpuolella. Vedenpinta kuitenkin laski nopeasti, ja Tervajärvi kuroutui salpausselaten aikana samaan tasoon kuin sen korkeus. Sen yläpuolella hiilipitoisuus vaihtelee aluksi 3 %:n tasolla, kohoaa sitten nopeasti saavuttaen 12 %:n tasoon 2 m:n syvyydessä ja pysyy sitten korkeana tilallaan saakka. Kurottumisen jälkeen tällä paikalla on varastoitunut vuosittain kuiva-ainetta keskimäärin 68 g/m². Siitä hiilen osuus on ollut noin 5,8 g/m².

Tervajärven järvedinistikset sisältävät kuiva-ainetta noin 0,40 milj. tn. Koko pinta-alueella laskettuna kuiva-ainetta on keskimäärin 350 kg/m², ja sen keskimääräinen varastoinnutuus on ollut 30 g/m²/v. Kuiva-ainesta on tieltä noin 34 milj. kg. Koko pinta-alueelle laskettu keskimääräinen hiilivarasto on 30 kg/m² ja keskimääräinen varastoinnutuus 2,6 g/m²/v.

Kuvia:

Kuva 182. Tutkimuspisteiden sijainti Tervajärvellä. Ylhäällä oikealla järven sijainti luusuaan rajoittuvala valuma-alueella.

Fig. 182. The location of survey points in Lake Tervajärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 183. Tervajärven tutkimuspyöreitään 1 otetun pitkän näytteen koostuma, tiheys ja hiilikäytöö. Ylhäällä oikealla pintanäytteen hiilikäytöö.

Fig. 183. The composition, density and carbon content of the long core taken from survey point 1 in Lake Tervajärvi. Top right shows the carbon content of the surface core.
Vehmasjärvi (Suonenjoki)

Vehmasjärvi sijaitsee Kymijoen vesistöalueen itäreunalla Suonenjoella. Sen pinta-ala on 0,47 km² ja pinnan korkeus 141,8 m. Järvi rajoittuu kaksossa moreenipiteisiin kalliomäkiin, jotka kohoavat 40 järven pinnan yläpohjalle. Järven syvin kohta 30 m on näiden mäkiä edustalla. Valuma-alue on enimmäkseen moreenimaaata (Kejonen 2001). Vehmasjärvi on tyyppiltään latvajärvi.

Tutkimuspiste 1 sijaitsee järven eteläosassa, missä veden syvyys oli 30,3 m. Pitkä näyte ulottuu sedimenttikerroksen pinnasta 4,43 m:n syvyyteen. Näytteen alaosassa (4,43–4,34 m) on ohut savikerros (kuva 185). Se ei edusta muinaisen Itämeren vaiheita, vaan on mitä todennäköisimmin syntynyt rantavyöhykkeestä ero-
doituneesta aineksesta. Saven päällä oleva järvisedimen-
ttikerros (4,43–0 m) on lieju. Järven syntyajan-
kohtaa vastaava syvyys on 4,34 m. Sen yläpohjella hiilipitoisuus kohoaa nopeasti 25 %:n tasolle ja pysyy korkeana sedimentin pintaan saakka. Hiilipitoisuuden nopea kohoaminen kuvastaa sedimentaatio-olojen nopeaa vakiintumista, mikä on tyyppistä veden koskematton alueen järville.

Pitkästä näytteestä tehtiin kaksi radiohiilijaotusta, joista alemman ikä vastaa hyvin kehitystilannin perusteella arvioituat Järven syntyajan kohtaa. Järven syntyajan kohdan jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 35 g/m². Siitä hiilen osuus on ollut noin 8,1 g/m². Kun lieju on järven eteläosaan ylemmän ajoiteten osanäytteen kohdalla ja keroon lasketaan keskimääräiset varastoitu-

Kuva 184. Tutkimuspisteiden sijainti Vehmasjärveillä. Ylhäällä vesi

Fig. 184. The location of survey points in Lake Vehmasjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 185. Vehmasjärven tutkimuspisteellä 1 otetun pitkän näytteen

Fig. 185. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Vehmasjärvi. Top right shows the carbon content of the surface core.
nopeudet, todetaan kuiva-aineen ja hiilen varastoutumisnopeuden pysyneen samalla tasolla. Se osoittaa osaltaan nopeaa sedimentaatio-olojen vakiintumista ja olojen säilymistä sen jälkeen vakaina.

Vehmasjärven järvisedimentit sisältävät kuiva-ainetta noin 60 000 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 130 kg/m², ja sen keskimääräinen varastoutumisnopeus on ollut 11 g/m²/v. Kuiva-aineesta on hiiltä noin 14 milj. kg. Koko pinta- alalle laskettu keskimääräinen hiilivarastointi on 29 kg/m² ja keskimääräinen varastoutumisnopeus 2,6 g/m²/v.

Vehmasjärvi (Kuopio)

Vehmasjärvi sijaitsee Kymijoen vesistöalueen itäreunalla Kuopiossa. Sen pinta-ala on 0,41 km² ja pinnan korkeus 137,6 m. Luoteesta kaakkoon liikkunut jäätiköön on uurtanut järvialtaan moreenipeitteisen kalliomaan juurelle (kuva 186). Järven valuma-alue on moreeni- ja turvemaata (Rainio 1980). Vehmasjärvi on tyyppiltään latvajärvi.

Fig. 186. The location of survey points in Lake Vehmasjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 187. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Vehmasjärvi. Top right shows the carbon content of the surface core.
on liejua (5,74–5,45 m), savileiejua (5,45–4,65 m) ja liejua (4,65–0 m). Kuroutumisajankohta vastaava syvyys on 5,78 m.

Hiilipitoisuus on varsin korkea jo järvedimenttikerroksen pohjaosaassa, mikä ilmentää nopeata siirtymistä meren lahdesta pieneksi järveksi. Pitoisuus kuitenkin alenee 3 %:n tasolle runsaan 5 m:n syvydessä, mistä se alkaa kohota päätyen noin 30 %:n tasolle sedimenttikerroksen yläosasassa. Pintaosassa pitoisuus taas alenee valuma-alueen viimeaikaisten maankäytön muutosten takia.

Sedimenttikerroksesta tehtiin viisi radiohiiliajoitusta, mikä mahdollistaa varastointumisnopeuksien tarkastelun kerroksittain. Alimman iän ja koko sedimenttikerroksen keskimääräisten ominaisuuksien perusteella saadaan kuiva-aineen keskimääräisi seksi varastointumisnopeudeksi 75 g/m²/v ja hiilen varastointumisnopeudeksi 13 g/m²/v. Kerrostumana alaosassa kuiva-aineen varastointumisnopeus on ollut keskimääräiseen verrattuna laksinkertainen ja hiilen varastointumisnopeus hieman keskimääräistä pienempi (kuva 188).

Kuva 188. Kuiva-aineen ja hiilen pitkän aikavälin varastointumisnopeus Vehmasjärven tutkimuspisteellä 1. Fig. 188. The long-term accumulation rate of dry matter and carbon at survey point 1 in Lake Vehmasjärvä.

Toiseksi alin kerros on poikkeava. Se on 1,2 m paksu ja syntyviä ajoittutulostosten mukaan 520 vuoden aikana, joten keskimääräisesti kerrostumisnopeudeksi tulee peräti 2,3 mm/v. Koska tiheys ja hiilipitoisuus ovat tavanomaisella tasolla, kerrostumisnopeus on todennäköisesti 7,5 mm/v.

Vehmasjärven järvedimentit sisältävät kuiva-ainetta noin 0,12 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 290 kg/m², ja sen keskimääräinen varastointumisnopeus on ollut 26 g/m²/v. Kuiva-aineesta on hiiltä noin 20 milj. kg. Koko pintalalle laskettu keskimääräinen hiilivarottumisnopeus on 49 kg/m² ja keskimääräinen varastointumisnopeus 4,5 g/m²/v.

Ylimmäinen Sammallampi

Ylimmäinen Sammallampi sijaitsee Kymijoen vesistöalueen eteläosaassa Jaalassa. Sen pinta-ala on 0,33 km² ja pinnan korkeus 74,4 m. Järvi on vajaat 2 km pitkä, noin 200 m leveä ja suuntautunut lännestä itään (kuva 189). Valuma-alueelle ovat tyyppillisä ohuen moreenikerroksen peittämät kalloimäet. Mäkin välissä painanteista on pieniä savikkoja. (Tynni 1970.) Ylimmäinen Sammallampi on tyyppiltään latvajärvi.

Tutkimuspiste 1 sijaitsee järven itäosassa, missä veden syvyys oli 3,5 m. Pitkä näyte ulottuu sedi-
mentin pinnasta 7,25 m:n syvyyteen. Näytteen alaosa (7,25–6,60 m) on lustosavea. Sen päällä on savea (6,60–6,30 m), liejusavea (6,30–6,10 m) ja lieju (6,10–0 m). Kuroutumisajankohtaa vastaava syvyys on 6,30 m (kuva 190). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 3 %:n tasolle. Kohoaminen jatkuu sitten hitaammin vajaan 1 m:n syvyyteen. Lähellä sedimentin pintaa pintanäytteen hiilipitoisuus laskee nopeasti. Pintanäytteen perusteella lasku tapahtuu 20 cm:n syvyydessä. Koska suurten järven tulvat eivät ole ulottuneet Ylimmäisen Sammallammen altaaseen, johtuu sedimentin hiilipitoisuuden vaihtelu valuma-alueella tapahtuneista muutoksista. Järven kulkeutuvan mineralliaineen määrää ovat lisänneet aiemmin metsäpalot ja viime aikoina erityisesti savikkojen viljely.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 220 g/m². Siitä hiilen osuus on ollut 11 g/m². Varastoitumisnopeuksien muutosten selvittämiseksi näyte voidaan jakaa kolmeen osaan 1500 m:n syvyydessä tapahtuneesta hajonemisesta ja yleinen yleisempi hajonemisen aika. samo on havaittavissa myös varastoitumisnopeuksissa. Kuiva-aineen keskimääräiset varastoitumisnopeudet ovat kerrostumisnopeudet 360 g/m²/v, 110 g/m²/v ja 77 g/m²/v ja vastaavat hiilen varastoitumisnopeudet 13 g/m²/v, 7,9 g/m²/v ja 6,2 g/m²/v. Kuiva-aineen varastoitumisnopeuden hidas hitumisen minen on selitetävä valuma-alueen mineralli- maiden huhtoutumisella ja laaksojen osittaisella soistumisella, joskin Ylimmäisen Sammallammen valuma-alueella soita on suhteellisen vähän. Hiilen varastoitumisnopeuden hidas hitumiseen on voitu vaikuttaa valuma-alueen pinnan säätö, ja siitä on ollut merkittävä vaikutus valuma-alueen pinnan hajonemiseen. Kuva 190. Ylimmäisen Sammallammen tutkimuspaikkeelta 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilijaotusten tulokset. Tutkimuspaikkeen sijainti Ylimmäisen Sammallammella. Tutkimuspaikkeen yläpuolella sijaitsee järven sijainti luusuaan rajoittuvalla valuma-alueella. Kuva 189. The location of survey points in Lake Ylimmäinen Sammallampi. Top right shows the location of the lake in the drainage basin delimited by the outlet.
Pieni-Montonen

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 7,8 m. Pitkä näyte ulottuu sedimentin pinnasta 2,97 m:n syvyystä saakka. Näytteen alaosan (2,97–2,82 m) on lustosavea. Sen päällä on savea (2,82–2,70 m), liejusavea (2,70–2,25 m) ja lieju (2,25–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,70 m (kuva 192). Sen yläpuolella hilipitoisuus kohoa aluksi hyvin hitaasti. Runsaan 2 m:n syvyydessä pitoisuus kohoa nopeasti 10 %-n tasolle ja on

![Kuva 191. Tutkimuspisteiden sijainti Pienellä-Montosella. Ylhäällä vasemmalla järven sijaini hiusaana rajottuvalla valuma-alueella. Fig. 191. The location of survey points in Lake Pieni-Montonen. Top left shows the location of the lake in the drainage basin delimited by the outlet.](image1)
Korkeimmillaan sedimentin pinnassa. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 54 g/m². Siitä hiilen osuus on ollut 7,0 g/m².

Pienen-Montosen järvedeminentit sisältävät kuiva-ainetta noin 0,10 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 380 kg/m², ja sen keskimääräinen varastointumisnopeus on ollut 36 g/m²/v. Kuiva-aineesta on hiiltä noin 13 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 50 kg/m² ja keskimääräinen varastointumisnopeus 4,7 g/m²/v.

Mäkijärvi

Mäkijärvi sijaitsee Kymijoen vesistöalueen kollisreunalla ja kuului Kuopion ja Karttulan kunnit. Sen pinta-ala on 0,21 km² ja pinnan korkeus 146,6 m. Valuma-alue rajoittuu etelässä lännessä moreeniteisiin kalliomäkiin, joiden laat kohoaat 50 m järven pinnan yläpuolelle. Moreenimaasto on loivapiirteisempi järven kollispuolella, missä alavimmat paikat ovat soistuneet. Mäkijärvi on tyyppiltään latvajärvi.

Mannerjätkön reunan peräannyttyä ulottui muinaisen Itämerin Mäkijärven altaaseen. Merenpinta oli vain muutamia meterejä järven nykyistä pintaa ylempänä, joten merivaihe jää lyhyeksi ja Mäkijärvi kuroutui Itämerestä Yoldiamerivaiheen aikaan noin 11 200 vuotta sitten.

Tutkimuspisteitä on viisi (kuva 193). Näytteet laboratoriomäärityksiä varten otettiin muinaisen näytteen alaosasta. Meripinta oli vain muutamia meterejä järven nykyistä pintaa ylemänä, joten merivaihe jää lyhyeksi ja Mäkijärvi kuroutui Itämerestä Yoldiamerivaiheen aikaan noin 11 200 vuotta sitten.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 7,7 m. Pitkä näyte ulottuu sedimentin pinnasta 3,59 m:n syvyyteen. Näytteen alaosa (3,59–3,52 m) on liejusava. Sen päällä on liejus (3,52–3,34 m), savilieju (3,34–2,62 m) ja liejus (2,62–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,59 m (kuva 194). Sen yläpuolella hiilipitoisuus kohoaa aluksi nopeasti, mutta alenee sitten 5 %:n tasolle. Pitoisuus alkaa kokonaisesti 2,6–3,0 m:n syvyydessä, päätyy runsaan 20 %:n tasolle 1,9–2,0 m:n syvyydessä ja pysyy korkeana sedimentin pintaan säteilemässä.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 7,7 m. Pitkä näyte ulottuu sedimentin pinnasta 3,59 m:n syvyyteen. Näytteen alaosa (3,59–3,52 m) on liejusava. Sen päällä on liejus (3,52–3,34 m), savilieju (3,34–2,62 m) ja liejus (2,62–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,59 m (kuva 194). Sen yläpuolella hiilipitoisuus kohoaa aluksi nopeasti, mutta alenee sitten 5 %:n tasolle. Pitoisuus alkaa kokonaisesti 2,6–3,0 m:n syvyydessä, päätyy runsaan 20 %:n tasolle 1,9–2,0 m:n syvyydessä ja pysyy korkeana sedimentin pintaan säteilemässä.

Fig. 193. The location of survey points in Lake Mäkijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 194. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Mäkijärvi. Top right shows the carbon content of the surface core.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 45 g/m². Siitä hiilen osuus on ollut 7,2 g/m². Varastoitumisnopeudet ovat kuitenkin vaihdelle eri kehitysvaiheiden aikaan. Jos pitkä näyte jaetaan kolmeen osaan radiohiililöytöjen mukaan, todetaan keskimääräisten varastoituksennopeuksien hidastuneen nykyaikaa kohti. Koska valuma-alueelta järven kulkeutuvan mineraalientumisen määrä on vähentynyt vuosituhansien kulueessa, on kuiva-aineen varastoitumisnopeus hidastunut huomattavasti enemmän kuin hiilen varastoitumisnopeus.

Mäkijärven järvedensäätimien sisällä on kuiva-ainetta noin 81 000 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 390 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 34 g/m²/v. Kuiva-ainesta on hiiltä noin 13 milj. kg. Koko pinta-alalle laskettu keskimääräinen kiviharvasto on 62 kg/m² ja keskimääräinen varastoitumisnopeus 5,5 g/m²/v.

Hanhijärvi

Järvedimentit kuiva-aineen ja hiilen varastona. Sekä kuiva-aineen että hiilen keskimääräinen varastoitumisnopeus on ollut viimeksi kuluneen 4500 vuoden aikana vain kolmasosa sitä edeltäneen ajajakson keskimääräisestä varastoitumisnopeudesta. Jos ylempään osanäytteeseen on kulkeutunut kerrostumisajanjohtoa vanhemmasta eloperäistä aineesta, selittää se varastoitumisnopeuksien hidastumisen.

Altaan vähittäinen täyttyminen on muuttanut järven sedimentaatio-oloja. Tutkimuspisteittäin laskettu keskimääräinen täyttymisaste on peräti 70 %. Altaan mataloituminen on mitä todennäköisimmin vaikuttautunut myös hiilen varastoitumisnopeuteen. Tutkimuspiste 1 kohdalla alkuperäisestä veden syvyydestä (6,4 m) on jäljellä enää kolmasosa (2,0 m). Järven madaltuessa sen vesitilaa pienenee ja veden vaikutus nopeutuu. Nopeammin vaihtuva vesitilaa voi parantaa happitiannetta sedimentin pinnassaa. Hapekaampien olosuhteiden takia taas suurempi osa eloperäistä aineesta hajoaa. Toinen eloperäisen aineen hajomista nopeuttava tekijä on ollut sedimentin pintaosan lämpötilankohoaminen, sillä altaan madaltuessa veden kerrostuneisuus vähenee ja sedimentitkerrokseen rajoittuva vesimassa pääsee lämpenemään. Hajoavan osuuden lisääntyminen järven madaltuessa on voinut hidastaa hiilen varastoitumisnopeutta ja alentaa sedimentin hiilipitoisuutta pintaa kohti.

Hanhijärven järvisäätämiset sisältävät kuiva-ainetta noin 0,14 milj. kg. Koko pinta-alalle laskettu kuiva-ainetta on keskimäärin 830 kg/m² ja sen keskimääräinen varastoitumisnopeus on ollut 85 g/m²/v. Kuiva-ainetta on hiiltä noin 11 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 6,5 g/m²/v.

Keskijärvi

Keskijärvi sijaitsee Kymijoen vesistöalueen keskiosassa Luhangalla Tammijärven ja Päijänteennon Tammiselän välissä. Sen pinta-ala on 0,12 km² ja sen keskimääräinen varastoitumisnopeus on ollut 85 g/m²/v. Kuiva-ainetta on hiiltä noin 11 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 6,5 g/m²/v.

Keskijärven järviset yhteydet kuiva-aineen ja hiilen varastona. Sekä kuiva-aineen että hiilen keskimääräinen varastoitumisnopeus on ollut viimeksi kuluneen 4500 vuoden aikana vain kolmasosa sitä edeltäneen ajajakson keskimääräisestä varastoitumisnopeudesta. Jos ylempään osanäytteeseen on kulkeutunut kerrostumisajanjohtoa vanhemmasta eloperäistä aineesta, selittää se varastoitumisnopeuksien hidastumisen.

Altaan vähittäinen täyttyminen on muuttanut järven sedimentaatio-oloja. Tutkimuspisteittäin laskettu keskimääräinen täyttymisaste on peräti 70 %. Altaan mataloituminen on mitä todennäköisimmin vaikuttautunut myös hiilen varastoitumisnopeuteen. Tutkimuspiste 1 kohdalla alkuperäisestä veden syvyydestä (6,4 m) on jäljellä enää kolmasosa (2,0 m). Järven madaltuessa sen vesitilaa pienenee ja veden vaikutus nopeutuu. Nopeammin vaihtuva vesitilaa voi parantaa happitiannetta sedimentin pinnassaa. Hapekaampien olosuhteiden takia taas suurempi osa eloperäistä aineesta hajoaa. Toinen eloperäisen aineen hajomista nopeuttava tekijä on ollut sedimentin pintaosan lämpötilankohoaminen, sillä altaan madaltuessa veden kerrostuneisuus vähenee ja sedimentitkerrokseen rajoittuva vesimassa pääsee lämpenemään. Hajoavan osuuden lisääntyminen järven madaltuessa on voinut hidastaa hiilen varastoitumisnopeutta ja alentaa sedimentin hiilipitoisuutta pintaa kohti.

Hanhijärven järvisäätämiset sisältävät kuiva-ainetta noin 0,14 milj. kg. Koko pinta-alalle laskettu kuiva-ainetta on keskimäärin 830 kg/m² ja sen keskimääräinen varastoitumisnopeus on ollut 85 g/m²/v. Kuiva-ainetta on hiiltä noin 11 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 6,5 g/m²/v.

Fig. 197. The location of survey points in Lake Keskijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Hannu Pajunen
Valkeinen

Valkeinen sijaitsee Kymijoen vesistöalueen itäreunalla Suonenjoella. Sen pinta-ala on 0,10 km² ja pinnan korkeus 100,1 m. Lampi on kauittaalta harjun ympäröimä ja syntynyt peräkkäisten suppien muodostamaan painanteeseen (kuva 199). Valkeinen on tyypiltään latvajärvi.

Tutkimuspiste 1 sijaitsee luoteisosaan syvänteessä, missä veden syvyys oli 11,3 m. Pitkä näyte ulottuu sedimentin pinnasta 7,66 m:n syvyyteen. Näytteen alapää (7,66–7,44 m) on hiekkaa, ja hiekan päällä on liejua (7,44–0 m). Kuroutumisajankohtaa vastaava syvyys on 7,44 m (kuva 200). Sen yläpuolella hiilipitoisuus kohoa nopeasti runsaan 20 %:n tasolle,
mutta putoaa sitten noin 6 %:n tasolle ja pysyy siinä lähes pintaan saakka.

Pitkästä näytteestä ajoitettiin kaksi osanäytettä radiohiilimenetelmällä. Alempi osanäyte on liejukerroksen pohjalta, ja sen ikä on kehityshistorian perusteella arvioituun kuroitumisajankohtaan nähden liian vanha. Arvioidun kuroitumisajankohtdan jälkeen tälle paikalle on varastoutunut vuosittain kuiva-ainetta keskimäärin 92 g/m². Siitä hiilen osuus on ollut 6,3 g/m². Kerrostuman yläosassa kuiva-aineen ja hiilen varastoitumisnopeudet ovat keskimäärääistä pienempiä.

Valkeisen järвисäätö on sisältävät kuiva-ainetta noin 28 000 tn. Koko pinta-ala on laajennettuna kuiva-ainetta on keskimäärin 280 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 28 g/m²/v. Kuiva-ainesta on hiiltä noin 1,9 milj. kg. Koko pinta-ala on laskettu keskimääräinen hiilivarasto on 19 kg/m² ja keskimääräinen varastoitumisnopeus 2,0 g/m²/v.

Koskenkylänjoen vesistöalue (16)

Koskenkylänjoen vesistöalue sijaitsee Salpausselkien eteläpuolella Suomenlahden rannikolla (kuva 201). Vesistöalueen pinta-ala on noin 900 km² ja keskimääräinen korkea 61 m. Mannerjäättömän reunan peräännyttäjä alue kuulostaa Artjärven ja Lapinjärven kuntoon. Sen pinta-ala on 12,9 km² ja pinnan korkeus 39,8 m.

Koskenkylänjoen vesistöalueen maalajijakauma on edellä kuvattuihin vesistöalueisiin nähden poikkeava. Koskenkylänjoen vesistöalueella savikkojen osuus on 34 %, moreenimaiden 30 % ja kallioiden 20 %. Kalliolaiteita on poikkeuksellisin. Sedimentaatio-olojen kannalta merkittävä on savikkojen runsaus ja toisaalta järvien ja turvemaiden vähäisyys.

Vesistöalueen keskiosasta tutkittiin yksi järvi, jonka kautta virtaavat vesistöalueen pohjoisosan vedet.

Kuva 201. Koskenkylänjoen vesistöalueelta tutkitun Pyhäjärven sijainti.

Pyhäjärvi

maastossa. Kaikuluotauslinjaa on yhteensä 8 km.

Tutkimuspiste 1 sijaitsee järven eteläosassa, missä veden syvyys oli 65,6 m. Pitkä näyte ulottuu sedimentin pinnasta 6,31 m:n syvyteen. Suurin osa näyteestä (6,31–1,00 m) on saviliejua. Sen päällä on liejusavea (1,00–0,40 m) ja uudelleen saviliejua (0,40–0 m). Kuroutumisajankohtaa vastaava syvyys ei tavoitettu (kuva 203). Hiilipitoisuus on suurin massassa osassa näytettä 3,5 %:n tasolla. Pitoisuuden aleneminen runsaan metrin syvyydessä liittyy todennäköisesti maankäytön muutoksiin valuma-alueella. Kaskeaminen ja peltoviljelyn aloittaminen lisäsivät mineraalimaiden eroosiota ja mineraaliaineksen ja ravinteiden kulkeutumista järveen.

Pitkää näytettä ei ole ajoittettu, joten tämän aineiston perusteella ei voida laskea pistekohdaisia varastointisopeuksia. Jonkinlainen arvio varastointisopeudesta kuitenkin saadaan käyttämällä tämän tutkimuksen tiheys-ja-hiilipitoisuustietoja ja Kukkosena ja Tynnin (1970) samasta syvänteestä aiemmin tutkiman näytteen ajoitustulosta. Viimeksi kuluneiden 3700 vuoden aikana töille paikalle on varastoituun vuosittain kuiva-ainetta keskimäärin 310 g/m². Siitä hiilen osuus on ollut 8,9 g/m².

Pyhäjärven syväntein järvesimenttikerros on poikkeuksellisen paksu. Tutkimuspisteeltä 1 otettiin rinnakkainen 11,56 m pitkä näyte, mikä sekään ei ulottunut kuroutumisajankohtaa vastaavaan syvyyteen. Keskimääräisen kerrostumisnopeuden täytyy siten olla vähintään 1,3 mm vuodessa, mikä taas keskimääräistä suuremmannakin tiheyden kanssa johtaa suureen kuiva-aines tai kuivaainenopeuteen. Pyhäjärven järvesimentit sisältävät kuiva-ainetta noin 20 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 1500 kg/m², ja sen keskimääräinen varastointisnopeus on ollut 170 g/m²/v. Kuivaaineesta on hiiltä noin 620 milj. kg. Koko pinta-alalle laskettua keskimääräinen hiilikonevarasto on 48 kg/m² ja keskimääräinen varastointisnopeus 5,3 g/m²/v.
SIUNTIONJOEN VESISTÖALUE (22)

Siuntionjoen vesistöalue sijaitsee Suomenlahden rannikolla ja rajoittuu luoteisreunalta Ensimmäiseen Salpausselkään (kuva 204). Vesistöalueen pinta-ala on noin 490 km2 ja keskimääräinen korkeus 59 m. Mannerjäätkön reunan peräännyttäytyvä koko vesistöalue jää muinaisen Itämeren vedenpinnan alle.

Kolmasosa vesistöalueesta on kalliomialTT, joita voi peittää ohut epäyhtenäinen moreenikerros. Savikkojen osuus on 28 %, moreenimaan 14 % ja hiekka- ja soramann 12 %. Sedimentaatio-ojolen kannalta merkittävä on savikkojen runsaus. Vesistöjä ja turvemaita on vain vähän.

Vesistöalueelta tutkittiin yksi järvi, jonka valumaalue käsittää pienen osan vesistöalueesta.

![Kypiärijärvi](image)

Kypiärijärvi

Kypiärijärvi sijaitsee Siuntionjoen vesistöalueen pohjoisosassa Vihdissä. Sen pinta-ala on 0,54 km2 ja pinnan korkeus 44,7 m. Valuma-alueelle ovat tuypillisiä kalliomialTT, jotka kohoavat 40–60 m järven pinnan yläpuolelle. Mäkiin rinteitä peittää moreeni, kun taas mäkijen välisissä painanteissa on silttiä ja savea (Virkkala 1964). Kypiärijärvi on tuypiltään latvajärvi.

Mannerjäätkön reunan peräännyttäytyä ollut Kypiärijärven kohdalla muinaisen Itämeri ja sen syvyys oli noin 100 m. Monien kehitysvaiheiden myötä vedenpinta laski, ja Kypiärijärvi kuroutui Itämerestä Ancylusjärven vaiheen aikana noin 9200 vuotta sitten. Siitä alkaen laskukynnyn on säädettä vedenpinnan tasoa.

Tutkimuspisteitä on viisi (kuva 205). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastoissa.

Tutkimuspiste 1 sijaitsee järven pohjoisosassa, missä veden syvyys oli 6,1 m. Pitkä näyte ulottuu sedimentin pinnasta 6,03 m:n syvyyteen. Näytteen alaosa (6,03–2,90 m) on saviliejua. Sen pääällä on liejua (2,90–0,26 m) ja saviliejua (0,26–0 m). Kuroutumisajankohtaa vastaavaa syvyyttä ei tavoitettu, mutta näytteen alapäästä tehdyt radiohiiliäjoitukset perusteella se ei voi olla kaukana (kuva 206). Hiilipitoisuus on näytteen alapäässä 4 %.n tasolla ja kohoaa siitä hitaasti pintaa kohti. Näytteen yläpäässä pitoisuus kohoaa runsaan 10 %:n tasolle, mutta laskee pintaan kohti 4 %:iin.

Viimeksi kuluneiden 9000 vuoden aikana tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 230 g/m2. Siitä hiilen osuus on ollut 13 g/m2. Kun pitkä näyte jaetaan radiohiiliäjoitukset mukaan kolmeen osaan ja kerroksille lasketaan keskimääräiset varastointumisnopeudet, havaitaan että kuiva-aineen täyttyminen hiilen varastointumisnopeuden hidastunee nykyikää kohti.

Kypiärijärven järvisedimentit sisältävät kuiva-ainetta noin 0,38 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 700 kg/m2, ja sen keskimääräinen varastointumisnopeus on ollut 76 g/m2/v. Kuiva-aineesta on hiiltä noin 20 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 38 kg/m2 ja keskimääräinen varastointumisnopeus 4,1 g/m2/v.
Kuva 205. Tutkimuspisteiden sijainti Kypärijärvellä. Ylhäällä oikealla järven sijainti luusuaan rajoittuvalla valuma-alueella.
Fig. 205. The location of survey points in Lake Kypärijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 206. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Kypärijärvi. Top right shows the carbon content of the surface core.
KARJAANJOEN VESISTÖALUE (23)

Karjaanjoen vesistöalue sijaitsee Suomenlahden rannikolla ja rajoittuu kaakkoisreunalta Ensimmäiseen Salpausselkään (kuva 207). Vesistöalueen pinta-ala on noin 2000 km² ja keskimääräinen korkeus 80 m. Mannerjäätikön reunan peräännyttä ypeittä munainen Itämeri lähes koko vesistöalueen.

Vesistöalueesta on moreenimaata 29 %, kalliota 19 %, savikkoja 18 %, sora- ja hiekkaa 15 % ja vesistöjä 13 %. Vesistöalueelta tutkittiin yksi järvi.

Vahermanjärvi

Mannerjäätikön reunan peräännyt ylottui munainen Itämeri Vahermanjärvien altaaseen ja sen pinta oli vajaat 10 m järven nykyisen pinnan ylempänä. Maankuoren kohotessa vedenpinta laski ja Vahermanjärvi kuroutui Itämerestä Yoldiameri- vaiheen aikana noin 11 300 vuotta sitten. Siitä alkaen laskukynnyks on säädellyt järven vedenpinnan tasoa.

Tutkimuspisteitä on kuusi (kuva 208). Näytteet laboratoriomäärityksiä varten otettiin yhdeksi pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 17,5 m. Pitkä näyte ulottuu sedimentin pinnasta 2,70 m:n syvyyteen. Näytteen alaosa (2,70–2,20 m) on lustosavea. Sen päältä on savea (2,20–2,00 m), liejusavea (2,00–1,74 m), liejua (1,74–1,58 m), saviliejuja (1,58–1,45 m) ja liejua (1,45–0 m). Kuroutumisajankohtaa vastaava syvyys

Kuva 207. Karjaanjoen vesistöalueelta tutkitun Vahermanjärven sijainti.
Fig. 207. The location of studied Lake Vahermanjärvi in the Karjaanjoki River drainage basin.

Kuva 208. Tutkimuspisteiden sijainti Vahermanjärveillä. Ylhäällä vasemmalla järven sijainti luuvaan rajoittuvalla valuma-alueella.
Fig. 208. The location of survey points in Lake Vahermanjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.
on 2,00 m (kuva 209). Sen yläpuolella hiilipitoisuus kohoa aluksi nopeasti, laskee tilapäisesti 1,5 m:n syvyydessä, saavuttaa 16 %:n tason 0,9 m:n syvyydessä ja pysyy sitten korkeana pintaan saakka.

Hiilipitoisuuden tilapäinen aleneminen 1,5 m:n syvyydessä viittaa veden pinnaan nopean laskuun tai altaan reunalla tapahtuneeseen maanvyörymään. Koska Itämeren myöhemmät vaiheet eivät ulottuneet Vahermanjärven altaaseen, täytyy syiden joka tapauksessa olla paikallisia. Pintanäytteet osoittavat hiilipitoisuuden alenevan jyrkästi aivan sedimenttikerroksen pinnaassa. Se liittyy viimeaikaiseen maankäytön ja muutoksiin valuma-alueella.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 30 g/m². Siitä hiilen osuus on ollut 3,3 g/m². Kun varastoitusnopeudet lasketaan kolmelle kuroutumistason, radiohiilijonoitusten ja pinnaan jääneeksi kerrokselle, havaitaan kuiva-ainen varastoitusnopeuden hidastuneen nykyavolin kohdalle, mutta hiilen varastoitusnopeuden pysyneen samalla tasolla. Vahermanjärven aallon suojasta ja mäkinä on mahdollista määrällisesti kuroutumisen jälkeen epäpystymiseksi jyrkimpiä virtauksia. Koko suojasta järvi valmistui noin 0,24 milj. tn. Koko pinta-alalla laskettuna kuiva-ainetta on keskimäärin 120 kg/m², ja sen keskimääräinen varastoitumisnopeus on 11 g/m²/v.

Kuva 209. Vahermanjärven tutkimuspiirteet eli otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilijonoitusten tulokset. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 209. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Vahermanjärvi. Top right shows the carbon content of the surface core.

Vahermanjärven järvestä on keskimäärin 13 kg/m² ja keskimääräinen varastoitumisnopeus on 13 kg/m²/v.

Kuva 210. Eurajoen vesistöalueelta tutkittu Pyhäjärven sijainti. Fig. 210. The location of studied Lake Pyhäjärvi in the Eurajoki River drainage basin.
Pyhäjärvi sijaitsee Eurajoen vesistöalueen keski- osassa ja kuuluu Säkylän, Euran ja Yläneen kunnii. Sen pinta-alaa on 154 km² ja pinnan korkeus 44,9 m. Järvi on avoin, noin 25 km pitkä, 5–10 km leveä ja suuntautunut pohjoisluoteesta etelääpäädökoon (kuva 211). Järvi on lähes tasapohjainen ja matala veden syvyyden vaihdella tavallisesti 5–7 m. Ainut syvään on järven länkipuolella, missä veden syvyys ylittää kapealla kaistalla 20 m. Pyhäjärvi on tyyppiltään latvajärvi.

Tutkimuspisteitä on kuusi (kuva 211). Näyteet laboratoriomääritystensä varten otettiin yhdeltä pisteeltä. Muiden pisteiden kairaustuloksia käytettiin.

Kuva 211. Luotauslinjojen ja tutkimuspisteiden sijainti Pyhäjärvellä.
Ylhäällä oikealla järven sijainti luussaan rajottuvalla valuma-alueella.
Fig. 211. The location of echo-sounding transects and survey points in Lake Pyhäjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 212. Pyhäjärven tutkimuspisteeltä 1 otetun pitkän näyteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus.
Fig. 212. The composition, density and carbon content of the long core taken from survey point 1 in Lake Pyhäjärvi. Top right shows the carbon content of the surface core.
tulkittaessa luotausprofiteja. Kaikuluotauslinjaa on yhteensä 35 km.
Tutkimuspiste 1 sijaitsee länsiosan syvänteessä, missä veden syvyys oli 26,6 m. Pitkä näyte ulottuu sedimentin pinnasta 6,45 m:n syvyteen. Näytteen alaosaa (6,45–4,32 m) on savea ja yläosa (4,32 0 m) saviliejuaa. Kuroutumisajankohtaa vastaava syvyys on 4,32 m (kuva 212). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 4 %:n tasolle ja pysyy siinä pintaan saakka. Hiilipitoisuuden tilapäinen aleneminen lähellä sedimentin pintaa johtuu vedenpinnan laskun seurauksena. Kuroutumuksen jälkeen tälle paikalle on varastoitunut kuiva-ainetta keskimäärin 220 g/m². Siitä hiilen osuus on ollut 7,7 g/m².
Pyhäjärven pohjasta noin 55% on järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 56 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 360 kg/m², ja sen keskimääräinen varastotimo on ollut 58 g/m²/v. Kuiva-aineesta on hiiltä noin 2000 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 13 kg/m² ja keskimääräinen varastotimonepeus 2,0 g/m²/v.

KOKEMÄENJOEN VESISTÖALUE (35)

Kokemäenjoen vesistöalue kerää Järvi-Suomen läntisimmän osan vedet ja johtaa ne Kokemäenjoen kautta Selkämereen (kuva 213). Vesistöalueen pinta-ala on noin 27 000 km² ja keskimääräinen korkeus 120 m. Muinaisen Itämeren ylin ranta on alueen kaakkoisosassa noin 130 m, mistä se kohaa luoteeseen päääänne 200 m:n korkeuteen. Vedenkoskemattomia alueita on varsinkin vesistöalueen pohjoisosassa. Maankuoren kallistuminen on vaikuttanut monien suureten järven kehitykseen. Vaikutukset sedimentaatio-oeloihin eivät kuitenkaan ole olleet yhtä draamattisia kuin Vuoksen ja Kymijoen vesistöalueilla.
Vestistöaluesta on moreenimaata 40 %, savikkoa 16 %, turvemaata 12 % ja vestistöjä 12 %. Savikkoja on erityisesti vestistöalueen eteläosassa ja turvemaata pohjoisosassa. Muihin Etelä-Suomen suuriin vestistöalueisiin verrattuna Kokemäenjoen vesistöalueella on savikkojen osuus suurempi ja vestistöjen osuus pienempi.
Kokemäenjoen vesistöalueelta tutkittiin yhdeksänkertoista järveä, joista kuusi on suuria yli 100 km²:n järviä.
Kuva 213. Kokemäenjoen vesistöalueelta tutkittujen järvien sijainti.
Fig. 213. The location of the studied lakes in the Kokemäenjoki River drainage basin.
Näsijärvi

Näsijärvi sijaitsee Kokemäenjoen vesistöalueen keskiosassa Kurun ja Tampereen välissä. Järven pinta-ala on 265 km² ja pinnan korkeus 95,4 m. Kallioperän rakenne kuvastuu järven muodossa. Etelä–pohjois-suunnassa järvi on noin 40 km pitkä, ja sen leveys vaihtelee kapeikkojen vajaasta kilometristä selkävesien reiluun kymmeneen kilometriin (kuva 214). Järven keskisyvyys on 14,1 m (Kuusisto 1992), ja se on siten Suomen syvimpiä suurjärviä. Näsijärvi on tyyppiluoti reittijärvi.

35 km.

Tutkimuspiste 1 sijaitsee Koljonselällä järven keskiosassa, missä veden syvyys oli 50,0 m. Pitkä näyte ulottuu sedimentin pinnasta 6,40 m:n syvyteen. Näytteen alaosa (6,40–5,40 m) on lustosavetta. Sen päällä on savea (5,40–2,45 m), saviliejua (2,45–0,15 m) ja saviliejua (0,10–0 m). Suurin osa sedimenttikerroksesta on peräisin järven kuroutumista edeltäneeltä ajalta, sillä kuroutumisajankohtaa vastaava syvyys on 2,45 m (kuva 215). Sen yläpuolella sedimentin hiilipitoisuus kohoaa ja savuttaa suurimman arvonsa 0,6 m:n syvyydessä. Lähellä pintaa pitoisuus alenee nopeasti, mikä todennäköisesti johtuu eroosion voimistumisesta järven valuma-alueella. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 75 g/m². Siitä hiilen osuus on ollut 2,6 g/m².

Tutkimuspiste 2 sijaitsee Näsiselällä järven eteläosassa, missä veden syvyys oli 40,5 m. Pitkä näyte ulottuu sedimentin pinnasta 6,58 m:n syvyteen. Näytteen alaosa (6,58–3,69 m) on lustosavetta. Sen päällä on homogeenista savea (3,69–1,32 m), liejusavea (1,32–1,15 m) ja saviliejua (1,15–0 m). Savikerrokset ovat peräisin järven kuroutumista edeltäneeltä ajalta.

Kuva 215. Näsisjärven tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. **Fig. 215.** The composition, density and carbon content of the long core taken from survey point 1 in Lake Näsijärvi. Top right shows the carbon content of the surface core.

Kuva 216. Näsisjärven tutkimuspisteeltä 2 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. **Fig. 216.** The composition, density and carbon content of the long core taken from survey point 2 in Lake Näsijärvi. Top right shows the carbon content of the surface core.
Kuroutumisajankohtaa vastaava syvyys on 1,32 m (kuva 216). Sen yläpuolella sedimentin hiilipitoisuus kohoaa melko tasaisesti. Läheillä pintaa pitoisuus kuitenkin laskee tilapäisesti.

Näsiselän pitkää näytettä ei ole ajoitettu, joten syitä hiilipitoisuuden alenemiseen näytteen yläosasssa voidaan vain arvata, Tasaisen sedimentaationopeuden mukaan pitoisuuden aleneminen olisi alkanut noin 1800 vuotta sitten, joten se tuskivin on ihmistoiminnan aiheuttama. Hiilipitoisuuden aleneminen voi sitä vastoin liittyä Tammerkosken puhekamista seuranneeseen vedenpinnan laskuun. Tällöin virtaussuunnan muutos olisi merkinnyt sedimentaation huomattavaa hidastumista. Kuroutumista seuranneiden kahden vuosituhannen ajan Näsiselkä on sijainnut vesireitin latvoilla lähellä vedenjakajaa. Virtaussuunnan muutoksen jälkeen sen sijainti suhteessa valuma-alueeseen siirtyi noin 100 km alajuoksulle päin. Kuroutumisen jälkeen tällä paikalla on varastoitunut vuosisittain kuiva-ainetta keskimäärin 39 g/m². Siitä hiilen osuus on ollut 1,7 g/m².

Näsisijärveltä varastoitumisnopeudet hidastuvat alajuoksulle päin, sillä valuma-alueelta peräisin oleva aines pyrkiin sedimentoitumaan ensimmäiseen mahdolliseen altaaseen. Näsisijärven pohjasta noin 30 % järvesiin putoa noin 28 milj. t kuiva-ainetta. Koko pinta-ala on noin 110 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 11 g/m²/v. Kuiva-aineesta on hiiltä noin 1100 milj. kg. Koko pinta-ala on noin 4,2 kg/m² ja keskimääräinen varastoitumisnopeus 0,44 g/m²/v.

Längelmävesi

Vedet laskivat Vesijärvestä Sarsankosken autta Roineen pohjoisosaan (Palmén 1903). Maankuoren kallistumisen takia vedenpinta laski nopeasti noin 4 m ja alkuperäinen lasku-ussia kuiviui. Seuraava merkittävä vedenpinnan muutos tapahtui vuonna 1830, kun Kangasalan harjun poikki kaivettiin kanava. Siitä lähtien Längelmäveden vedet ovat laskeneet Roineeseen. Uusi lasku-ussia alensi Längelmäveden pintaa 2 m ja paljasti 30 km² järven pohjaa (Renqvist 1951).

Tutkimuspisteitä on neljä (kuva 217). Yhdeeltä pisteeiltä otettiin näytteet laboratoriomäärittelyihin, ja muilla piesteillä sedimentin kerrosjärjestys määritettiin maasta. Kaikuluotaulinjakaa on yhteensä 37 km.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 11,5 m. Pitkä näyte ulottuu sedimentin pinnasta 5,67 m:n syvyyteen. Näytteen alaosa (5,67–4,31 m) on lustosavea. Sen päällä on savea (4,31–2,75 m), liejusavea (2,75–1,30 m), savilejua (1,30–0,51 m) ja uudelleen liejusavea (0,51–0 m). Kuroutumisajankohdan vastaava syvyys on 2,75 m (kuva 218). Sen yläpuolella hiilipitoisuus pysyy yhden prosentin tasolla 1,5 m:n syvyyteen saakka. Maksimihiilipitoisuus (3,7 %) saavutetaan 0,6 m:n syvyydessä, mutta näytteen yläosassa pitoisuus on tasainen laskee nopeasti. Pitoisuuden aleneminen liittyy vedenpinnan laskuun 400 vuotta sitten, jolloin matalaan veteen joutuneet alueet alkoivat erooida ja erroonut aines kulkeutua syvänteisiin. Seuraavan noin 230 vuotta myöhemmin tapahtuneen vedenpinnan laskun seurauksista eivät pitkässä näytteessä, sillä järvi ei vielä ehtinyt vakituesta edellisen vedenpinnan laskun jäljiltä.

Kuroutumisen jälkeen tilalle paikalle on varastoitunut vuosittain kuiva-aineeksi keskimäärin 120 g/m². Siitä hiilen osuus on ollut 2,1 g/m². Paikan sedimentaatioolot muuttuvat ratkaisevasti 400 vuotta sitten, jolloin kuiva-aineksi keskimääräinen varastoituinsnopeus kasvoi yli viisinkertainen ja hiilen varastoituinsnopeus lähes viisinkertaineksi. Längelmäveden pohjasta noin 35 % on järvise- dimenttejä, ja ne sisältävät noin 42 milj. t:n kuiva-ainetta. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 230 kg/m², ja sen keskimääräinen varastoituinsnopeus on ollut 24 g/m²/v. Kuiva-aineesta on hiilistä noin 750 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 4,2 kg/m² ja keskimääräinen varastoituinsnopeus 0,43 g/m²/v.
Vanajavesi

Vanajavesi

Fig. 219. The location of echo-sounding transects and survey points in Lake Vanajavesi. Top right shows the location of the lake in the drainage basin delimited by the outlet.
(kuva 220). Sen yläpuolella hiilipitoisuus pysytee jarrumaisen tasolla 3,5 m:n syvyyteen saakka, mutta alkaa sitten kohota hitaasti ja on korkeimmillään vajaan metrin syvyydessä. Hiilipitoisuuden aleneminen lähellä pintaa on keskimäärin 300 g/m². Siitä hiilen osuus on ollut 7,5 g/m².

Vanajaveden pohjasta noin 35% on järvisedimenttejä, ja ne sisältävät noin 72 milj. t kuiva-ainetta. Koko pinta-alalle laskettuna kuiva-ainettu on keskimäärin 400 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 43 g/m²/v. Kuiva-ainaesta on hiiltä noin 1800 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on noin 10 kg/m² ja keskimääräinen varastoitumisnopeus 1,1 g/m²/v.

Pyhäjärvi

Kuva 221. Luotauslinjojen ja tutkimuspisteiden sijainti Pyhäjärvellä. Ylhäällä vasemmalla järven sijainti luusuaan rajoittavalla valuma-alueella.

Fig. 221. The location of echo-sounding transects and survey points in Lake Pyhäjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Tutkimuspiste 1 sijaitsee järven pohjoisosassa, missä veden syvyys oli 15,7 m. Pitkä näyte ulottuu sedimentin pinnasta 6,72 m:n syvyysteen saakka. Näytteen alaosa (6,72–5,57 m) on lustosavea. Sen pääällä on savea (5,57–1,90 m), lieusavea (1,90–1,20 m), saviliejuva (1,20–0,38 m), lieusavea (0,38–0,25 m) ja saviliejuva (0,25–0 m). Kuroutumisajankohtaa vastaava syvyys on 1,90 m (kuva 222). Sen yläpuolella hiilipitoisuus kohoaa hitaasti ja saavuttaa 2 %:n tason 0,9 m:n syvyydessä. Järvedimenttikerroksen yläosassa pitoisuus vaihtelee voimakkaasti.

Ylempi lieusavikerros tekee näytteen kerrosjärjestyksestä poikkeavan. Sen syntyessä järveen kulkeutui runsaasti minerailiainesta. Kerros on mitä todennäköisemmin...
köisimmin syntynyt Tammerkosken puhkeamisen yhteydessä noin 7500 vuotta sitten. Uoman kulunisen takia Pyhäjärven kulkeutui Pyyminenharjusta suuret määrät mineraaliainesta. Samalla Pyhäjärven valuma-aluea ja edellytykset aineksen kerrostumiselle huononivat pysyvästi. Suurin osa järvisedimenttikerroksesta on siinä tapauksessa syntynyt kuroutumista seuranneiden 1500 vuoden aikana. Pitkän näytteen järvisedimenttikerrosta ei ole ajoitettu, joten sen kytkeminen kehityshistoriaan on toistaiseksi epätavallista. Kuroutumisen jälkeen sitä on varastoidun vuosittain kuiva-ainetta keskimäärin 91 g/m². Siitä hiilen osuus on ollut 1,7 g/m².

Pyhäjärven eteläosan sedimentit ovat kaasupitoisia (vrt. Virkkala 1949) ja läpäisevät huonosti kaikuluotaimen signalia, mikä alentaa luotausprofiilien käyttökelpoisuutta ja aiheuttaa epävarmuutta sedimenttimäärien arviointiin. Joka tapauksessa muinaisen Itämeren aikaan Pyhäjärven altaaseen on kertynyt runsaasti sedimenttejä. Sitä vastoin kuroutumisen jälkeinen sedimenttaatio on ollut hitaampaa. Pyhäjärven pohjasta noin 35 % on järvisedimenttejä, ja ne sisälivät noin 26 milj. tn kuiva-ainetta. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin noin 210 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 23 g/m²/v. Kuivaa-aineesta on hiiltä noin 490 milj. kg. Koko pinta-alalle laskettuna keskimääräinen hiiltivarasto on noin 3,9 kg/m² ja keskimääräinen varastoitumisnopeus 0,44 g/m²/v.

Keurusselkä

Kuva 223. Luotauslinjojen ja tutkimuspisteiden sijainti Keurusselkässä. Ylhäällä vasemmalla järven sijainti luusuan rajoittuvalta valuma-alueella. Fig. 223. The location of echo-sounding transects and survey points in Lake Keurusselkä. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Tutkimuspisteitä on neljä (kuva 223). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä, ja muilla pisteillä sedimentkerroksen on määritetty maastossa. Kaikuluotauslinja on yhteensä 26 km.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 8,9 m. Pitkä näyte ulottuu sedimentin pinnasta 4,68 m:n syvyyteen. Näytteen alaosan (4,68–4,40 m) on liusjaavea. Sen päällä on saviliejua (4,40–3,30 m), liejua (3,30–0,12 m) ja saviliejua (0,12–0 m). Kuroutumisajankohdasta vastaava syvyys on näytteen alapäässä tai hieman allekappa. Kuroutumisajanan yläpuolella on liusjaavea. Liejua (3,30–0,12 m) ja saviliejua (0,12–0 m) syvyys ja nopeus osoittavat, että kuroutumisen jälkeen vedenpinta on kohoanut nopeasti ja saavuttanut 5 %:n tason 3,5 m:n syvyydessä (kuva 224). Sen yläpuolella on kohoaminen ja hitaampi alustusta, ja pitoisuus on korkeimmilla 0,5 m:n syvyydessä. Pintaoasassa sedimenttihiilipitoisuus alenee jyrkästi.

Keurusselkä ei ole kokenut voimakkaita luontaisia vedenpinnan vaihteluita, ja tutkimuspisteen 1 hiilipitoisuus on kuvattu varmaa kodintaka toista kehitystä. Hiilipitoisuuden alennus ja sedimenttkerroksen pintaosa on pitkä erosioon voimistumisen järven valuma-alueella tai vedenpinnan laskuun. Jos kuroutumisajankohda vastaava syväys on näytteen alapäässä tai hieman allekappa, on kuroutumisen jälkeen tällä paikalla varastotunut vuosittain kuiva-ainetta keskimäärin 74 g/m². Siitä hiilen osuus on ollut noin 4,2 g/m².

Keurusselän pohjasta noin 80 % on järvedemittejä, ja ne sisältävät kuiva-ainetta noin 35 milj. tonnin. Koko pinta-ala on 119 km² ja sen keskimääräinen varastotunumisnopeus on ollut 31 g/m²/v. Kuiva-aineesta on hiilen osuus noin 2000 milj. kg. Koko pinta-ala on 119 km² ja sen keskimääräinen varastotunumisnopeus 1,7 g/m²/v.

Keurusselän pohjasta noin 80 % on järvedemittejä, ja ne sisältävät kuiva-ainetta noin 35 milj. tonnin. Koko pinta-ala on 119 km² ja sen keskimääräinen varastotunumisnopeus on ollut 31 g/m²/v. Kuiva-aineesta on hiilen osuus noin 2000 milj. kg. Koko pinta-ala on 119 km² ja sen keskimääräinen varastotunumisnopeus 1,7 g/m²/v.

Mallasvesi-Roine

Mallasvesi-Roine sijaitsee Kokemäenjoen vesistöalueen keskiosassa Tampereen kaakkoispuolella. Mallasvesi käsittää järvialueen eteläosan ja Roine pohjoisosan. Mallasveden-Roineen pinta-ala on 107 km² ja pinnan korkeus 84,0 m. Mannerjäättöön reunan peräännyttää ulottui muinainen Itämeri Mallasveden-Roineen alueelle ja sen pinta oli lähes 70 m järven nykyistä pintaan korkeammilla.

Tutkimuspiste 1 sijaitsee Mallasveden puolella, missä veden syvyys oli 17,0 m. Pitkä näyte ulottuu sedimentin pinnasta 7,25 m:n syvyteen. Näytteen alaosa (7,25–5,74 m) on lustosavea. Sen päällä on savea (5,74–3,80 m), liejusavea (3,80–2,21 m) ja savilieju (2,21–0 m). Kuroutumisajankohtaa vastaa syvyys on 3,80 m (kuva 226). Kuroutumisen jälkeen tällä paikalla on varastoidun vuorattain kuiva-ainetta keskimäärin 160 g/m². Siitä hiilen osuus on ollut 3,4 g/m². Tutkimuspiste 2 sijaitsee Mallasveden puolella, missä veden syvyys oli 28,0 m. Pitkä näyte ulottuu sedimentin pinnasta 6,61 m:n syvyteen. Näytteen alaosa (6,61–6,30 m) on lustosavea. Sen päällä on savea (6,30–2,21 m), liejusavea (2,21–0 m) ja savilieju (2,21–0 m).

Kuva 225. Luotauslinjojen ja tutkimuspisteiden sijainti Mallasvedellä-Roineella. Ylhäällä oikealla järven sijainti luosuaan rajoittuvalla valuma-alueella. Fig. 225. The location of echo-sounding transects and survey points in Lake Mallasvesi-Roine. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 226. Mallasveden-Roineen tutkimuspisteeellä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanlyytteen hiilipitoisuus. Fig. 226. The composition, density and carbon content of the long core taken from survey point 1 in Lake Mallasvesi-Roine. Top right shows the carbon content of the surface core.

Mannerjärkön reunan perääntyttyä ulottui mui

60 m järven nykyistä pintaa ylempänä. Maankuo-
ren kohotessa vedenpinta laski ja Kukkia kurowuti
Itämerestä Ancylusjärvi-vaiheen aikaan noin 9700
vuotta sitten. Kukkian laskukynnys sijaitsee järven
eteläpäässä, joten vedenpinta on laskenut suurimmassa
osasassa järveä maankuoren kallistumisen takia.

Tutkimuspisteitä on yksitoista (kuva 228). Näytteet
laboratoriomäärityksissä varten otettiin yhdeltä pisteeltä.
Muilla pisteillä sedimentin kerrosjärjestys määritettiin
maastossa. Kaikulentoaslinja on yhteensä 31 km.

Tutkimuspiste 7 sijaitsee järven itäosassa, missä
veden syvyys oli 18,3 m. Pitkä näyte ulottuu sedi-
mentin pinnasta 4,67 m:n syvyyteen. Näytteen alaosa

Kuva 227. Mallasveden-Roineen tutkimuspisteeltä 2 otetun pitkän näyt-
teen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen
hiilipitoisuus.

Kukkia

(Kuva 227. The composition, density and carbon content of the long core
taken from survey point 2 in Lake Mallasvesi-Roine. Top right shows the
carbon content of the surface core.)
(4,67–4,06 m) on savea. Sen pääällä on liejusavea (4,06–2,50 m), saviliejua (2,50–1,00 m), liejua (1,00–0,21 m) ja saviliejua (0,21–0 m). Kuroutumisajankohtaa vastaava syvyys on 4,06 m (kuva 229). Hiilipitoisuus pysyytelee vajaan 2 %:n tasolla 2,5 m:n syvyyteen saakka, mutta alkaa sitten kohota saavuttaen runsaan 6 %:n tason 0,5 m:n syvyydessä. Lähellä sedimenttikerroksen pintaa pitoisuus alenee pari prosenttiyksikköä. Kuroutumisen jälkeen tälle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 145 g/m². Siitä hiilen osuus on ollut 4,7 g/m².

Kukkian pohjasta noin 25 % on järvisedimenttejä, ja ne sisältävät kuiva-ainetta noin 4,6 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on 100 kg/m², ja sen keskimääräinen varastotumisnopeus on ollut 11 g/m²/v. Kuiva-aineesta on hiiltä noin 150 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 3,3 kg/m² ja keskimääräinen varastotumisnopeus 0,34 g/m²/v.

Sääksjärvi

Mannerjäätkön reunan perääntytyä oli Sääksjärven kohdalla avomeri ja vettä runsaat 100 m. Maankuoren kohotessa vesi mataloiti ja rantavoidat alkoivat järjestellä sedimenttejä uudelleen. Kumpareiden päälle ja rinteille kerrostutut hienojakoisen aines eroottiut, ja se kerrostui uudelleen syvänäteiden ruuhallisempaan ympäristöön. Sääksjärvi kuroutui Itämerestä Litorinemari-vaiheen aikaan noin 6400 vuotta sitten.

Tutkimuspisteitä on kymmenen (kuva 230). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä...

Fig. 230. The location of echo-sounding transects and survey points in Lake Sääksjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 231. The composition, density and carbon content of the long core taken from survey point 1 in Lake Sääksjärvi. Top right shows the carbon content of the surface core.

Tutkimuspiste 5 sijaitsee järven keskiosassa, missä veden syvyys oli 6,8 m. Pitkä näyte ulottuu sedimentin pinnasta 8,58 m:n syvyteen. Näytteen alaosaa (8,58–6,40 m) on savea. Sen päällä on liejusavea (6,40–3,20 m), saviliejuja (3,20–1,30 m), liejua (1,30–0,27 m) ja saviliejuja (0,27–0 m). Kuroutumisajankohtaa vastaava syvyys on 6,40 m (kuva 231). Sen yläpuolella hiilipitoisuus kohoaa, mutta jää vaihtelemaan 1,5 %:n tienooseen. Pitoisuus alkaa kohota voimakkaammin 3,2 m:n syvyydessä ja saavuttaa runsaan 6 %:n tason läheellä sedimenttiakerroksen pintaa. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 390 g/m². Siitä hiilen osuus on ollut 13 g/m².

Järvesidenttejä on kerrostunut Sääksjärven keskiosassa yli 5 m:n syvyisille alueille, mutta suojaisilla reuna-alueilla myös matalampaan veteen. Järvesidentit sisältävät kuiva-ainetta noin 41 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin
1100 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 170 g/m²/v. Kuiva-aineesta on hiiltä noin 1300 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 36 kg/m² ja keskimääräinen varastoitumisnopeus 5,6 g/m²/v.

Kuohijärvi

![Kuva 232. Luotauslinjojen ja tutkimuspisteiden sijainti Kuohijärvellä. Ylhäällä oikealla järven sijainti luosaan rajottuvalla valuma-altueella.](image)

Fig. 232. The location of echo-sounding transects and survey points in Lake Kuohijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

![Kuva 233. Kuohijärven tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla piantanäytteen hiilipitoisuus.](image)

Fig. 233. The composition, density and carbon content of the long core taken from survey point 1 in Lake Kuohijärvi. Top right shows the carbon content of the surface core.
Mannerjäätikön reunan peräännyttyä oli muinaisen Itämeren pinta Kuohijärven kohdalla runsaat 50 m järven nykyistä pintaa korkeammalla. Maankuoren kohotessa vedenpinta laski ja Kuohijärvi kuroutui Itämerestä Ancylusjärvi-vaiheen aikana noin 9700 vuotta sitten. Koska vedenpinnan taso sätelevä lasukukynys on järven luoteispuolelta, on Kuohijärven pinta kohonnut maankuoren kallistuessa kaakkoon. Järven eteläpäässä vedenpinta on kohonut 6–7 m.

Tutkimuspiste 1 sijaitsee järven keskosiosassa, missä veden syvyys oli 27,0 m. Pitkä näyte ulottuu sedimentin pinnasta 6,75 m:n syvyysteen. Näytteen alaosa (6,75–5,20 m) on lustosavea. Sen pääällä on savea (5,20–3,70 m), liejusavea (3,70–3,50 m), saviliejua (3,50–1,45 m) ja liejua (1,45–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,70 m (kuva 233). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 2 %:n tasolle. Pitoisuus alkaa kohota pinnasta 2,2 m:n syvyydessä ja päättyy 8 %-n tasolle matalimmalla ylempänä. Sedimentin pinnassa pitoisuus tusaa alenee. Pinta-näytteiden perusteella aleneminen tapahtuu 20 cm:n syvyydessä. Pitoisuus alkaa kohota pinnasta 2,2 m:n syvyydessä ja päättyy 8 %-n tasolle. Sedimentin pinnassa pitoisuus taas alenee. Pinta-näytteiden perusteella aleneminen tapahtuu 20 cm:n syvyydessä.

Kuroutumisen jälkeen päälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 89 g/m². Siitä hiilen osuus on ollut 4,3 g/m².

Järvesiä itämerestä tavataan Kuohijärven pääaltaassa vain yli 15 m:n syvyydessä, mutta suojaisissa paikoissa niitä on huomattavasti matalammassa vedessä. Järven reumamilla on ollut pieniä altaita, jotka ovat täyttenyt vuosituhansien kuluessa. Paikoin järvesiäitsemsen kerroksen paksuus voi ylittää veden syvyysen, eikä kerrostien sijaintia voida päätellä veden syvyydestä.

Maankuoren kallistumisesta johtuva vedenpinnan kohoaaminen on siirtänyt rantaviivaa varsinkin eteläreunalle ja keskiosan loivapiirteisille paikoille. Esimerkiksi Kuohijärven itäreunulla olevan Lohilahden paikalla oli alunperin erillinen lampi. Sen rannat soistuivat ja itse lampi kasvoi vähitellen umpeen. Myöhemmin suotui järven tulvan alle, ja paikalla on nyt vettä 0,9 m. Turvekerros on 3,2 m paksu, joten vedenpinta on sillä paikalla kohonnut vähintään 4 m.

Kuohijärven pohjasta noin 40 % on järvesiäitse, ja ne sisältävät kuiva-ainetta noin 6,9 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 200 kg/m², ja sen keskimääräinen varastotumin snopeus on ollut 20 g/m². Kuiva-aineesta on kuitenkin noin 330 milj. kg. Koko pinta-alalle laskettu keskimääräinen lihivarasto on 9,5 kg/m² ja keskimääräinen varastotumin snopeus 0,98 g/m².

Pihlajavesi

Pihlajavesi sijaitsee Kokemäenjoen vesistöalueen koillisosassa Keuruussa. Sen pinta-ala on 19,9 km² ja pinnan korkeus 138,6 m. Järvi on pitkien lahtien ylempänä. Maankuoren kohotessa vedenpinta laski ja sen vedenpinta oli noin 30 m järven nykyistä pintaa ylempänä. Maankuoren kohotessa vedenpinta laski ja Pihlajavesi kuroutui Itämerestä Yoldiameri-vaiheen aikana noin 10 800 vuotta sitten. Sen jälkeen järven laskukynnys on säädellyt vedenpinnan tasoa. Pihlajavesi kuroutui Itämerestä Ancylusjärvi-vaiheen aikana noin 9700 vuotta sitten. Koska vedenpinnan taso sätelevä lasukukynys on järven luoteispuolelta, on Kuohijärven pinta kohonnut maankuoren kallistuessa kaakkoon. Järven eteläpäässä vedenpinta on kohonut 6–7 m. Tutkimuspisteitä on seitsemän (kuva 234). Tutkimuspiste 1 sijaitsee järven keskosiosassa, missä veden syvyys oli 27,0 m. Pitkä näyte ulottuu sedimentin pinnasta 6,75 m:n syvyysteen. Näytteen alaosa (6,75–5,20 m) on lustosavea. Sen pääällä on savea (5,20–3,70 m), liejusavea (3,70–3,50 m), saviliejua (3,50–1,45 m) ja liejua (1,45–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,70 m (kuva 233). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 2 %:n tasolle. Pitoisuus alkaa kohota pinnasta 2,2 m:n syvyydessä ja päättyy 8 %-n tasolle matalimmalla ylempänä. Sedimentin pinnassa pitoisuus tusaa alenee. Pinta-näytteiden perusteella aleneminen tapahtuu 20 cm:n syvyydessä.
Kuva 234. Luotauslinjojen ja tutkimuspaikkojen sijainti Pihlajavedellä. Ylhäällä vasemmalla järven sijainti luusuaan rajoittuvalla valuma-alueella.

Fig. 234. The location of echo-sounding transects and survey points in Lake Pihlajavesi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

toitumisnopeudet taas kasvavat. Ainakin osa hiilen varastoitumisnopeuden kasvusta on näennäistä, sillä eloperäisen aineksen hajoaminen on vielä kesken sedimentin pinnassa.

Pihlajaveden pohjasta noin 75 % on järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 5,7 milj. t. Koko pintalalle laskettuna kuiva-ainetta on keskimäärin 290 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 27 g/m²/v. Kuiva-aineesta on hiiltä noin 440 milj. kg. Koko pintalalle laskettu keskimääräinen hiilivarasto on 22 kg/m² ja keskimääräinen varastoitumisnopeus 2,1 g/m²/v.

Fig. 235. The composition, density and carbon content of the long core taken from survey point 1 in Lake Pihlajavesi. Top right shows the carbon content of the surface core.

Fig. 236. The long-term accumulation rate of dry matter and carbon at survey point 1 in Lake Pihlajavesi.
Uuranjärvi

Uuranjärvi sijaitsee Kokemäenjoen vesistöalueen koillisosassa ja kuuluu Keuruun ja Multian kuntiin. Sen pinta-ala on 4,01 km² ja pinnan korkeus 185,9 m. Järven pääallas on noin 3 km pitkä, vajaan kilometrin leveyinen ja suuntautunut luooteesta kaakkoiseen (kuva 237). Valuma-alue on moreeni- ja turvemaata. Uuranjärvi on tyyppiltään latvajärvi.

Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä (kuva 237). Kaikuluotauslinja on 3,5 km.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 10,0 m. Pitkä näyte ulottuu sedimenzin pinnasta 4,57 m:n syvyyteen. Näytteen alapäässä (4,57–4,49 m) on savea ja sen päällä saviliehua (4,49–3,20 m) ja liehua (3,20–0 m). Järven syntyajan kohtaa vastaava syvyys on 4,49 m (kuva 238). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 4 %:n tasolle. Noin 3 m:n syvyydessä pitoisuus kohoaa uudelleen ja asettuu kerrostuman keskiosassa noin 17 %:n tasolle.

Kuroutumisen jälkeen tälle paikalle on varsaimenotun vuosittain kuiva-ainetta keskimäärin.
81 g/m². Siitä hiilen osuus on ollut 9,7 g/m². Pohjaosan savieliejukeroxesessa kuiva-ainen keskimääräinen varastoittuminisnopeus on ollut keskimääräiseen nähden yli kolminkertainen.

Uuranjärven pohjasta noin 75 % on järvisedimenttejä, ja ne sisältävät kuiva-ainetta noin 1,4 milj. tn.

Sääjärvi

Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 350 kg/m², ja sen keskimääräinen varastoittuminisnopeus on ollut 32 g/m²/v. Kuiva-ainesta on hiiltä noin 170 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 42 kg/m² ja keskimääräinen varastoittuminisnopeus 3,9 g/m²/v.

Sääjärvi

Mannerjäättäjän reunan peräännytyn alueelta ulottui muinaiset Itämeri Sääjärven alueelle ja sen vedenpinta

Kuva 239. Luotauslinjan ja tutkimuspisteiden sijainti Sääjärvellä. Ylhäällä oikealla järven sijaitseva laajakasvuinen rajoittuvalla valuma-alueella. Fig. 239. The location of echo-sounding transect and survey points in Lake Sääjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 240. Sääjärven tutkimuspisteeltä 3 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radioliialajoinen tulokset. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 240. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 3 in Lake Sääjärvi. Top right shows the carbon content of the surface core.
oli runsaat 30 m järven nykyistä pintaa ylempänä. Sääjärvi kuroutui Itämerestä Baltian jääjärvi-vaiheen lopussa noin 11 500 vuotta sitten. Kuroutumisen jälkeen laskukynnyns on säädelty vedenpinnan tasoa.

Tutkimuspiste 3 sijaitsee järven keskiosassa, missä veden syvyys oli 3,4 m. Pitkä näyte ulottuu sedimentin pinnasta 7,80 m:n syvyteen. Näytteen alaosaa (7,80–7,10 m) on savea. Sen pääällä on liejusavea (7,10–6,80 m), saviliejua (6,80–5,20 m) ja liejua (5,20–0 m). Kuroutumisajankohtaa vastaava syvyys on 7,10 m (kuva 240). Sen yläpuolella hiilipitoisuus kohoaa melko tasaisesti päätyen 18 %:n tasolle sedimentin pinnassa. Merkkejä valuma-alueen eroosion voimistumisesta ei ole havaittavissa.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 190 g/m². Siitä hiilenosuus onollut 16 g/m². Kuroutumisajankohdan ja kahden radiohiihajoituksen perusteella on mahdollista vertaila kolmen kerroksen varastoitumisnopeuksia. Alimmassa kerroksessa, joka syntyi kuroutumista seuranneen kahden vuosituhannen aikana, on kuiva-aineen varastoituminen ollut keskimäärääristä nopeampa ja hiilen varastoituminen keskimäärääristä hitaampaa. Seuraavien 2000 vuoden aikana syntyneessä kerroksessa molemmat varastoitumisnopeudet ovat keskimäärääristä suurempia. Ylimmässä viimeksi kuluneiden 7500 vuoden aikana syntyneessä kerroksessa taas molemmat varastoitumisnopeudet pienenevät. Kuiva-aineen varastoituminen hidas tuu kuitenkin huomattavasti enemmän kuin hiilen.

Sääjärven járvesedimentit sisältävät kuiva-ainetta noin 1,2 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 600 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 53 g/m²². Kuiva-ainetilta onhiiiltänoin 100 milj. kg. Koko pintalalle laskettu keskimääräinen hiihivarasto on 53 kg/m² ja keskimääräinen varastoitumisnopeus 4,6 g/m²².

Havanganjärvi

Havanganjärvi sijaitsee Kokemäenjoen vesistöalueen pohjoisosassa Virroilla. Järvä on noin 4 km pitkä, 0,5 km leveä ja suuntautuu luoteesta kaakkoiseen (kuva 241). Sen pinta-ala on 1,73 km² ja pinnan korkeus 105,1 m. Havanganjärvi on luokiteltava latvajärveksi. Valuma-alueella olevien järvien yhteenlaskettu pinta-ala on kuitenkin lähes yhtä suuri kuin Havanganjärven pinta-ala.

Mannerjäätkön reunan peräännyttyä ulottui muinaisen Itämeren Havanganjärven altaaseen ja sen pinta oli noin 75 m järven nykyisen vedenpinnan yläpuolella. Maankuoren kohotessa vedepinta laski ja Havanganjärvi kuroutui Itämerestä Ancylusjärvi-vaiheen aikaan noin 9500 vuotta sitten. Alkuvaiheessa Havanganjärvi oli muinaisen Näsjärven lahti. Maankuoren kallistumisen seurauksena suurjärven vedepinta kohosi ja oli korkeimmillaan ennen Tammerkosken puhekemia noin 7500 vuotta sitten. Muinaisen Näsjärven laskukynnyns on nykyisin 115 m:n korkeudella, ja sen ylin rantapinta viettää 0,21 m/km (Tikkanen & Seppä 2001). Havanganjärven vedepinta on siten ollut Näsjärven maksimivaiheen aikaan noin 5,5 m nykyistä ylempänä. Tammerkosken puhekeamisen yhteydessä vedepinta laski nopeasti noin 2 m. Sen jälkeen vedepinta on laskenut hitaasti maankuoren kallistumisen takia. Muinaisen Näsjärven pohjoisosan järvet alkoivat kuroutua erillisiksi altaiksi, niiden joukossa myös Havanganjärvi.

Tutkimuspisteitä on yksitoista (kuva 241). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä

Kuva 241. Tutkimuspisteiden sijainti Havanganjärvenä. Ylhäällä oikealla järven sijainti luusaan rajoittuvalla valuma-alueella. Fig. 241. The location of survey points in Lake Havanganjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.
pisteeltä, ja muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa. Näytteenottoa täydennettiin myöhemmin hakenalla jääsorminäyttein. Kun sedimentin kerrosjärjestys määritettiin, näytteenottoa täydennettiin myöhemmin hakenalla jääsorminäytteenäyttein. Tutkimuspiste 11 sijaitsee järven eteläosassa, missä veden syvyys oli 28,4 m. Pitkä näyte ulottuu sedimentin pinnasta 9,32 m:n syvyyteen. Näytteen sitten aloساسsa (9,32–9,20 m) on lustosavea. Sen pääällä on savea (9,20–7,00 m), saviliejua (7,00–5,75 m) ja liejua (5,75–0 m). Savilieju- ja liejukerrokset ovat lus-torakenteisia. Kuroutumisjärven suurinta vastaava syvyys on 7,00 m (kuva 242). Sen yläpuolella jääliipitosuus kohoa melko tasaisesti saavuttaen runsaan 20 %:n tason kerrostuman yläosassa. Läheillä sedimentin pintoa liipitosuus on melko tasainen.

Kuroutumisen jälkeen tälle paikalle on varastottunut vuosittain kuiva-ainetta keskimäärin 140 g/m². Siitä lii- on osuus on ollut 21 g/m². Viimeksi kuluneiden kahden vuosituhannen aikana kuiva-aineen keskimääräinen varastoitumisnopeus on ollut noin kolmasosa ja lii- lian varastoitumisnopeus noin puolet kuroutumisen jälkeisistä pitkän aikavälin keskiarvoista. Tämä sillä varausellä, että ylemmän osanäytteen ikä vastaa sen kerrostumisjärven

Kuva 242. Havanganjärven tutkimuspisteeltä 11 otetun pitkän näytteen koostumus, tiheys, liihipitosuus ja radiohiilialottoitun tulokset. Ylhäällä oikealla pintonäytteen liihipitosuus. Fig. 242. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 11 in Lake Havanganjärvi. Top right shows the carbon content of the surface core.

Kuva 243. Kuiva-aineen ja lii- lian viimeaikainen varastoitumisnopeus Havanganjärven tutkimuspisteellä 11. Fig. 243. Recent accumulation rate of dry matter and carbon at survey point 11 in Lake Havanganjärvi.
Sulkuejärvi

Sulkuejärvi sijaitsee Kokemäenjoen vesistöalueen pohjoisosassa Kihniön kirkonkylän länsipuolella. Järven pinta-ala on 1,03 km² ja pinnan korkeus 131,4 m. Järvi on matala ja verrattain avoin (kuva 244). Se on tyypiltään latvajärvi.

Mannerjäätikön reunan peräännytynä ulottui muiainen Itämeri Sulkuejärven kohdalle ja sen pinta oli noin 60 m järven nykyistä pintakorkeudella. Maankuoren korkeuden sen sijaan pinnan korkeus oli noin 2 m. Muita merkittäviä tapahtumia on nähty Sulkuejärven pohjoisosassa. Kihniön kirkonkylän länsipuolella sijaitsee Kihniön vesistöalueen suurin pi：

2004

179

Kuva 244. Tutkimuspisteiden sijainti Sulkuejärvellä. Ylhäällä oikealla järven sijainti lausuaan rajoittuvalla valuma-alueella.

Fig. 244. The location of survey points in Lake Sulkuejärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 245. Sulkuejärven tutkimuspisteeltä 11 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilijoituksen tulos. Ylhäällä oikealla pintaaluetta ilmoitettu hiilipitoisuus.

Fig. 245. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 11 in Lake Sulkuejärvi. Top right shows the carbon content of the surface core.
kuiva-ainetta keskimäärin 34 g/m². Siitä hiilen osuus on ollut 3,1 g/m².

Vaikka Sulkuejärvi sijaitsee noin 60 m ylimmän vedenpinnan alapuolella, on järven pohjassa vain vähän kuroitumista edeltäneen Ancylusjärven sedimenttejä. Ne ovat joko erodointuneet pois tai hautautuneet karkeaman mineralaaliineksien alle. Paksuin savikerros tavattiin suojaisassa paikassa sijaitsevalla pisteellä 10. Sulkuejärven järvisäätimissä sisältävät kuiva-ainetta noin 0,23 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on 220 kg/m², ja sen keskimääräinen varastoimikunnus on ollut 24 g/m²/v. Kuiva-aineesta on liihattu noin 20 milj. tn. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 20 kg/m² ja keskimääräinen varastoimikunnus 2,2 g/m²/v.

Ekojärvi

Mannerjääkkön reunan peräänliittyvä ulottui muinaisen Itämeri Ekojärven altaaseen ja sen pinta oli runsaat 50 m järven nykyistä pinta korkeammalle. Maankuoren kohdalla vedenpinta lascetti ja Ekojärvi kurotti Itämerestä Ancylusjärvi-vaiheen aikaan noin 9800 vuotta sitten. Sen jälkeen Ekojärven sedimenttisäätöjä ohjasi nopeasti 2,2 milj. vuotta. Sulkuejärven sedimentit sisältävät kuiva-ainetta noin 0,23 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on 220 kg/m², ja sen keski-

Fig. 246. The location of survey points in Lake Ekojärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 247. The composition, density and carbon content of the long core taken from survey point 1 in Lake Ekojärvi. Top right shows the carbon content of the surface core.

Jos pitkän näytteen alapäälle oletetaan kuroutumisajankohdan ikä, saadaan kuiva-aineen keskimääräiseksi varastoitumisnopeudeksi 190 g/m²v. Vastaava hiilen varastoitumisnopeus on 21 g/m²v. Lähellä sedimentin pintaa tiheys kasvaa ja hiilipitoisuuden aleneminen nopeutuu. Valuma-alueen maankäytön muutokset ovat voineet lisätä mineraleja ja ravinteiden kulkeutumista järveen.

Jos pitkän näytteen alapäälle oletetaan kuroutumisajankohdan ikä, saadaan kuiva-aineen keskimääräiseksi varastoitumisnopeudeksi 190 g/m²v. Vastaava hiilen varastoitumisnopeus on 21 g/m²v. Koska kuroutumisajankohtaa vastaava taso on syvemmällä, ovat todelliset varastoitumisnopeudet vielä näitä suuremmat.

Ekojärven järvedeminenttikerroksen keskimääräinen paksuus on 1,3 m ja järvedeminenttikerroksen keskimääräinen paksuus 2,0 m. Jos vedenpinnan pohja kaukaan järven kattoon, on järvedeminenttikerroksen vastaavaa syvyyttä ollut 3,3 m. Alkupe-räisestä vesitilasta on siten täytetty noin 60 %. Jos altaan täyttyminen jatkuu samalla nopeudella, on alas täytetty kokonaan noin 6000 vuoden kuluttua.

Ekojärven järvedeminentit sisälivät kuiva-ainetta noin 0,39 milj. tn. Koko pinta-alueelle kuiva-ainetta on keskimäärin 500 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 51 g/m²v. Kuiva-aineesta on hiiltä noin 43 milj. kg. Koko pinta-alueelle laskettu keskimääräinen hiilivarasto on 55 kg/m² ja keskimääräinen varastoitumisnopeus 5,7 g/m²v.

Puntasjärvi

Puntasjärvi sijaitsee Kokemäenjoen vesistöalueen pohjoisosassa Kurussa. Sen pinta-ala on 0,57 km² ja pinnan korkeus 184,6 m. Valuma-alue on moreeni- ja turvemaata. Puntasjärvi on tyyppiläinen reittijärvi. Puntasjärvi syntyi mannerjäätikön reunan perään-
nytävä alueelta noin 11 000 vuotta sitten. Siitä alkaen
laskukynnys on säädellyt vedenpinnan tasoa.

Tutkimuspisteitä on kahdeksan (kuva 248). Näyt-
teet laboratoriomäärityskä varten otettiin yhdeksi
pisteellä. Muilla pisteillä sedimentin kerrosjärjestys
määritettiin maastossa.

Tutkimuspiste 1 sijaitsee järven keskosassa, missä
veden syvyys oli 16,8 m. Pitkä näyte ulottuu sedi-
mentin pinnasta 3,64 m:n syvyyteen. Näytteen alaosa
(3,64–3,20 m) on liejusavea. Sen päällä on savylieju
(3,20–2,80 m) ja liejua (2,80–0 m). Näytteenotin
pysähtyikovaanpohjaan, joten järven syntyajankohdan
vastaavasta syvyydestä 3,64 m (kuva 249). Sen enälpäpuolella
soporainen limingitien kohoa kahdessa vaiheessa:
alueeksi alkaen 3 m:n syvyydestä ja myöhemmin alkaen
1 m:n syvyydestä.

Näytteestä tehtiin kaksi radiohiiliajoitusta, joista
allempi on savyliejun ja liejun rajapinnasta ja ylempi
keskeltä liejukerrosta. Alempi ajoitus on selvästi
kuroutumistason yläpuolelta, ja se sopii hyvin yhteen
kehityshistorian perusteella arvioidun järven synty-
ajankohdan kanssa. Ylempi ajoitus on sitä vastoin
näytteen sijaintiin nähden vanha. Järven synty-
ajankohan jälkeen tilalle paikalle on varastoitunut
vuosittain kuiva-ainetta keskimäärin 60 g/m². Siitä
hiilen osuus on ollut 11 g/m². Jos ylemmän näytteen
ään oletetaan vastaavan sen kerrostumisajankohtaa,
on kuiva-ainen varastautuminen pienenytyt
kerrostuman yläosassa seitsemänneen osaan ja hiilen
varastautuminen oletaan kolmannen osaan.

Puntasjärven järvesisäätin sisältyvät kuiva-
ainetta noin 0,13 milj. tn. Koko pinta-alalle laskettuna
kuiva-ainetta on keskimäärin 230 kg/m², ja sen kes-
kimääräinen varastautuminen on ollut 21 g/m²/v. Kuiva-
aineesta on hiiltä noin 25 milj. kg. Koko pinta-
alalle laskettu keskimääräinen kuivavarastosta on
44 kg/m² ja keskimääräinen varastautuminen 4,0 g/m²/v.

Alinen Rautjärvi

Alinen Rautjärvi sijaitsee Kokemäenjoen vesistö-
alueen itäosassa Lammilla. Sen pinta-ala on 0,51 km²
ja pinnan korkeus 125,5 m. Järvi on avoin, ja sitä
ympäröivät sora- ja hiekkaanmuodostumat. Valuma-
alueen reunamilla on moreenimaata. (Kukkonen

Kuva 250. Tutkimuspisteiden sijainti Alisella Rautjärvelä. Ylhään
oikealla järven sijainti lasauaan rajottuvalla valuma-alueella.
Fig. 250. The location of survey points in Lake Alinen Rautjärvi. Top
right shows the location of the lake in the drainage basin delimited by
the outlet.

Kuva 251. Alisen Rautjärven tutkimuspisteeltä 1 otetun pitkän näytteen
koostumus, tiheys ja hiilipitoisuus. Ylhään oikealla pinta-alueen
hiilipitoisuus.
Fig. 251. The composition, density and carbon content of the long core
taken from survey point 1 in Lake Alinen Rautjärvi. Top right shows the
carbon content of the surface core.
& Haavisto-Hyvärinen 1986.) Alineen Rautjärvi on tyyppiltään reittijärvi.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 9,9 m. Pitkä näyte ulottuu sedimentin pinnasta 4,50 m:n syvyteen. Näytteen alaosa (4,50–4,00 m) on savea. Sen päällä on liejusavea (4,00–3,80 m) ja liejua (3,80–0 m). Kuroutumisasjan kohtaa vastaava syvyys on 4,00 m (kuva 251). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 20 %:n tasolle ja pysyy sitten korkeana sedimentin pintaan saakka. Hiilipitoisuus- ja tiheyskäyrästä päätellen järvi vakiintui nopeasti, ja lyhyen vakiintumisvaiheen jälkeen sen sedimentaatio-olot ovat pysyneet vakaina.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 50 g/m². Siitä hiilen osuus on ollut 8,6 g/m².

Tutkimuspisteittäin laskettu veden keskisyvyys on 3,0 m ja järvedeskikäyrän eksponentti 1,8 m. Siten sedimentit ovat täytäneet alkuperäisestä vesitilasta vajaat 40 %.

Alineen Rautjärven järvedeskikäyrät sisältävät kuiva-ainetta noin 0,15 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 300 kg/m², ja sen keskimääräinen varastoituksenopeus on ollut 26 g/m²/v. Kuiva-ainesta on ollut noin 26 milj. kg. Koko pinta-alalle laskettuna keskimääräinen hiilivarasto on 50 kg/m² ja keskimääräinen varastoituksenopeus 4,4 g/m²/v.

Iso Leppäjärvi

Iso Leppäjärvi sijaitsee Kokemäenjoen vesistöalueen pohjoisosassa Kurussa. Sen pinta-ala on 0,07 km² ja pinnan korkeus 186,2 m. Iso Leppäjärvi on tyyppiltään latvajärvi. Valuma-alue on järven kokoon nähden pieni (kuva 252).

Iso Leppäjärvi sijaitsee noin 10 m muinaisen Itämeren ylintä vedenpinnan tasoa korkeammalla, joten järvi syntyi välittömästi mannerjäätkön reunan peräänmyyntä alueelta noin 11 000 vuotta sitten.

Tutkimuspiste 5 sijaitsee järven pohjoisosaan, missä veden syvyys oli 4,9 m. Pitkä näyte ulottuu sedimentin pinnasta 1,25 m:n syvyteen ja on kokonaan liejua (kuva 253). Näytteenotteen kärkeenä olin karkea mineraliaineesta, joten järven syntyajan kohtaa vastaava syvyys on 1,25 m. Sen yläpuolella hiilipitoisuus on jo 30 %:n tasolla, ja se pysyy korkeana sedimentin pintaan saakka.

Tälle paikalle on varastoitunut vuosittain kuiva-aineita keskimäärin 50 g/m². Siitä hiilen osuus on ollut 8,6 g/m².

Tutkimuspiste 5 olettu näytteen koostumus ilmainen tiheys ja hiilipitoisuus. Ylhäällä oikealla pinta-ainetta laskettu hiiliperäiset tehdet 7

183
Valkea-Kotinen

Tutkimuspiste 7 sijaitsee lammen keskiosassa, missä veden syvyys oli 6,7 m. Pitkä näyte ulottuu sedimentin pinnasta 2,87 m:n syvyyteen ja on kokonaan liejua (kuva 255). Kairaukset päätyivät kovaan pohjaan, joten lammen syntyajankohtaa vastaava syvyys on 2,87 m. Senyläpuolella hiilipitoisuus on 25%:ntasolla, mutta kohoa siitä vielä pintaa kohti. Hiilipitoisuuksien ja tiheyskäyrästä päätellään, että sedimentaatio-olot ovat olleet koko ajan varsin vakaat.

Lammen synynnä jälkeen tälle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 15 g/m². Siitä hiilen osuus on ollut 5,4 g/m². Suurimmat, keskiarvoinhin nähden kaksinkertaiset, varastointinospeut ovat 8000–7000 vuotta sitten syntyneessä kerroksessa ja pienimmät 7000–3000 vuotta sitten syntyneessä kerroksessa (kuva 256). Suurimmat ja pienimmät varastointinospeut ovat vierekkäissä kerroksissa, mikä viittaa virheen mahdollisuuteen kerroksia erottavan osanäytteen ajoituksesta. Jos 1,2 m:n syvyydestä saatukin olisi muurempi, tai siltähan saattaa kerrostensa väliset varastointinospeut ovat hyvin mahdollista, että lampen ympäröivät turverannoilta kulkeutuneet. On hyvin mahdollista, että lampen ympäröivät turverannoilta kulkeutuneet. On hyvin mahdollista, että lampen ympäröivät turverannoilta kulkeutuneet.
Järvedimentit kuiva-aineen ja hiilen varastona

Vuonna 2004 British Geological Surveyin tutkimukset yhteydessä Valkean-Kotisen järvedimenttiin suoritettiin tutkimus. Järvedimentissä on yli 3600 tonnia kuiva-ainetta, ja sen keskimääräinen varastoitumisnopeus on noin 7,8 g/m²/v. Kuiva-ainesta on hiiltä noin 1,3 milj. kg, ja keskiarvoinen hiilivarastotuotanto on 32 kg/m² ja keskimääräinen varastoitumisnopeus 2,8 g/m²/v.

Kuvaa 256.

Karvianjoen vesistöalue

Karvianjoen vesistöalue sijaitsee maan lounaisosassa Selkämeren rannikolla (kuva 257). Sen pinta-ala on noin 3400 km² ja korkeus keskimäärin 80 m. Jääkauden jälkeen koko vesistöalue jää muinaisen Itämeren pinnan alle. Sen koillisosa Kankaanpään tasalle saakka paljastui Itämerestä Ancylusjärvi-vaiheen aikaan ja loppuosa Litorinameri-vaiheen aikaan. Vesistöalueesta on moreenimaata 43 %, turvamaata 25 % ja savikkoa 11 %.

Kuva 257.
Vihteljärvi

Mannerjäätikon reunan peräännyttä ulottui mui-naisten Itämeri Vihteljärven altaaseen ja sen pinta oli noin 120 m järven nykyistä vedenpintaa ylempänä. Maankuoren kohotessa vedenpinta laski. Aallokko muokkasi maaperää tuhansien vuosien ajan kasaamalla ranta-valleja harjun rinteille, levittämällä hiekkaa harjun etumaasjon ja huomattavasti moreenipiteistä siltiä, levittämällä hiekkalu-alue. Aleneva vedenpinta tavoitti Vihteljärven tason 6300 vuotta sitten, jolloin järvi kurotti siten, että veden syvyys oli noin 0,8 m. Pitkä näyte ulottuu sedimentin pinnasta 4,39 m:n syvyyteen. Näytteen alaosa (4,39–4,00 m) on lustosaveta. Sen päällä on savea (4,00–2,40 m), liejusaveta (2,40–1,00 m) ja savilejua (1,00–0 m). Kuroutumisajankohtaa vastaa savilejua 2,40 m (kuva 259). Kuroutumisen jälkeen syntynyneen järvesedimenttikerroksen hiilipitoisuudet ovat järven kokoon nähden alhaisia; kerroksen alaosa on 1 %:n tasolla ja yläosa noin 3 %. Radiohoilimenetelmällä ajoitetun osanäytteen ikä on kehitystahkaristoverusteella arvioitu kuroutumisajankohtaan nähden aivan liian vanha. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosituhannet kuiva-aikos. Hiilien osuus on ollut 5,0 g/m².

Muilla pisteillä sedimentin kerrojärjestys määritettiin maastossa.

Tutkimuspiste 5 sijaitsee järven eteläosassa, missä veden syvyys oli 0,8 m. Pitkä näyte ulottuu sedimentin pinnasta 4,39 m:n syvyyteen. Näytteen alaosa (4,39–4,00 m) on lustosaveta. Sen päällä on savea (4,00–2,40 m), liejusaveta (2,40–1,00 m) ja savilejua (1,00–0 m). Kuroutumisajankohtaa vastaa savilejua 2,40 m (kuva 259). Kuroutumisen jälkeen syntynyneen järvesedimenttikerroksen hiilipitoisuudet ovat järven kokoon nähden alhaisia; kerroksen alaosa on 1 %:n tasolla ja yläosa noin 3 %. Radiohoilimenetelmällä ajoitetun osanäytteen ikä on kehitystahkoristoverusteella arvioitu kuroutumisajankohtaan nähden aivan liian vanha. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosituhannet kuiva-aikos. Hiilien osuus on ollut 5,0 g/m².

Fig. 258. The location of survey points in Lake Vihteljärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 259. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 5 in Lake Vihteljärvi. Top right shows the carbon content of the surface core.
Edellä kuvattu tutkimuspiste 5 e sijaitsee suurimman sedimentaation alueella, vaan järvesedimenttikerros on huomattavasti paksumpi altaan koillisreunalla. Pisteillä 1 ja 3 kairattiin järvesedimenttikerrosta noin 8 m:n syvyyteen. Kerrostuma on niin tiiviä, ettei sitä pystytty läpäisemään liikkulajilla.

Vihteljärven järvesedimentit sisältävät kuiva-ainetta noin 0,46 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 1400 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 230 g/m²/v. Kuiva-aineesta on hiiltä noin 10 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 31 kg/m² ja keskimääräinen varastoitumisnopeus 5,0 g/m²/v.

KYRÖNJOEN VESISTÖALUE (42)

Kyrönjoen vesistöalue sijaitsee maan länsiosassa Pohjanlahden rannikolla (kuva 260). Vesistöalueen pinta-ala on noin 4900 km² ja korkeus keskimäärin 100 m. Jääkauden jälkeen koko vesistöalue jää muihin Itämeren vedenpinnan alle. Sedimentaatio-olojen kannalta merkittävää on suuri turvemaiden (24 %) ja savikkojen (22 %) osuus ja toisaalta pieni vesistöjen osuus (1 %). Savikoja on erityisesti Kyrönjoen varsilla ja turvemaiden vesistöalueen kaakkoisosassa.

Kuvan 260. Kyrönjoen vesistöalueelta tutkitun Paukajärven sijainti. *Fig. 260. The location of studied Lake Paukajärvi in the Kyrönjoki River drainage basin.*

Paukajärvi

Paukajärvi sijaitsee Kyrönjoen vesistöalueen kaakkoisreunalla Virroilla. Järven pinta-ala on 0,32 km² ja pinnan korkeus 139,2 m. Järvi on noin 1 km:n pituinen, noin 0,3 km leveä ja suuntautunut pohjoisluoteesta eteläkaakkoon (kuva 261). Paukajärvi on tyyppiltään latvajärvi.

Tutkimuspiste 9 sijaitsee järven eteläosassa, missä veden syvyys oli 1,0 m. Pitkä näyte ulottuu sedimentin pinnasta 1,57 m:n syvyysen ja on kokonaan liejussa. Näytteen alapää on 7 cm hiekkaista liejussa. Näyt- teenottimen kärrikappaleessa oli korkeaa mineraalial- nesteja, jotka kurottumisajankohtaa vastaavaa syvyys on 1,57 m. Sen yläpuolella hiilipitoisuus kohoaa nopeasti ja pyörry korkeana sedimentin pintaan saakka (kuva 262). Kurottumisen jälkeen tälle paikalle on varas- toitunut vuosittain kuiva-ainetta keskimäärin 12 g/m². Siitä hiilen osuus on ollut 3,0 g/m².

Muilla tutkimuspisteillä kairaukset päätyivät moreeniin tai silttiin. Pohjamaan ja järvesedimentin välistä puuttuvat Ancylusjärven aikaan kerrostuneet savet lähes tyystin. Ne ovat erodoituneet pois jo ennen

Fig. 261. The location of survey points in Lake Paukajärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

altaan kuroutumista, tai ne ovat hautautuneet järven ympäristöstä kulkeutuneen karkeammana ineksen alle.

Paukajärven järvisedimentit sisältävät kuiva-ainetta noin 28 000 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 87 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 8,8 g/m²/v. Kuiva-ainesta on hiiltä noin 7,2 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 23 kg/m² ja keskimääräinen varastoitumisnopeus 2,3 g/m²/v.

Kuiva-aineen keskimääräinen varastoitumisnopeus on pieni. Se johtuu ainakin osittain siitä, että suurin osa valuma-alueen mineraalimailta järveen tulevasta vedestä virtaa Kokkonevan halki. Veden kuljettama kiintoaines sedimentoituu jo suolla eikä pääse järveen saakka.

Toinen tekijä, joka voi selittää pienet varastoitumisnopeudet, on järven liian vanhaksi arvioitu ikä. Paukajärven allas on hyvin matala. Tutkimuspisteillä tavattu suurin veden syvyys oli vain 1,5 m, ja suurin järvisedimenttikerroksenpaksuus 2,0 m. Järven lasku-omaa on virrannut koko ajan luoteeseen, ja sen vietto on pienentynyt maan kuorena, eikä se pääse järveen saakka. Sen tulos on johtanut pohjaveden pinnan kohoamiseen ja alavien paikkojen soistumiseen. Siten Paukajärvi ei välttämättä ole haluttu kuivuuteen vaan vasta myöhemmin pohjaveden pinnan kohoamisen seurauksena. Siinä tapauksessa varastoitumisnopeuksia laskettaessa käytetty kuroutumisen ikä johtaa liian pieniin nopeuksiin.
LAPUANJOEN VESISTÖALUE (44)

Lapuanjoen vesistöalue sijaitsee maan länsiosassa Pohjanlahden rannikolla (kuva 263). Sen pinta-ala on noin 4100 km² ja keskimääräinen korkeus 91 m. Muinaisen Itämeren ylin vedenpinnan taso on vesistöalueen kaakkoisosassa noin 190 m, mistä se kohoaa luoteeseen pänin. Vesistöalueesta on moreenimaata 44 %, turvemaata 23 % ja savikkoa 17 %. Savikkoja on lähinnä alueen luoteisosassa ja turvemaita kaakkoisosassa.

Kuva 263. Lapuanjoen vesistöalueelta tutkittujen järven sijainti.
Fig. 263. The location of the studied lakes in the Lapuanjoki River drainage basin.

Kätkänjärvi

Tutkimuspiste 9 sijaitsee järven keskiosassa, missä veden syvyys oli noin 2,6 m. Pitkä näyte ulottuu sedimentin pinnasta 3,20 m:n syvyyteen ja sen pinnalta on kokonaan liejua. Kuroutumisen aikaan syvennyksissä vesi kohoaa noin 9 %:n syvyyteen. Savikkojen arvioidaan olevan puolet perässä liittyen persistentiin melkein 94 %:n syvyyteen. Savikkojen arvioidaan olevan puolet perässä liittyen persistentiin melkein 94 %:n syvyyteen.

Kuroutumisen aikana syvennyksissä vesi kohoaa noin 9 %:n syvyyteen. Savikkojen arvioidaan olevan puolet perässä liittyen persistentiin melkein 94 %:n syvyyteen.
Kuva 264. Tutkimuspisteiden sijainti Kätkänjärvellä. Ylhäällä vasemmalta järven sijainti lausuaan rajoittavalla valuma-alueella. Fig. 264. The location of survey points in Lake Kätkänjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

yläosalle laskettu kuiva-aineen varastoitumisnopeus on hieman keskimääräistä pienempi ja hiilen hieman keskimääräistä suurempi.

Kuva 265. Kätkänjärven tutkimuspisteeltä 9 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilijaotusten tulokset. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 265. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 9 in Lake Kätkänjärvi. Top right shows the carbon content of the surface core.

Kuroutumista edeltäneiden merivaiheiden aikaisia savia tavattiin vain kahdella tutkimuspisteellä. Savi-kerrokset ovat kuluneet pois kuroutumista edeltäneen matalan meran aikaan tai ne ovat hautautuneet hiekkakerrosten alle. Kuroutumisen jälkeen syntyneet sedimentit sisältävät kuiva-ainetta noin 0,54 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 210 kg/m², ja sen keskimääräinen varastointimäärä on ollut 21 g/m²/v. Kuiva-aineesta on hiiltä noin 54 milj. kg. Koko pinta-alalle laskettuna keskimääräinen hiilivarasto on 21 kg/m² ja keskimääräinen varastointimäärä 2,1 g/m²/v.

Alainen Mustalampi

Alainen Mustalampi sijaitsee Lapuanjoen vesistöalueen kaakkoisreunalla ja kuuluu Töysän kuntaan. Sen pinta-ala on 0,04 km² ja pinnan korkeus 153,5 m. Järvi on noin 550 m pitkä, 60 m leveä ja suuntautuneut luooteesta kaakkoon (kuva 266). Sitä reunustavat järven suuntaiset kalliomäet. Alainen Mustalampi on tyypiltään reittijärvi.

Mannerjätköön reunan peräännyttyä ulotettiin mui-nainen Itämeri Alaisen Mustalammen altaaseen ja sen vedenpinta oli noin 40 m lammen nykyistä pintaa korkeammalla. Maankuoren kokotessa vedenpinta laski ja aalokko huuhtoi mäkkien rinteitä paljastaen kalliota ja kerrostaita hienoa mineraaliaineesta laaksoihin. Alainen Mustalampi kuroutui Itämerestä Ancylusjärvi-vaiheen aikaan noin 10 100 vuotta sitten.

Tutkimuspisteitä on viisi (kuva 266). Näytteet laboratoriomääritystä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 5 sijaitsee järven kaakkoisosassa, missä veden syvyys oli 2,9 m. Pitkä näyte ulotettiin sedimentin pinnasta 3,04 m syvyyteen. Näytteen alaosaa (3,04–2,60 m) on lustosavea. Sen päällä on liejusavea (2,60–2,45 m) ja liejua (2,45–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,60 m (kuva 267). Sen yläpuolella sedimentin hiilipitoisuus
Järvedimentit kuivaa-aineen ja hiilen varastona

Kuva 266. Tutkimuspisteiden sijainti Alaisella Mustalammella. Ylhäällä oikealla järvensijainti luusuaan rajoittavalla valuma-alueella.
Fig. 266. The location of survey points in Lake Alainen Mustalampi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 267. Alaisen Mustalammen järvedimentit sisältävät kuivaa-ainetta noin 13 000 tn. Koko pinta-alalle laskeutuva kuivaa-ainetta on keskimäärin 340 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuivaa-ainesta on hiiltä noin 3,1 milj. kg. Koko pinta-alalle laskeutettu keskimääräinen hiilivarasto on 77 kg/m² ja keskimääräinen varastoitumisnopeus 7,7 g/m²/v.

Alaisen Mustalammen järvedimentit sisältävät kuivaa-ainetta noin 13 000 tn. Koko pinta-alalle laskeutuva kuivaa-ainetta on keskimäärin 340 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuivaa-ainesta on hiiltä noin 3,1 milj. kg. Koko pinta-alalle laskeutettu keskimääräinen hiilivarasto on 77 kg/m² ja keskimääräinen varostoitumisnopeus 7,7 g/m²/v.

Alaisen Mustalammen järvedimentit sisältävät kuivaa-ainetta noin 13 000 tn. Koko pinta-alalle laskeutuva kuivaa-ainetta on keskimäärin 340 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuivaa-ainesta on hiiltä noin 3,1 milj. kg. Koko pinta-alalle laskeutettu keskimääräinen hiilivarasto on 77 kg/m² ja keskimääräinen varastoitumisnopeus 7,7 g/m²/v.

Kuva 267. Alaisen Mustalammen järvedimentit sisältävät kuivaa-ainetta noin 13 000 tn. Koko pinta-alalle laskeutuva kuivaa-ainetta on keskimäärin 340 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuivaa-ainesta on hiiltä noin 3,1 milj. kg. Koko pinta-alalle laskeutettu keskimääräinen hiilivarasto on 77 kg/m² ja keskimääräinen varastoitumisnopeus 7,7 g/m²/v.

Kuva 266. Tutkimuspisteiden sijainti Alaisella Mustalammella. Ylhäällä oikealla järvensijainti luusuaan rajoittavalla valuma-alueella.
Fig. 266. The location of survey points in Lake Alainen Mustalampi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 267. Alaisen Mustalammen järvedimentit sisältävät kuivaa-ainetta noin 13 000 tn. Koko pinta-alalle laskeutuva kuivaa-ainetta on keskimäärin 340 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuivaa-ainesta on hiiltä noin 3,1 milj. kg. Koko pinta-alalle laskeutettu keskimääräinen hiilivarasto on 77 kg/m² ja keskimääräinen varastoitumisnopeus 7,7 g/m²/v.

Kuva 266. Tutkimuspisteiden sijainti Alaisella Mustalammella. Ylhäällä oikealla järvensijainti luusuaan rajoittavalla valuma-alueella.
Fig. 266. The location of survey points in Lake Alainen Mustalampi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 267. Alaisen Mustalammen järvedimentit sisältävät kuivaa-ainetta noin 13 000 tn. Koko pinta-alalle laskeutuva kuivaa-ainetta on keskimäärin 340 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuivaa-ainesta on hiiltä noin 3,1 milj. kg. Koko pinta-alalle laskeutettu keskimääräinen hiilivarasto on 77 kg/m² ja keskimääräinen varastoitumisnopeus 7,7 g/m²/v.

Kuva 267. Alaisen Mustalammen järvedimentit sisältävät kuivaa-ainetta noin 13 000 tn. Koko pinta-alalle laskeutuva kuivaa-ainetta on keskimäärin 340 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuivaa-ainesta on hiiltä noin 3,1 milj. kg. Koko pinta-alalle laskeutettu keskimääräinen hiilivarasto on 77 kg/m² ja keskimääräinen varastoitumisnopeus 7,7 g/m²/v.

Kuva 267. Alaisen Mustalammen järvedimentit sisältävät kuivaa-ainetta noin 13 000 tn. Koko pinta-alalle laskeutuva kuivaa-ainetta on keskimäärin 340 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuivaa-ainesta on hiiltä noin 3,1 milj. kg. Koko pinta-alalle laskeutettu keskimääräinen hiilivarasto on 77 kg/m² ja keskimääräinen varastoitumisnopeus 7,7 g/m²/v.

Kuva 267. Alaisen Mustalammen järvedimentit sisältävät kuivaa-ainetta noin 13 000 tn. Koko pinta-alalle laskeutuva kuivaa-ainetta on keskimäärin 340 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 33 g/m²/v. Kuivaa-ainesta on hiiltä noin 3,1 milj. kg. Koko pinta-alalle laskeutettu keskimääräinen hiilivarasto on 77 kg/m² ja keskimääräinen varastoitumisnopeus 7,7 g/m²/v.
PURMOJOEN VESISTÖalue (46)

Purmojoen vesistöalue sijaitsee maan länsiosassa Pohjanlahden rannikolla (kuva 268). Vesistöalueen pinta-ala on noin 860 km² ja keskimääräinen korkeus 60 m. Koko alue jäi jääkauden jälkeen muinaisen Itämeren alle, ja se paljastui suurimmaksi osaksi vasta Litorinameri-vaiheen aikaan. Vesistöalueesta on moreenimaata 60 % ja turvemaata 22 %.

Fig. 268. The location of studied Lake Kalijärvi in the Purmojoki River drainage basin.

Tutkimuspiste 6 sijaitsee järvens keskiosassa, missä veden syvyys oli 0,7 m. Pitkä näyte ulottuu sedimentin pinnasta 2,09 m:n syvyyteen. Näytteen alaosa (2,09–1,60 m) oli savillelua, ja sen päällä oli liejua (1,60–0 m). Näytteenon korkeimmilla hiekkaa, mutta sitä ei saatu näytteeseen. Kuroutumisen jälkeen järven rannat ovat soituneet. Rantavyöhykkeestä suotovat laajentuneet sekä mineraalima. Kalijärven keskiosassa诱惑, missä veden syvyys oli 0,7 m. Pitkä näyte ulottuu sedimentin pinnasta 2,09 m:n syvyyteen. Näytteen alaosa (2,09–1,60 m) oli savillelua, ja sen päällä oli liejua (1,60–0 m). Näytteen on korkeimmilla sedimenttikerroksen pinnassa.

Näytteen alaosasta ajotettiin yksi osanäyte radiohiilimenetelmällä. Ajoitustulos on kehityshistorian perusteella arvioituun kuroutumisajankohtaan nähden.
vanha. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 81 g/m². Siitä hiilen osuuus on 11 g/m².

Kalijärven pinta-ala on pienentynyt rantasoiden vallattessa alaa järveltä, mutta altaan vesitilaa on pienentynyt myöskin altaan vähittäinänyt. Tutkimuspisteittäin laskettu keskimäärinen veden syvyys oli 0,8 m ja keskimääräinen järvesedimenttikerroksen paksuus 1,8 m. Jos alkuperäiseksi veden syvyydeksi oletetaan nykyinen veden syvyys ja sedimenttikerroksen paksuus yhteensä, on altaan alkuperäisestä vesitilasta täytynyt noin 70 %.

Kalijärven järvesedimentit sisältävät kuiva-ainetta noin 64 000 tn. Koko pinta-alueella laskettuna kuiva-ainetta on keskimäärin 250 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 46 g/m²/v. Kuivaaineesta on hiiltä noin 8,9 milj. kg. Koko pinta-ala

ÄHTÄVÄNJOEN VESISTÖALUE (47)

Ähtävänjoen vesistöalue sijaitsee maan länsiosassa Pohjanlahden rannikolla (kuva 271). Sen pinta-ala on noin 2100 km² ja korkeus keskimäärin 100 m. Jääkauden jälkeen koko vesistöalue jäi muinaisen Itämeren vedenpinnan alle. Lappajärven kaakkoispuolinen osa paljastui Itämerestä Ancylusjärvi-vaiheen ja muu osa Litorinameri-vaiheen aikaan. Vesistöalueella vallitsevat moreeni- (52 %) ja turvemi- (22 %) ja turvemaa (22 %).

Fig. 270. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 6 in Lake Kalijärvi. Top right shows the carbon content of the surface core.

laskettu keskimääräinen hiilivarasto on 36 kg/m² ja keskimääräinen varastoitumisnopeus 6,5 g/m²/v.

Fig. 271. The location of studied Lake Lappajärvi in the Ähtävänjoki River drainage basin.
Lappajärvi

Lappajärvi sijaitsee Ähtävänjoen vesistöalueen keskiosassa ja kuuluu Lappajärven, Vimpelin ja Alajärven kuntiin. Sen pinta-ala on 142 km² ja pinnan korkeus 69,5 m. Järvi on varsin avoin ja lähes pyöreä (kuva 272). Valuma-alue on enimmäkseen soistunutta moreenimaita. Lappajärvi on tyyppiläinen latvajärvi.

Kuva 272. Luotauslinjojen ja tutkimuspisteiden sijainti Lappajärvellä. Ylhäällä oikealla järven sijainti luusaan rajoittavalla valuma-alueella. A–B osoittaa kuvan 274 sijainnin. Fig. 272. The location of echo-sounding transects and survey points in Lake Lappajärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet. A–B indicates the location of Fig. 274.

Kuva 273. Lappajärven tutkimuspisteeltä 9 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pinta-nytteen hiilipitoisuus. Fig. 273. The composition, density and carbon content of the long core taken from survey point 9 in Lake Lappajärvi. Top right shows the carbon content of the surface core.

Tutkimuspiste 9 sijaitsee järven länsiosassa, missä veden syvyys oli 11,3 m. Pitkä näyte ulottuu sedimentin pinnasta 7,92 m:n syvyyteen. Näytteen alaosa (7,92–3,10 m) on savea. Sen päällä on liejusavea (3,10–2,95 m) ja saviliejua (2,95–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,10 m (kuva 273). Sen yläpuolella hiilikäyrän kohoaminen kerrostumisnopeudella kohoaa ja saavuttaa 4 %:n tason 2 m:n syvyydessä ja pysyy sillä tasolla 0,7 m:n syvyyteen saakka. Pitkän näytteen yläosassa pitoisuus kohoaa vajaan 6 %:n tasolle, mutta alenee nopeasti aivan näytteen yläpäässä. Pintanäytteiden perusteella alimmat hiilikäyrän kohoaminen kerrostumisnopeudella 2 m:n syvyyteen saakka kuvastaa vakiintumisvaihetta järven kehityksessä. Keskimääräisen kerrostumisnopeuden perusteella arvioituna se olisi kestänyt noin 2000 vuotta. Todellisuudessa vakiintuminen lenee tapahtumattomina, sillä kerrostumisnopeus vaihtelee ja se on yleensä suurempi välittömästi kuroutumisen jälkeen. Kuroutumisen jälkeen tälle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 140 g/m². Siitä hiilen osuus on ollut 5,3 g/m².

Altaan pohja kuluu alle 5 m syvillä alueilla. Noin 5–8 m syvillä alueilla vallitsee kulkeutuminen ja yli 8 m syvillä kerrostuminen (kuva 274). Aalokko estää järvedimenttien kerrostumisen reunamien ja keskiosan matalilla alueilla. Itäosan syvänteissä on paikkoja, missä virtaukset estävät sedimentointimen. Paksuimmat järvedimenttikerrokset sijaitsevat länsiosan syvänteissä.

Lappajärven pohjasta noin 45 % on järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 47 milj. t. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 330 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 56 g/m²/v. Kuiva-aineesta on hiiltä noin 1900 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 13 kg/m² ja keskimääräinen varastoitumisnopeus 2,2 g/m²/v.
KRUUNUPYYNJOEN VESISTÖALUE (48)

Kruunupyynjoen vesistöalue sijaitsee Pohjanlahden rannikolla. Se on kapea ja suuntautunut luoteesta kaakkoiseen (kuva 275). Alueen pinta-ala on noin 790 km² ja keskimääräinen korkeus 66 m. Jääkauden jälkeen koko vesistöalue jäi muinaisen Itämeren vedenpinnan alle. Alueen kaakkoisosa paljastui Itämerestä Ancyliusjärvi-vaiheen ja muu osa Litorinameri-vaiheen aikaan. Vesistöalueelle ovat tyypillisiä moreenien (51 %) ja turvemaat (35 %).

Fig. 275. The location of studied Lake Tvärasjön in the Kruunupyynjoki River drainage basin.
Tvärasjön

Tvärasjön sijaitsee Kruunupyyynjoen vesistöalueen keskiosassa Kruunupyyn kunnassa. Sen pinta-ala on 1,32 km² ja pinnan korkeus 60,3 m. Järvi on muodoltaan sokkeloinen ja sen länsiosan kautta virtaavat laajan valuma-alueen vedet (kuva 276). Tvärasjön on tyyppiltään reittijärvi.

Mannerjääkön reunan peräännytyttä ulottuiviin muinaisten Itämeri Tvärasjönin alueelle ja sen pinta oli runsaat 200 m järven nykyistä vedenpinta korkeammalla. Maankuoren kohotessa vedenpinta laski ja Tvärasjön kuroutui Itämerestä Litorinameri-vaiheena aikana noin 5500 vuotta sitten. Sen jälkeen järven kehitykseen ovat vaikuttaneet valuma-alueen soistuminen ja maankäytön muutokset.

Tutkimuspisteitä on yhdeksän (kuva 276). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä, ja muilla pisteillä sedimentin kerrosljärjestys määritettiin maastossa.

Tutkimuspiste 9 sijaitsee järven länsiosassa, missä veden syvyys oli 1,00 m. Pitkä näyte ulottuu sedimentin pinnasta 1,85 m:n syvyyteen. Näytteen alaosaa (1,85–1,19 m) on saviliejua ja yläosa (1,19–0 m) liejua. Kuroutumisajankohtaa vastaava syvyys on 1,85 m. Sen yläpuolella hiilipitoisuus kohoaa, saavuttava 15 %:n tason kerrostuman keskiosassa ja pysyy korkeana pintaan saakka (kuva 277). Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 64 g/m². Siitä hiilen osuus on ollut 7,0 g/m².

Tvärasjönin järvisädelementistä sisältävät kuiva-ainetta noin 0,55 milj. tn. Koko pinta-alalle laskettu kuiva-ainetta on keskimäärin 420 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 76 g/m²/v. Kuiva-aineesta on hiiltä noin 61 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 46 kg/m² ja keskimääräinen varastoitumisnopeus 8,4 g/m²/v.

Fig. 276. The location of survey points in Lake Tvärasjön. The top map shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 277. The composition, density and carbon content of the long core taken from survey point 9 in Lake Tvärasjön. Top right shows the carbon content of the surface core.
LESTIJOEN VESISTÖALUE (51)

Lestijoen vesistöalue sijaitsee Pohjanlahden rannikolla. Vesistöalue on kapea ja suuntautunut luoteesta kaakkoon (kuva 278). Sen pinta-ala on noin 1400 km² ja keskimääräinen korkeus 128 m. Jääkauden jälkeen koko vesistöalue jäi muinaisen Itämeren vedenpinnan alle. Kaakkoisosa paljastui Itämerestä Ancylusjärvi-vaiheen ja luoteisosa Litorinameri-vaiheen aikaan. Vesistöalueelle ovat tyypillisä moreeni- (50 %) ja turvemaat (29 %).

Kuva 278. Lestijoen vesistöalueeltu tutkitun Lestijärven sijainti. Fig. 278. The location of studied Lake Lestijärvi in the Lestijoki River drainage basin.

Lestijärvi

Lestijärvi sijaitsee Lestijoen vesistöalueen kaakkoisosassa ja kuuluu Lestijärven kuntaan. Sen pinta-ala on 65,1 km² ja pinnan korkeus 140,7 m. Järvi muodostuu kahdesta luoteesta kaakkoon suuntautuneesta altaasta, jotka liittyvät toisiinsa itäosassa (kuva 279). Altaat ovat hyvin tasapohjaisia. Keskiosassa veden syvyys on noin 5 m. Valuma-alue on enimmäkseen voimakkasti soistunutta moreenimaa. Lestijärvi on tyypiltään latvajärvi.

Mannerjäättikön reunan peräännytynä oli muinaisen Itämeren pinta Lestijärven kohdalla noin 70 m järven nykyistä pintaa ylemmänä. Maankuoren kohotessa vedenpinta laski ja Lestijärvi kuroutui Itämerestä Ancylusjärvi-vaiheen aikaan noin 9500 vuotta sitten. Siitä alkaen järven pinta on hitaasti kohonnut maankuoren kallistuessa kaakkoon.

Tutkimuspisteitä on neljä (kuva 279). Näytteet laboratoriomäärittämisestä otettiin yhdeltä pisteeltä.

Kuva 279. Luotauslinjojen ja tutkimuspisteiden sijainti Lestijärvellä. Ylhäällä oikealla järven sijainti luusuan valuma-alueella. A–B osoittaa kuvan 281 sijainnin. Fig. 279. The location of echo-sounding transects and survey points in Lake Lestijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet. A–B indicates the location of Fig. 281.
Järvesedimentit kuiva-aineen ja hiilen varastona

Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa. Kaikuluotauslinjaa on yhteensä 21 km.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 5,1 m. Pitkä näyte ulottuu sedimentin pinnasta 5,59 m:n syvyteen. Näytteen alaosaa (5,59–3,40 m) on lustosavea. Sen päällä on savea (3,40–2,64 m), liejusavea (2,64–2,10 m), saviliejuja (2,10–0,95 m) ja liejuja (0,95–0 m). Kuroutumisajan-kohtaa vastaava syvyys on 2,64 m (kuva 280). Sen yläpuolella hiilipitoisuus kohoo tasaisesti ja saavuttaa 12 %:n tason sedimenttikerroksen yläosassa. Pinta- näytteen mukaan hiilipitoisuus kuitenkin laskee ylimmässä 5 cm:n kerroksessa. Kuroutumisen jälkeen tälle paikalle on varastoitunut kuiva-ainetta keskimäärin 95 g/m². Siitä hiilen osuus on ollut 5,0 g/m².

Yleensä järvesedimenttien kertyminen on nopeampaa syvänteissä kuin matalammilla alueilla, mikä johtaa vuosittaisen kuluvuuden järven pohjan tasonmuutumiseen. Lestijärven pohjan epätasaisuudet ovat hautautuneet järvesedimenttikerroksen alle (kuva 281). Lestijärven pohjasta noin 75 % on järvesedimenttejä, ja ne sisältävät kuiva-ainetta noin 25 milj. tn. Koko pinta-alalla laskettuna kuiva-ainetta on keskimäärin 380 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 40 g/m²/v. Kuiva-aineesta on hiiltä noin 1300 milj. kg. Koko pinta-alalla laskettu keskimääräinen hiilivarasto on 20 kg/m² ja keskimääräinen varastoitumisnopeus 2,2 g/m²/v.

Fig. 280. The composition, density and carbon content of the long core taken from survey point 4 in Lake Lestijärvi. Top right shows the carbon content of the surface core.

Kuva 281. Kaikuluotausprofiili Lestijärven keskiosasta.

Fig. 281. Echo-sounding profile of the central part of Lake Lestijärvi.
Pyhäjoen vesistöalue (54)

Pyhäjoen vesistöalue sijaitsee Pohjanlahden ran- nikolla ja ulottuu Pohjanlahdelta Pyhäjärvelle (kuva 282). Sen pinta-ala on noin 3700 km² ja keskimää- räinen korkeus 119 m. Jääkauden jälkeen vesistöalue jätä kaakkoispään vedenjakajalla olevia mäkiä lukuun ottamatta muinaisen Itämeren vedenpinnan alle. Kaakkois- ja keskiosa paljastuivat Itämerestä Ancylusjärvi-vaiheen ja luoteisosan Litorinameri-vaiheen aikaan. Vesistöalueelle ovat tyypillisiä moreeni-(52 %) ja turvemaat (26 %).

Kuva 282. Pyhäjoen vesistöalueelta tutkittujen järvien sijainti. Fig. 282. The location of the studied lakes in the Pyhäjoki River drainage basin.

Pyhäjärvi

Pyhäjärvi sijaitsee Pyhäjoen vesistöalueen kaakkoisosassa ja kuuluu Pyhäjärven kuntaan. Sen pinta-ala on 126 km² ja pinnan korkeus 139,6 m. Järvi on lukuisen niemien takia varsin hajanainen (kuva 283). Sen keskosassa on luoteesta kaakkoon suuntautuva alas, jossa veden syvyys ylittää 20 m. Altana koillispuolella poljaa on melko tasainen veden syvyyden vaihdellessa 4–8 m. Altan lounaispuolella taas pohjan muoto on vaihteleva. Valuma-alue käsittää järven lähialueiden ja on enimmäkseen soistunutta moreenimaata. Pyhäjärvi on tyyppitietä latvajärven.

Tutkimuspiste 1 sijaitsee keskiosan syvänteessä, missä veden syvyys oli 22,0 m. Pitkä näyte ulottuu sedimentin pinnasta 5,90 m:n syvyyteen. Näytteen alaosa (5,90–5,70 m) on lustosavesiä. Sen päällä on saviesiä (5,70–3,55 m), saviesiä (3,55–2,90 m), saviliejua (2,90–0,40 m) ja liejua (0,40–0 m). Kuroutumisepäkohtaa vastaa 3,55 m (kuva 284). Sen yläpuolella hiilipitoisuus kohoaa hitaasti ja saavuttaa 7 %:n tason sedimentin pinnassa. Viimeaikainen vedenpinnan lasku ei näy pitkässä näytteessä. Sen sijaan vedenpinnan laskun vedenpinnan laskuun liittyy mitä todennäköisimmin järven laskuun. Kuroutumisen jälkeen tälle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 140 g/m². Siitä hiilen osuus on ollut 4,6 g/m².

Pyhäjärven pohjastoon on 30 % on järvisäkkyristeitä, ja ne sisältävät kuiva-ainetta noin 41 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 330 kg/m², ja sen keskimääräinen varastotuiminen nopeus on ollut 34 kg/m²/v. Kuiva-ainesta on huoltain 1400 milj. kg. Koko pinta-alalle laskettuna keskimääräinen hiilivarastointisnopeus on 1,1 g/m²/v.
Kuva 283. Luotauslinjojen ja tutkimuspisteiden sijainti Pyhäjärvellä. Ylhäällä vasemmalta järven sijainti luusuaan rajoittavalla valuma-alueseella.
Fig. 283. The location of echo-sounding transects and survey points in Lake Pyhäjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 284. Pyhäjärven tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus.
Fig. 284. The composition, density and carbon content of the long core taken from survey point 1 in Lake Pyhäjärvi. Top right shows the carbon content of the surface core.

Haralampi

Haralampi sijaitsee Pyhäjoen vesistöalueen keskiosassa Haapavedellä. Sen pinta-ala on 0,05 km² ja pinnan korkeus 142,3 m. Lampi on avoin, ja se rajoittuu itäreunalla muinaiseen rantavalliin, muualla suohon (kuva 285). Haralampi on tyyppiltään latvajärvi.

Tutkimuspisteitä on seitsemän (kuva 285). Näytteet
LIMINKAOJANVESISTÖALUE (55)

Liminkajoan vesistöalue sijaitsee Pohjanlahden rannikolla (kuva 287). Sen pinta-ala on noin 190 km² ja korkeus keskimäärin 71 m. Jääkauden jälkeen koko vesistöalue jäi muinaisen Itämeren vedenpinnan alle, mistä se paljastui vasta Litorinameri-vaiheen aikana. Vesistöalueelle ovat tyyppillisiä moreenia (73 %). Turvemaiden osuus (15 %) on pienempi kuin muilla Pohjanlahden pienillä vesistöalueilla. Alueen suot ovat nuoria ja niiden turvekerrokset ovat kuitenkin vähemmän kuin muilla vesistöalueilla. Turvemaiden

Todennäköisesti huomattava osa lammien pohjalle kerrostuneesta aineesta on peräisin rantasraastuista. Lampea ympäröivät suot estävät tehokkaasti mineraaliaineiden kulutumisen lampeen, mikä osaltaan kohottaa sedimentin hiilipitoisuutta.

Liejun kerrostuminen alkoi pitkällä viiveellä altaan kuroitumisen jälkeen. Kerrostuminen tuli mahdolliseksi vasta, kun vedenpinta kohosi riittävän korkealle. Radiohiiliäjoitus antaa liejukerrokseen pohjan iäksi 6770 cal BP, joten kuivan tai matalavetisen vaiheen voidaan päätellä kestäneen lähes 3000 vuotta. Viimeksi kuluneiden 6820 vuoden aikana tälle paikalle on varastoitu noin 2,5 g/m².

Haralammen järvedesedimentti on ohut, keskimäärin 0,3 m. Järvedesedimentit sisältävät kuiva-ainetta noin 1000 tn. Koko pinta-ala laskettuna kuiva-ainetta on keskimäärin 21 kg/m², ja sen keskimääräinen varastoitumisnopeus on noin 3,0 g/m²/v. Kuiva-ainesta on hiiltä noin 0,42 milj. kg. Koko pinta-ala laskettuna keskimääräinen hiilivarasto on 8,5 kg/m² ja keskimääräinen varastoitumisnopeus 1,3 g/m²/v.
Pieni Hetelampi

Pieni Hetelampi sijaitsee Liminkaajan vesistöalueen itäosassa ja kuuluu Pyhäjöen kuntaan. Sen pinta-ala on 0,06 km² ja pinnan korkeus 107,1 m. Järvi on kaukallaan suon ympäröimä, ja suurin osa sen valuma-alueesta on suota (kuva 288). Pieni Hetelampi on tyyppiään reittijärvi.

Mannerjäätikön reunan peräännyttyä ulottui muinaisen Itämeri Pienen Hetelammen alueelle ja sen pinta oli runsaat 100 m lamban nykyistä pinta-alalta. Maankuoren kohotettua vedensuiston laski, ja lammin leveys kasvoi melko nopeasti 8800 vuotan aikana. Pieni Hetelampi on nykyisin itämeren linkkiin mukana.

Kuva 287. Liminkaajan vesistöalueelta tutkitun Pienen Hetelammenn sijainti.

Fig. 287. The location of studied Lake Pieni Hetelampi in the Liminkaajariver drainage basin.

Kuva 288. Tutkimuspisteiden sijainti Pienellä Hetelammella. Yhdistää oikealla lamman sijainti huusuaan rajoittavalla valuma-alueella. Fig. 288. The location of survey points in Lake Pieni Hetelampi. Top right shows the location of the small lake in the drainage basin delimited by the outlet.

Kuva 289. Tutkimuspiste 7 sijaitsee järven luoteisosassa, missä veden syvyys oli 1,1 m. Pitkä näyte ulottuu sedimentin pinnasta 1,20 m:n syvyyteen. Nätäteen aloosa (1,20–0,80 m) on savea, ja sen päällä on lieju (0,80–0 m). Kuroutumisajankohtaa vastaava syvyys on 0,80 m. Sen yläpuolella hiilipitoisuus kohoaa nopeasti runsaan 30 %:n tason (kuva 289). Liejunkerroksen pohja on tehty radiohiihiöitä, mikä osoittaa liejun kerrostumisen alkaneen pian kuroutumisen jälkeen. Tälle paikalle on varastoitunut vuosittain kuiva-anetta keskimäärin 7,2 g/m². Siitä hiilen osuus on ollut 1,9 g/m².

Järven ympäristön soistumisen selittää sedimentin korkeathiilipitoisuudet. Laajasaraj, jossa on lihajoita, vaikuttaa tehokkaasti malmin moleksia. Keskimääräinen veden syvyys oli 1,1 m, ja keskimääräiseksi järvensedimenttikerroksen paksuudeksi saatettiin 1,3 m. Mikäli ympäristön soiden paksuus kasvoi 55 %:n osuus, on alkuperäinen veden syvyys ollut 2,4 m. Alkuperäisestä vesitilasta on siten tähän mennessä väsynyt 55 %. Tähän asti on säilynyt vaihtoehtoisesti ruokaimme järven lounaisosasta.

Pieni Hetelammen järvesi sisältää noin 5200 tn. Koko pinta-alalle las...
OULUJOEN VESISTÖALUE (59)

Oulujoen vesistöalue sijaitsee maan keskiosassa ja ulottuu Perämereltä valtakunnan itärajalle (kuva 290). Vesistöalueen pinta-ala on noin 23 000 km². Maan pinta kohoaa lännestä itään ja on keskimäärin 199 m. Alueen itäosa Oulujärven itäpään tasalle saakka saakka on vedenkoskematonta aluetta. Siellä järven iän määrää mannerjäätikön reunan perääntyminen. Muu osa vesistöalueesta on vasta-aita ja Ahmasjärven länsipuolelle jäävää osaa Litorinameri-

kettuna kuiva-ainetta on keskimäärin 86 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 9,8 g/m²/v. Kuiva-ainetta on hiiltä noin 1,4 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 23 kg/m² ja keskimääräinen varastoitumisnopeus 2,6 g/m²/v.

Kuva 290. Pienen Hetelammen tutkimuspisteeltä 7 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilijoituksen tulos. Oikealla pinta-aineen hiilipitoisuus.

Fig. 289. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 7 in Lake Pieni Hetelampi. On the right the carbon content of the surface core.

Oulujoen vesistöalueella tutkittiin yhdeksän järveä, joista kolme on suuria yli 100 km²:n järviä. Vesistöalueesta on moreenimaata 51 %, turvemaata 24 % ja vesistöjä 13 %. Sedimentaatio-olojen kannalta merkittävien savikkojen osuus on vain 1 %. Etelä-Suomen suurin vesistöalueisiin (Vuoksi ja Kymijoki) verrattuna turvemaata on runsaasti, mutta vesistöjä vähän. Oulujoen vesistöalueella alavat paikat ovat yleisemmin soiden peittämiä, mikä on vaikuttanut kerrostuvan sedimentin laatuun. Oulujoen vesistöalueelta tutkittiin yhdeksän järveä, joista kolme on suuria yli 100 km²:n järviä.

Kuva 290. Oulujoen vesistöalueesta tutkittujen järven sijainti.

Fig. 290. The location of the studied lakes in the Oulujoki River drainage basin.
Oulujärvi

Mannerjäätkön reunan peräännyttyä ulottui muiinänen Itämeri Oulujärven alueelle ja sen pinta oli luoteisosassa noin 80 m ja itäosassa noin 50 m järven nykyisen vedenpinnan yläpuolella. Maankuoren kohotessa vedenpinta laski ja Oulujärvi kuroutui Itämerestä Ancylus-vaiheena noin 9500 vuotta sitten. Laskukynnys on sijainnut koko ajan järven luoteispäässä nopeimman maankohoamisen alueella.

Sen takia Oulujärven pinta on kohonnut, nopeimmin järven itäosassa. Vedenpinnan kohoamisen takia järven pinta-ala on kaksinkertaistunut kuroutumisen jälkeen (Koutaniemi & Keränen 1983).

Tutkimuspisteitä on kuusi, joista kolmelta otettiin näytteet laboratoriomäärityksiä varten (kuva 291). Kaikuluotauslinjaa on yhteensä 68 km.

Tutkimuspiste 1 sijaitsee Niskanselällä, missä veden syvyys oli 15,5 m. Pitkä näyte ulottuu sediimentin pinnasta 8,52 m:n syvyysteen. Näytteen alaosat (8,52–5,80 m) on lustosavea. Sen päällä on savea (5,80–5,20 m), liejusavea (5,20–3,80 m) ja saviliejua (3,80–0 m). Kuroutumisajankohta vastaava syvyys on 5,20 m (kuva 292). Sen yläpuolella hiilipitoisuus pysyy 1%:n tasolla 4 m:n syvyysteen saakka, kohoa sitten verrattain nopeasti 5%:n tasolle ja pysyy siinä...
Hiilen osuus on ollut 5,6 g/m². Paleomagneettisen ajoituksen perusteella laskettiin varastoitumisnopeudet yhdeksälle kerrokselle, joista useimmat ovat alle 3000 vuoden ikäisiä. Kuiva-aineen varastoitumisnopeus hidastui nopeasti 8000–6000 vuotta sitten, mutta on pysynyt sen jälkeen samalla tasolla (kuva 293). Hiilen varastoitumisnopeus taas kohoa hitaasti nykyaikaa kohti.

Tutkimuspiste 2 sijaitsee Ärjänselällä, missä veden syvyys oli 15,0 m. Pitkä näyte ulottuu sedimentin pinnasta 2,37 m:n syvyyteen (kuva 294). Näytteen alaosa (2,37–0,53 m) on lustosavea, ja sen päällä on saviliejua (0,53–0 m). Kuroitumisajankohtaa vastaava syvyys on 0,53 m. Näyte ei ole täydellinen. Lustosaven päälle kerrostuneet Ancylusjärven savet kuluvat pois ja kerrostuvat uudelleen syvänteisissä matalan vesiväikeissä aikana. Saviliejun kerrostuminen alko vasta tuhansia vuosia myöhemmin, kun veden syvyys oli lisääntynyt riittävästi.

Tutkimuspiste 3 sijaitsee Paltaselällä järven itäosassa, missä veden syvyys oli 13,7 m. Pitkä näyte ulottuu sedimentin pinnasta 8,98 m:n syvyyteen. Näytteen alaosa (8,98–7,60 m) on lustosavea. Sen päällä on savia (7,60–4,00 m), liejusavea (4,00–3,30 m) ja saviliejua (3,30–0 m). Kuroitumisajankohtaa vastaava syvyys on 4,00 m. Sen yläpuolella hiilipitoisuus kohoa ja saavuttaa 5 %:n tason 1,3 m:n syvyydessä (kuva 295). Sedimenttikerroksen yläosasissa pitoisuudet taas laske-
Järvedimentit kuiva-aineen ja hiilen varastona

Vat. Tällä paikalla oli kuroutumisen jälkeen pienehkö järvi, joka vasta vedenpinnan kohottua liittyi osaksi Oulujärveä. Järven itäosan salmien laajeneminen ja syveneminen muutti virtausoloja, mikä on voinut vaikuttaa sedimentin hiilipitoisuuden alenemiseen kerroksen yläosassa. Osaltaan siihen ovat vaikuttaneet myös valuma-alueen maankäytön muutokset. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 130 g/m². Siitä hiilen osuus on ollut 4,5 g/m².

Oulujärven pohjastanaan 55% on järvedimentteitä, ja ne sisältävät kuiva-ainetta noin 430 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 480 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 51 g/m²/v. Kuiva-aineesta on hiiltä noin 15 000 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 17 kg/m² ja keskimääräinen varastoitumisnopeus 1,8 g/m²/v.
Kiantajärvi

Kiantajärvi sijaitsee Oulujoen vesistöalueen pohjoisosassa Suomussalmella. Sen pinta-ala on 153 km² ja pinnan korkeus 199,1 m. Järvi on noin 40 km pitkä, 2–4 km leveä ja suuntautunut kallioperän rakenteiden mukaan (kuva 296). Kiantajärvi on tyyppitään reitti-joen.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.

Kiantajärvi syntyi mannerjäätikön reunan perännetyllä alueella noin 10 800 vuotta sitten. Siitä alkaen vedenpinta on pysynyt Ämmänsaaressa sijaitsevan laskevan säätämällä tasolla. Maankuoren lasku tapahtui myös kallioperän rakenneen mukaan (kuva 296). Kiantajärvi on tyyppinä reittijärvi.
Näytteen alaosassa (4,37–4,25 m) on silttä. Sen päällä on liejusavea (4,25–4,10 m), saviliejua (4,10–3,40 m) ja liejua (3,40–0 m). Järven syntyajankohdat vastaava syvyys on 4,25 m (kuva 298). Hiilipitoisuus kohoaa kerrostuman alaosassa nopeasti, pysy keskosassa 8 %:n tasolla ja kohoaa taas lähellä pintaa. Tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 46 g/m². Siitä hiilen osuus on ollut 3,2 g/m².

Järven syntyajankohdan jälkeen nopeasti kohoava hiilikäyrä kuvastaa vakiintumisvaihetta järven ja sen valuma-alueen kehityksessä. Vakiintumisvaiheelle on tyypillistä syvän teylisiin kulkeutuvan mineraalimaisen määrän väheneminen, mikä johtuu lähinnä matalan rantavyöhykkeen huhtoutumisesta ja kasvipeitteen kehittymisestä valuma-alueella. Veden koskemattoman alueen järvissä vakiintuminen tapahtuu varsin nopeasti.

Kiantajärven hiilipitoisuuskäyrät ovat hyvin samalla, vaikka tutkimuspaikat sijaitsevat 25 km:n päässä toisistaan. Käyrien yhtäläisyys osoittaa kerrostuman kerrostumisen hiilipitoisuutta muuttaneiden tekijöiden koskenneen kokon järvän. Tällaisia tekijöitä voivat olla esimerkiksi vedenpinnan muutokset.

Kiantajärven sitten ohella virtaukset vaikuttavat järvedimenttien kerrostumiseen ja järvesimentit rajoittavat järven kerrostumiseen ja kerrostumien kehityksessä. Järvedimenttien kerrostumus tapahtuu yleensä nopeasti.

Fig. 297. The composition, density and carbon content of the long core taken from survey point 1 in Lake Kiantajärvi. Top right shows the carbon content of the surface core.

Fig. 298. The composition, density and carbon content of the long core taken from survey point 2 in Lake Kiantajärvi. Top right shows the carbon content of the surface core.
Ontojärvi

Ontojärvi sijaitsee Oulujoen vesistöalueen itäosassa Kuhmossa. Järven pinta-ala on 104 km² ja pinnan korkeus 159,2 m. Sen keskiosa on lähes pyöreä, mutta saaren rikkoma (kuva 300). Sokkeloiset lahdeketut työntyvät keskiosasta itään, länteen ja etelään. Onto- järvi on tyyppiläinen reittijärvi.

Kurooutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-aineetta keskimäärin 37 g/m². Siitä hiilen osuus on ollut 2,5 g/m². Paleomagneettisen ajoituksen ja sedimentin ominaisuuksien perusteella laskettiin varastoimisnopeudet yhdeksäelle teräkseelle. Varastoimisnopeudet vaihtelevat keskimäärin 5 g/m² vuosittain hienon mineraaliaineksen erodoitumisen alennuksen ja järvien kehityksen alkaavaksi kehityksen vaihe. Sille on tyypillistä valuma-alueen vähittäinen soistuminen, mitä kuvastaa loivasti kohoaava hiillipitoisuskäyrä. Järven viimeaikainen säähölystelty on lisännyt rantavyöhykkeen eroosiota. Se voi vaikuttaa pitoisuksien alennemiseen sedimentterroksen pintaosassa.

Kuva 301. Ontojärven tutkimuspisteeltä 11 otetun pitkän näytteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Top right shows the carbon content of the surface core.

Hossanjärvi

Nurmiselällä, missä veden syvyys oli 4,5 m. Pitkä näyte ulottuu sedimentin pinnasta 4,13 m syvyyteen. Näytteen alaosaa (4,13–3,90 m) on saviliejua, ja sen päällä on liejua (3,90–0 m). Näytteennotimen kärki-kappaleessa oli soraa, joten järven syntyajankohtaa vastaava syvyys on näytteen alapäässä (kuva 304). Sen yläpuolella hiilipitoisuus kohoi nopeasti 8 %:n tasolle ja pysyssänsä tasolla sedimentin pintaan saakka.

Hiilipitoisuuksia ja tiheyskäyräästä päätellen sedimenttaatio-olot ovat vakiintuneet nopeasti, ja ne ovat pysyneet lyhyen vakiintumisvaiheen jälkeen vakaina. Järven syntyajankohdan jälkeen järven alaosa on saviliejua, ja sen päällä on liejua (3,90–0 m). Näytteenottimen kärkipappaleessa oli soraa, joten järven syntyajankohtaa vastaasyvyyson näytteenalapäässä (kuva 304). Sen yläpuolella hiilipitoisuus kohoi nopeasti 8 %:n tasolle ja pysyssänsä tasolla sedimentin pintaan saakka. Hiilipitoisuuksia ja tiheyskäyräästä päätellen sedimenttaatio-olot ovat vakiintuneet nopeasti, ja ne ovat pysyneet lyhyen vakiintumisvaiheen jälkeen vakaina. Järven syntyajankohdan jälkeen järven alaosa on saviliejua, ja sen päällä on liejua (3,90–0 m). Näytteenottimen kärkipappaleessa oli soraa, joten järven syntyajankohtaa vastaasyvyyson näytteenalapäässä (kuva 304). Sen yläpuolella hiilipitoisuus kohoi nopeasti 8 %:n tasolle ja pysyssänsä tasolla sedimentin pintaan saakka. Hiilipitoisuuksia ja tiheyskäyräästä päätellen sedimenttaatio-olot ovat vakiintuneet nopeasti, ja ne ovat pysyneet lyhyen vakiintumisvaiheen jälkeen vakaina.

Järven syntyajankohdan jälkeen järven alaosa on saviliejua, ja sen päällä on liejua (3,90–0 m). Näytteenottimen kärkipappaleessa oli soraa, joten järven syntyajankohtaa vastaasyvyyson näytteenalapäässä (kuva 304). Sen yläpuolella hiilipitoisuus kohoi nopeasti 8 %:n tasolle ja pysyssänsä tasolla sedimentin pintaan saakka. Hiilipitoisuuksia ja tiheyskäyräästä päätellen sedimenttaatio-olot ovat vakiintuneet nopeasti, ja ne ovat pysyneet lyhyen vakiintumisvaiheen jälkeen vakaina. Järven syntyajankohdan jälkeen järven alaosa on saviliejua, ja sen päällä on liejua (3,90–0 m). Näytteenottimen kärkipappaleessa oli soraa, joten järven syntyajankohtaa vastaasyvyyson näytteenalapäässä (kuva 304). Sen yläpuolella hiilipitoisuus kohoi nopeasti 8 %:n tasolle ja pysyssänsä tasolla sedimentin pintaan saakka. Hiilipitoisuuksia ja tiheyskäyräästä päätellen sedimenttaatio-olot ovat vakiintuneet nopeasti, ja ne ovat pysyneet lyhyen vakiintumisvaiheen jälkeen vakaina. Järven syntyajankohdan jälkeen järven alaosa on saviliejua, ja sen päällä on liejua (3,90–0 m). Näytteenottimen kärkipappaleessa oli soraa, joten järven syntyajankohtaa vastaasyvyyson näytteenalapäässä (kuva 304). Sen yläpuolella hiilipitoisuus kohoi nopeasti 8 %:n tasolle ja pysyssänsä tasolla sedimentin pintaan saakka. Hiilipitoisuuksia ja tiheyskäyräästä päätellen sedimenttaatio-olot ovat vakiintuneet nopeasti, ja ne ovat pysyneet lyhyen vakiintumisvaiheen jälkeen vakaina.

Ahmasjärvi

Mannerjäätikon reunan peräängyttyä ulottui muffainen itämeri Ahmasjärven kohdalle ja sen pinta oli runsaat 100 m järven nykyistä pintaa korkeammalla. Maankuoren kohotessa vedenpinta laski ja Ahmasjärvi kuroutui Itämerestä Ancylusjärvi-vaiheen aikana noin 9400 vuotta sitten. Valuma-alueen soistuminen alkoi

Kuva 303. Luotauslinjojen ja tutkimuspiirin sijainti Hossanjärvellä. Ylhäällä oikealla järven sijainti luusuantavan valuma-alueella. Fig. 303. The location of echo-sounding transects and survey points in Lake Hossanjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 304. Hossanjärven tutkimuspiisteeltä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiokarbiiniohjelmien tulokset. Ylhäällä oikealla pinnanäytteen hiilipitoisuus. Fig. 304. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Hossanjärvi. Top right shows the carbon content of the surface core.

Näytteet laboratoriomäärityksiä varten otettiin yhdeltä tutkimuspisteeltä (kuva 305). Sedimentit kartoitettiin poikkeuksellisesta jäännöspäälästä. Tutkalinjaa on yhteensä 17 km.

Tutkimuspiste 1 sijaitsee järven itäosassa, missä veden syvyys oli 2,2 m. Pitkä näyte ulottuu sedimentin pinnasta 5,17 m:n syvyyteen. Näytteen alaosa (5,17–4,40 m) on hiekka. Sen päällä on siltitä (4,40–4,00 m), savea (4,00–3,90 m), liejusavea (3,90–3,50 m), saviliejuja (3,50–2,70 m) ja liejuja (2,70–0 m). Kuroutumisajankohtaa vastaa syvyys on 3,90 m (kuva 306). Sen yläpuolella hiilipitoisuus on hohtaa ja saavuttaa 15 %n tason 2 m:n syvydessä. Sedimentkerroksen pinnassa pitoisuus laskee vedenpinnan laskun ja valuma-alueen maankäytön muutosten takia.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta 84 g/m². Siitä hiilen osuus on ollut 9,2 g/m². Pitkästä näytteestä ajoitettiin radiohiilimenetelmällä kaksi osanäytettä.

Ahmasjärven pohjasta noin 75 % on järvideimentti, ja ne sisältävät kuiva-ainetta noin 1,6 miljl. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 410 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 45 g/m²/v. Kuiva-aineesta on hiiltä noin 170 miljl. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 46 kg/m² ja keskimääräinen varastoitumisnopeus 4,9 g/m²/v.

Kuva 305. Tutkimuslinjatutkimuspisteen sijainti Ahmasjärvelä. Ylhäällä vasemmalla järven sijainti luusuaan rajoittavalla valuma-alueella. Fig. 305. The location of sounding transects and survey point in Lake Ahmasjärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 306. Ahmasjärven tutkimuslinjat 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilialoitusten tulokset. Fig. 306. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Ahmasjärvi.
Kylmäjärvi

Kylmäjärvi sijaitsee Oulujoen vesistöalueen itäosassa Suomussalmen. Järven pinta-ala on 1,03 km² ja pinnan korkeus 206,8 m. Järvi on noin 1,5 km pitkä, vajaan kilometrin levyinen ja suuntautunut lännestä itään (kuva 307). Kylmäjärvi on tyyppiltään latvajärvi. Se rajoittuu lännessä harjuun, muualla moreeni- ja turvemaihin (Virkkala 1954).

Kylmäjärvi sijaitsee jääkauden jälkeisen ylimmän rannan yläpuolella, joten se syntyi välittömästi manterjäätikön reunan perääntyessä alueelta noin 10 900 vuotta sitten. Sen jälkeen järven ympäröstö muutokset ovat rajoittuneet valuma-alueen soistumiseen ja metsätalouden toimenpiteisiin.

Tutkimuspiste 1 sijaitsee järven itäosassa, missä veden syvyys oli 4,7 m. Pitkä näyte ulottuu sedimentin pinnasta 3,13 m: n syvyteen. Näytteen alaosa (3,13–3,00 m) on silttiä. Sen päällä on liejuista silttiä (3,00–2,60 m), liejusavea (2,60–2,30 m), savileijuua (2,30–1,50 m) ja liejua (1,50–0 m). Järven syntyajankohtaa vastaava syvyys on 3,00 m (kuva 308). Allkuvaiheessa kerrostenmineraaliaines on silttiä, mutta myöhemmin savesta. Valuma-alueen soistuessa järveen kulkeutuvan mineraaliaineksen määrä on vähentynyt, mikä näkyi sedimentin tiheyden pienemisenä ja hiilipitoisuuden kohoaamisenä. Kuroutumisen jälkeen tälle paikalle on varastotun vuosittain kuiva-ainetta keskimäärin 80 g/m². Siitä hiilen osuus on ollut 6,5 g/m². Varastotumisnopeutet ovat neljän viimeksi kuluneen vuotuksen aikana olleet huomattavasti keskimääräistä pienempiä.

Kylmäjärven järvedimentit sisältävät kuiva-ainetta noin 0,30 milj. t. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 290 kg/m², ja sen keskimääräinen varastotumisnopeus on ollut 27 g/m²/v. Kuiva-aineesta on hiiltä noin 21 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 20 kg/m² ja keskimääräinen varastotumisnopeus 1,8 g/m²/v.

Kuva 307. Tutkimuspisteiden sijainti Kylmäjärvellä. Ylhäällä oikealla järven sijainti luusuaan rajoittuvala valuma-alueella. Fig. 307. The location of survey points in Lake Kylmäjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 308. Kylmäjärven tutkimuspisteeltä 1 otetun näytteen koostumus, tiheys, hiilipitoisuus ja radiokohojaukset den talokset. Ylhäällä oikealla pinta-aineen hiilipitoisuus. Fig. 308. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Kylmäjärvi. Top right shows the carbon content of the surface core.
Pieni-Pyhäntä

Pieni-Pyhäntä sijaitsee Oulujoen vesistöalueen keskiosassa Ristijärvellä. Sen pinta-ala on 0,90 km² ja pinnan korkeus 133,6 m. Järvi on noin 2 km pitkä, noin 0,5 km leveä ja suuntautunut etelästä pohjoiseen (kuva 309). Pieni-Pyhäntä on tyyppiltään reittijärvi.

Tutkimuspisteitä on kaksi (kuva 309). Näyteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä ja toisella pisteellä sedimentin kerrosjärjestys määritettiin maastossa. Kaikuluotaulinjaa on yhteensä 3,2 km.

Tutkimuspiste 2 on järven pohjoisosassa, missä veden syvyys oli 16,9 m. Pitkä näyte ulottuu sedimentin pinnasta 4,07 m:n syvyysen (kuva 310). Näytteen alaosa (4,07–3,60 m) on silttiä. Sen päällä on savea (3,60–3,34 m), liejusavea (3,34–2,62 m) ja saviliejua (2,62–0 m). Näytteen yläosassa on kaksi saviraitaa: alempi 19–18 cm:n ja ylempi 11–10 cm:n syvyysessä. Raitat ovat lähes yhtä paksuja, joten on todennäköistä, että niistä ylempi liittyy historiallisesti tunnettuun Hiisijärven purkaukseen. Alemman raitan syntyy voidaan toistaiseksi vain arvella. Se voi liittyä valuma-alueella huomattavasti aiemmin tapahtunei-
siin muutoksiin tai läheisen Emäjoen kehitykseen. Kuroutumisajankohtaa vastaava syvyys on 3,34 m. Sen yläpuolella hiilipitoisuus kohoa, saavuttaa 5%:n tason 2 m:n syvyydessä ja pysyy sillä tasolla lähes pintaan saakka.

Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 140 g/m². Siitä hiilen osuus on ollut 5,5 g/m². Hiisijärven purkauksen jälkeen keskimääräiset varastoitumisnopeudet ovat olleet 250 g/m²/v ja 6,4 g/m²/v.

Pienen-Pyhänän pohjasta noin 80 % on järvisedimenttejä, ja ne sisältävät kuiva-ainetta noin 0,52 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 580 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 56 g/m²/v. Kuiva-aimeesta on hiiltä noin 20 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 22 kg/m² ja keskimääräinen varastoitumisnopeus 2,2 g/m²/v.

Perilampi

Perilampi sijaitsee Oulujoen vesistöalueen keskosassa Ristikärvenjärven läheisyydessä. Sen pinta-ala on 0,10 km² ja pinnan korkeus 149,7 m. Lampi on avoin, ja jokipenkat erottavat sen Hiisijoesta (kuva 311). Perilampi on nykyään tyyppitähän latvajärvi.

Tutkimuspiste 6 sijaitsee lammen keskosasssa, missä veden syvyys oli 6,3 m. Pitkä näyte ulottuu sedimentin pinnasta 4,38 m:n syvyyteen (kuva 312).
Näytteen alaosa (4,38–4,03 m) on silttiä. Sen päällä on siltistä liejua (4,03–1,73 m), liejua (1,73–0,40 m), silttiä (0,40–0,20 m) ja liejua (0,20–0 m). Kerrostuman pohjaosa on hyvin tiivis, joten kuroitumisasjankohtaa vastaavaa syvyyttä ei tavoitettu. Radiocielinjoituksesta mukaan siltiin ja siltitseen liejuen välisten rajapinnan ikä on noin 9000 vuotta ja siltitseen liejuiin ja liejuun välisen noin 5300 vuotta. Ylin siltikerros taas on syntynyt vuoden 1761 purkauksen yhteydessä.

Kerrostuman osat ovat hyvin tasalaatuisia. Kerrostuksen alaosa on silttiä. Siltiin ja silttisen liejuihin (1,73–0,40 m) ja liejuihin (0,40–0,20 m) välisen noin 5300 vuotta. Ylin siltiikerros taas on syntynyt vuoden 1761 purkauksen yhteydessä.

Viimeksi kuluneiden 9000 vuoden aikana tälle paikalle on varastoitunut vuosittain kuiva-aineetta keskimäärin 200 g/m2. Siitä hiilen osuus on ollut 8,4 g/m2. Holoseenikaudesta alkaen kalkkina, jolloin Hiisijoki virtasi Perilammen kaupungin, varastointi vuosittain kuiva-ainetta lähis 400 g/m2 ja hiiltä noin 7 g/m2. Lammien jälkeen sekaan aikana joki saapui molemmat varastointisnopeudet: kuiva-aine tasolle 47 g/m2 ja hiili tasolle 4,0 g/m2. Hiisijärvellä purkauksen jälkeen kuiva-aineen ja silttiemen keskmääräinen varastointisnopeus on ollut noin 140 g/m2 ja hiilen 7,2 g/m2. Purkauksen jälkeen kasvaneet varastointisnopeudet johtuvat osittain aineksen uudelleen kerrostumisesta ja osittain siitä, että eloperäisen aineksen hajoaminen on vielä kesken sedimenttikerroksen pintaosassa.

Perilammen järvesiventtisissä varastoinnitisissä varastoinnitisissä aineksen uudelleen kerrostumisesta ja osittain siitä, että eloperäisen aineksen hajoaminen on vielä kesken sedimenttikerroksen pintaosassa.

Teerilampi

Teerilampi sijaitsee Oulujoen vesistöalueen itäosassa Kuhmossa. Sen pinta-ala on 0,03 km2 ja pinnan korkeus 189,1 m. Lampi on lähes pyöreä ja avoin (kuva 313). Sen valuma-alueella on morenipeiteisiä kalliomäkiä. Mäkijen väliset painanteet ovat soistuneet. Teerilampi on tyyppiltään latvajärvi.

Mannerjäätkön reunan perääntyessä muodostui sen reunan eteen paikallinen käänjärvi. Jäätkön perääntymisen jatkuen vedenpinta laski ja Teerilampi kuroutui jääjärvestä noin 11 000 vuotta sitten. Sen jälkeen lampen laskukynyn on säädellyt vedenpinnan tasoon.

Tutkimuspisteitä on neljä (kuva 313). Näytteet Viimeksi kuluneiden 9000 vuoden aikana tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 200 g/m2. Siitä hiilen osuus on ollut 8,4 g/m2. Holoseenikaudesta alkaen kalkkina, jolloin Hiisijoki virtasi Perilammen kaupungin, varastointi vuosittain kuiva-ainetta lähis 400 g/m2 ja hiiltä noin 7 g/m2. Lammien jälkeen sekaan aikana joki saapui molemmat varastointisnopeudet: kuiva-aine tasolle 47 g/m2 ja hiili tasolle 4,0 g/m2. Hiisijärvellä purkauksen jälkeen kuiva-aineen ja silttiemen keskmääräinen varastointisnopeus on ollut noin 140 g/m2 ja hiilen 7,2 g/m2. Purkauksen jälkeen kasvaneet varastointisnopeudet johtuvat osittain aineksen uudelleen kerrostumisesta ja osittain siitä, että eloperäisen aineksen hajoaminen on vielä kesken sedimenttikerroksen pintaosassa.

Perilammen järvesiventtisissä varastoinnitisissä aineksen uudelleen kerrostumisesta ja osittain siitä, että eloperäisen aineksen hajoaminen on vielä kesken sedimenttikerroksen pintaosassa.

Teerilampi

Teerilampi sijaitsee Oulujoen vesistöalueen itäosassa Kuhmossa. Sen pinta-ala on 0,03 km2 ja pinnan korkeus 189,1 m. Lampi on lähes pyöreä ja avoin (kuva 313). Sen valuma-alueella on morenipeiteisiä kalliomäkiä. Mäkijen väliset painanteet ovat soistuneet. Teerilampi on tyyppiltään latvajärvi.

Mannerjäätkön reunan perääntyessä muodostui sen reunan eteen paikallinen käänjärvi. Jäätkön perääntymisen jatkuen vedenpinta laski ja Teerilampi kuroutui jääjärvestä noin 11 000 vuotta sitten. Sen jälkeen lampen laskukynyn on säädellyt vedenpinnan tasoon.

Tutkimuspisteitä on neljä (kuva 313). Näytteet
Kiiminkijoen vesistöalue sijaitsee maan keski-osaassa, ja se ulottuu Perämeren rannalta Puolan-
Loukkojärvi

Loukkojärvi sijaitsee Kiiminkijoen vesistöalueen länsiosassa Kiimingissä, noin 30 km Oulusta koillis- seen. Sen pinta-ala on 1,15 km² ja pinnan korkeus 56,6 m. Muodoltaan järvi on sokkeloinen, ja sen valuma-alue on hyvin soistunut (kuva 316). Loukkojärvi on tyyppiltään latvajärvi.

Tutkimuspisteitä on kymmenen (kuva 316). Näyt- teet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä ja muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 3 sijaitsee järven länsiosassa, missä veden syvyys oli 1,40 m. Pitkä näyte ulottuu sedimentin pinnasta 1,89 m:n syvyyteen (kuva 317). Näytteen alaosassa on saviliejua (1,89–1,60 m), ja sen päällä on liejua (1,60–0 m). Näytteenmittien kärkkapalleessa oli moreenia, jotain kuroutumisajankohtaa vastaavaa syvyysön 1,89 m. Senyläpuolella hiilipiitosuus kohoaa nopeasti 20 %:n tasolle, mutta laskee keskosasssa 16 %n tasolle. Kuroutumisen jälkeen tälle paikalle on varastotunut kuiva-ainetta keskimäärin 46 g/m². Siitä hiilen osuus on ollut 6,8 g/m². Pitkästä näytteestä tehtiin kaksi radiohiilialoitusta, mutta niiden molempien iät ovat kehitystohdoina nähdyn liian vanhoja. Järven ympäristöissä on mui- naisia merivaiheita, joita mahdollisesti on kulkeutunut järveen vanhaa hiiltä. Toinen mahdollinen vanhan hiilen lähde ovat turvaverkkoj, joita on järven ran- noilla ja järven laskevan poron varsilla.

Loukkojärven kairaukset päättivät yleensä moreeniin, ja moreenin päältä puuttuvat useimmiten kuroutumista edeltäneiden merivaiheiden sedimentit. Kuroutumisen jälkeen syntyvät järvesedimentit sisäl- tävät kuiva-ainetta noin 0,16 milj. tn. Koko pinta-allele laskettuna kuiva-ainetta on keskimäärin 140 kg/m², ja sen keskimääräinen varastotumisnopeus on ollut 27 g/m²/v. Kuiva-aineesta on hiiltä noin 23 milj. tn. Koko pinta-allele laskettuna keskimääräinen hiilivastasto on 20 kg/m² ja keskimääräinen varastotumisnopeus 4,0 g/m²/v.

Fig. 316. The location of survey points in Lake Loukkojärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 317. Loukkojärven tutkimuspisteeltä 3 otetuun pitkään näytteen koostumuksen, tiheys, hiilipiitosuus ja radiohiilialoitusten tulokset. Yhähällä oikealla pinta-aineen niin kuiva-ainetta.

Fig. 317. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 3 in Lake Loukkojärvi. Top right shows the carbon content of the surface core.
IIJOEN VESISTÖALUE (61)

Iijoen vesistöalue sijaitsee maan keskosassa ja ulottuu Perämeren rannikolta vallakunnon itärajalle (kuva 318). Vesistöalueen pinta-ala on noin 14 000 km², ja sen keskimääräinen korkeus on 203 m. Vesistöalueen itäosa Pintamojärven tasalle saakka on vedenkoskenmatonta aluetta. Keskiöön paljastui Itämerestä Ancylusjärvi-vaiheen aikaan ja lähtisi osa Pahkakosken tasalta alkaen Litorinameri-vaiheen aikaan.

Vesistöalueesta on moreenimaata 53 % ja turvemaata 22 %. Vesistöjä on vähän (7 %), ja savikot puuttuvat kokonaan. Iijoen vesistöalueelta tutkittiin neljä järveä. Niistä yksi on vedenkoskemattomalta alueelta. Keskiosa paljastui Itämerestä Ancylusjärvi-vaiheen aikaan ja lähtesi osa Pahkakosken tasalta alkaen Litorinameri-vaiheen aikaan. Vesistöjä on vähän (7 %), ja savikot puuttuvat kokonaan.

Kostonjärvi

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 8,7 m. Pitkä näyte ulottuu sedimentin pinnasta 3,46 m:n syvyysteen. Näytteen alapäässä (3,46–3,41 m) on oltu savikerro. Sen päällä on saviliejua (3,41–3,31 m) ja liejua (3,31–0 m). Järven syntyajankohtaa vastaava syvyys on 3,41 m (kuva 320). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 8 %:n tasolle, mutta jatkaa sitten kohoamista huomattavasti hitaammin. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 40 g/m². Siitä hiilen osuus on ollut 3,6 g/m².

Hiilipitoisuuskäyryä osoittaa järven vakiintumisen tapahtuneen verrattain nopeasti. Vakiintumisvaiheen jälkeen sen kehitykseen on vaikuttanut valuma-alueen vähittäinen soistuminen. Viimeaikainen metsäojitus ja vedenpinnan säännöstely ovat lisänneet valuma-
Järvedimentit kuiva-aineen ja hiilen varastona

alueen ja rantavyöhykkeen eroosiota, mutta eroosion voimistuminen ei näy keskiosan pitkässä näytteessä. Sen sijaan se näkyy pintaanäytteen yläosassa.

Kostonjärven pohjasta noin 70 % on järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 6,7 milj. m. Kokopinta-alalle laskettuna kuiva-ainetta on keskimäärin 160 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 15 g/m²/v. Kuiva-ainesta on hiilitä noin 620 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 14 kg/m² ja keskimääräinen varastoitumisnopeus 1,4 g/m²/v.

Fig. 320. The composition, density and carbon content of the long core taken from survey point 1 in Lake Kostonjärvi. Top right shows the carbon content of the surface core.

Pintamожарви

Mannerjäätikön reunan perääntyttyä ulottui mui- nainen Itämeri Pintamожарven altaaseen ja sen pinta oli noin 35 m järven nykyistä pintaa korkeammalla. Maankuoren kohotessa vedenpinta laski ja Pintamожарvi kuroutui Itämeren Ancylusjärven vaiheen aikaan noin 10 200 vuotta sitten, minkä jälkeen laskukynnys

Fig. 321. The location of echo-sounding transects and survey points in Lake Pintamожарvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 322. Pintamожарvin tutkimuspisteltä 1 otetun pitkän näytteen koostumus, tiheys, hiilipoisuuks ja radiokohdekohteen tulos. Ylhäällä oikealla pintaanäytteen hiilipoisuuks.

Fig. 322. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 1 in Lake Pintamожарvi. Top right shows the carbon content of the surface core.

221
on säädellyt vedenpinnan tasoa. Viimeksi kuluneet 40 vuotta vedenpintaa on säännöstelty voimalaitosten tarpeisiin.

Tutkimuspisteitä on kaksi (kuva 321). Näytteet laboratorioriäärystysvärentiettiin yhdeltä pisteeltä ja toisella pisteellä sedimentin kerrosjärjestys määritettiin maastossa. Kaikuluotaulin on 5 km.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 9,8 m. Pitkä näyte ulottuu sedimentin pinnasta 1,66 m:n syvyteen (kuva 322). Näytteen alaosa (1,66–1,40 m) on saviliejua, ja sen päällä on liejua (1,40–0 m). Kuroutumisajankohtaa vastaavaa syvyttä ei tavoitettu, vaan hiilipitoisuus on näytteen alapäässä jo 4 %:n tasolla. Viimeksi kuluneiden 7300 vuoden aikana tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 26 g/m². Siitä hiilen osuus on ollut 2,6 g/m².

Tutkimuspiste 2 sijaitsee Honganjärdestä, missä veden syvyys oli 6,2 m. Jäljä tutkittu näyte ulottuu sedimentin pinnasta 3,0 m:n syvyteen. Näyte ulottuu lustosaveen. Kuroutumisajankohtaa vastaavaa syvyys on 2,8 m ja keskimääräinen kerrostumisnopeus 0,26 mm/v.

Pintamojärven pohjasta noin 80 % on järvisidmenttejä, ja ne sisältävät kuiva-ainetta noin 1,1 milj. tn. Koko pintä-ala on keskimäärin 26 g/m², ja sen keskimääräinen varastotumisnopeus on ollut 33 g/m²/v. Kuiva-aineesta on hiiltä noin 100 milj. kg. Koko pintä-ala on keskimäärin 30 kg/m² ja keskimääräinen varastotumisnopeus 3,0 g/m²/v.

Pikku Ahvenjärvi

Mannerjäätkön reunan peräännytä ulottu mui-

Kuva 323. Tutkimuspisteiden sijainti Pikku Ahvenjärvellä. Ylhäällä oikealla järven sijainti laajasta rajoittuvalla valuma-alueella. Fig. 323. The location of survey points in Lake Pikku Ahvenjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 324. Pikku Ahvenjärven tutkimuspisteitä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiokaitoituksen tulos. Ylhäällä oikealla pintaanpitäneen hiilipitoisuus. Fig. 324. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 1 in Lake Pikku Ahvenjärvi. Top right shows the carbon content of the surface core.

Tutkimuspisteitä on kuusi (kuva 323). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 2,5 m. Pitkä näyte ulottuu sedimentin pinnasta 5,13 m:n syvyyteen (kuva 324). Näytteen alaosa on (5,13–4,40 m) on liejusavea. Sen päällä on saviliejua (4,40–3,50 m) ja liejua (3,50–0 m). Näytteenotinpysähtyi voinen mineraalimaahan, joten kuroutumisajankohtaa vastaa syvyys on 5,13 m. Sen yläpuolella hiilipitoisuus kohoaa aluksi hitaasti, myöhemmin nopeutuen ja saavuttaa 20 %:n tason 2 m:n syvyydessä.

Tiheys- ja hiilipitoisuuskäyrästä päätellä järven vakiintuminen on kestänyt kauan. Hitaasti pienenevästä tiheydestä ja hitaasti kohoavasta hiilipitoisuudesta voidaan päätellä mineraalivaiteen pääsyn järven vaikutteen rantojen soistuessa ja soiden laajentuessa. Noin 2,2 m:n syvyyttä vastaavaan ajankohtaan mennessä sedimentistio-olot vakiintuivat nykyisiä vastavaisiksi eikä soiden laajenemisellä enää ollut merkitystä syntyvän sedimentin ominaisuuksiin.

Kuroutumisen jälkeen tälle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 140 g/m². Siitä hiilen osuus on ollut 18 g/m². Neljän metrin syvyydestä tehdyn radiohiiliajoituksen ikä on kehityshistorian nähdyn liian vanha, joten sitä ei voida käyttää hyväksi varastointisopimuksia laskettaessa.

Homogeeneista savea tavoittaa vain yhdeltä tutkimuspisteeltä. Ancylusjärven sedimentit ovat ilmeisesti huhtoutuneet pois ennen altaan kuroutumista tai peittyneet mäkiäinteitä kulkevan aineksen alle. Pikku Ahvenjärven järvisedimentit sisältävät kuiva-ainetta noin 74 000 t. Koko pinta-alalle lasketun kuiva-ainetta on keskimäärin 390 kg/m², ja sen keskimääräinen varastointisopimus on ollut 43 g/m²/v. Kuiva-aineesta on hiiltä noin 9,6 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 50 kg/m² ja keskimääräinen varastointisopimus 5,6 g/m²/v.

Tutulampi

Tutulampi sijaitsee Iijoen vesistöalueen keskiosassa Taivalkoskella. Sen pinta-ala on 0,15 km² ja pinnan korkeus 185,3 m. Lampi rajoittuu idässä moreenipeiteiseen Tutuvaaraan, etelässä lasnessa sora- ja hiekkaamaan ja pohjoisessa turvemaahan (Sutinen 1985). Tutulampi on luokiteltavissa reittiälevänä ja hiekkaamaan nähdyn nimen peräisin olevan lampien pinta-ala ylittää Tutulammen alan.

Mannerjäröön reunan perämaan ylittää mainen Itämeri Tutulammen altaaseen ja sen pinta oli vajaat 20 m järven nykyistä pintaan korkeammalla. Maankuoren kohotessa vedenpinta laski nopeasti ja Tutulampi kuroutui Itämerestä Ancylusjärvi-vaiheen aikaan noin 10 400 vuotta sitten. Sen jälkeen lampien rannat soistuivat vähitellen, mikä vaikeutti valuma-alueen mineraalilaita peräisin olevan kiinteänäan pääsyä vesistöön.

Tutkimuspisteitä on neljä (kuva 325). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 3,7 m. Pitkä näyte ulottuu sedimentin pinnasta 3,47 m:n syvyyteen. Näytteen alaosa (3,47–3,20 m) on siltiiä. Sen päällä on saviliejua...
(3,20–2,85 m) ja liejua (2,85–0 m). Kuroutumisajankohtaa vastaava syvyys on 3,20 m (kuva 326). Sen yläpuolella hiilipitoisuus kohoa, saavuttaa 21 %:n tason 2,4 m:n syvyydessä ja pysyy sen jälkeen korkeana sedimentin pintaan saakka.

Hiilipitoisuuskäyrän nousu ja tiheyskäyrän lasku kuvastavat vakiintumisvaihetta lammen ja sen valuma-alueen kehityksessä. Sen jälkeen sedimentaatio-olot ovat pysyneet vakaina. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 31 g/m². Siitä hiilen osuus on ollut 6,0 g/m².

Tutulammen järvesidementit sisältävät kuiva-ainetta noin 34 000 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 220 kg/m², ja sen keskimääräinen varastointinopeus on ollut 22 g/m²/v. Kuiva-aineesta on hiiltä noin 6,4 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 43 kg/m² ja keskimääräinen varastointinopeus 4,1 g/m²/v.

Fig. 326. The composition, density and carbon content of the long core taken from survey point 1 in Lake Tutulampi. Top right shows the carbon content of the surface core.

SIMOJOEN VESISTÖALUE (64)

Simojoen vesistöalue sijaitsee Perämeren rannikolla ja ulottuu Posion länsiosaan saakka (kuva 327). Vesistöalueen pinta-ala on noin 3200 km², ja sen korkeus on keskimäärin 160 m. Alueen itäosassa on pientä vedenkoskemattomia alueita. Suurin osa vesistöalueesta paljastui Itämerestä Ancylusjärvi-vaiheen aikaan, mutta Yli-Kärpän lounaispuolelle jäävä osa vasta Litorinameri-vaiheen aikaan. Vesistöalueesta 51 % on moreenimaata ja 29 % turvemaata.

Fig. 327. The location of studied Lake Vittikkolampi in the Simojoki River drainage basin.
Vittikkolampi

Vittikkolampi sijaitsee Simojoen vesistöalueen pohjoisreunalla Rovaniemen maalaiskunnassa. Sen pinta-ala on 0,07 km² ja pinnan korkeus noin 194 m. Lampi on avoin ja syntynyt moreenikumpujen rajanaan, joka oli runsaat 20 m järven nykyistä pinnasta pitkä (kuva 328). Vittikkolampi on ollut järven laskukynyn alueella, mutta sen jälkeen sen pinta on pysynyt noin 194 m korkeudessa.

Mannerjäätikön reunan pohjoispuolella sijaitsee järven keskiosassa oleva Tutkimuspiste 1. Vedensyvyys on 1,7 m ja pääsylinja on 4,82 m syvyyteen. Pystystä Ancyclusjärven aikana noin 9800 vuotta sitten. Sen jälkeen on järven laskutain ja järven pinta on pysynyt noin 5000 vuotta sitten.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä vedensyvyys oli 1,7 m. Pitkä näyte ulottuu sedimentin pinnasta 4,82 m:n syvyyteen ja on kokonaan liejua (kuva 329). Näytteen mittauksissa käytettiin kärkikappaleita, jotka olivat kerrottuja määräysten mukaisesti.

Sekä luonnollisesti että laboratoriomäärityksissä on kerrottu, että hiilipitoisuus on korkea. Huippuhiilipitoisuus on 36 g/m² ja se on pysynyt noin 30%:n tasolla. Järven pinta on sen jälkeen matalin korkeudessa, jossa hiilipitoisuus on 10 g/m². Väliin tai muuhun muihin pisteisiin vetämään sedimentin kerrostenmäärityt on ollut vaihtelua, mutta hiilipitoisuus on ollut saman tasolla sen jälkeen.

Vittikkolammen järvenvedet sisältävät kuiva-ainetta noin 9700 tn. Koko pinta-alalle laskettuna huippuunsaa 4,5 m:n syvyydessä ja laskene sitten vajaan 30%:n tasolle ja pysyy siinä sedimentin pintaan. Hiilipitoisuuden ja tiheyden pysyminen samalla tasolla onkin hyvin vakaita sedimentaatio-oloja.

Kuroutumisen jälkeen tälle paikalle on varastoinut vuosittain kuiva-ainetta keskimäärin 36 g/m². Siitä hiilen osuus on ollut 10 g/m². Kerroksittain laskutetut varastointinopeudet ovat ollut suhteellisesti suhteellisesti hyvät niiden suurin osin säännöllisesti järven laskukynyn ja noin 5000 vuotta sitten.

Kuroutumisen jälkeen pinta on pysynyt noin 30%:n tasolla, jolloin hiilipitoisuus on pysynyt noin 30%:n tasolla. Väliin tai muuhun muihin pisteisiin vetämään sedimentin kerrostenmäärityt on ollut vaihtelua, mutta hiilipitoisuus on ollut saman tasolla sen jälkeen.
KEMIJOEN VESISTÖALUE (65)

Fig. 330. The long-term accumulation rate of dry matter and carbon at survey point 1 in Lake Vittikkolampi.
Kemijärvi

Kemijärvi sijaitsee Kemijoen vesistöalueen eteläosassa Kemijärven kaupungin alueella. Sen pinta-ala on 222 km² ja pinnan korkeus 148,8 m. Järvi muodostuu useista niemien ja saarien rajaamista altaista (kuva 332). Järveä säännöllisesti nykyisin vesivoiman tuotantoa varten. Koska järvi on matala, keskisyvyys vain 5,0 m, vaihtelee järven ala keskiyliveden 286 km²:stä keskiyliveden 67 km²:iin (Raatikainen & Kuusisto 1990). Kemijärvi on tyyppiltään reittijärvi. Valuma-alue on järven kokoon nähden yli satakertainen.

Tutkimuspiste 1 sijaitsee järven länsiosassa, misä näyte tehty otettaessa tamminukuussa 2001 veden syvyys oli 8,1 m. Pitkä näyte ulottuu sedimentin pinnasta 7,66 m:n syvyyteen. Näyte on koko alaosa (7,66–6,50 m) on saviliejua, ja sen päällä on liejua (6,50–0 m). Kuroutumisajankohtaa vastaavaa syvyyttä ei tavoitettu (kuva 333). Kaikuluotausprofiilin mukaan se on vajaan metrin näytteen alapäästä syvemmällä. Hiilipitoisuus on näytteen alapäästä jo 4 %:n tasolla, ja se kohoaa hitaasti pinta kohti.

Voimakas läpivirtaus kuljettaa valuma-alueelta peräisin olevaa kiintoainetta järven keskiosaan saakka,
mikä selittää nopean sedimentaation sopivissa altaissa. Tutkimuspisteen 1 kohdalla alkuperäinen allas on täyttynyt lähes tasapohjaiseksi, ja on epävarmaa, jatkuuko sedimentaatio enää. Jos näytteen alapään ääksi oletetaan kuroutumisajankohtaa, saadaan kuiva-aineen keskimääräiseksi varastoituksenopeudeksi 220 g/m²/v. Siitä hiiltä on ollut 12 g/m²/v. Koska kuroutumisajankohdan täsittävä data on epävarma, ovat todelliset varastoituksenopeudet vielä näitä suuremmat.

Tutkimuspiste 2 sijaitsee järven keskiosassa Kauhaselällä, missä veden syvyys oli 18,1 m. Pitkä näyte ulottuu sedimentin pinnasta 4,24 m:n syvyyteen. Näätteen alaosa (4,24–3,85 m) on lustosava. Sen päällä on savea (3,85–2,70 m), saviliejua (2,70–2,00 m) ja liejua (2,00–0 m). Kuroutumisajan kohdalla vastaava syvyys on 2,70 m (kuva 334). Sen yläpuolella hiilipitoisuus kohoaa ja saavuttaa 7 %:n tason sedimenttkerroksen yläosassa.

Tutkimuspiste 2 on hieman sivualla voimakkaan läpivirtaaman alueesta, ja sen sedimentaatio-olot ovat tavanomaiset. Kuroutumisen jälkeen täelle paikalle on varastoitunut vuosittain kuiva-aineen keskimäärin 69 g/m². Siitä hiilen osuus on ollut 3,8 g/m². Sedimentaatio-olot vaihtelevat eri puolilla järveä. Pohjoisosassa järven pohja on joen kuljettamien mineraliaineksen tasoittama. Läpivirtaus on niin voimakas, ettei järvesedimenttien kerrostuminen ole ollut mahdollista. Sitä vastoin Luuksinsalmen lounaispuolella selät avartuvat ja paksujen järvesedimenttikerrosten syntyminen on ollut mahdollista (kuva 335). Itäosan järvesedimenttikerrokset ovat taas ohuempia. Niiden alla on kuitenkin paksut kerrokset kuroutumista edeltäneen ajan sedimenttejä. Kemijärvien pohjasta noin 45 % on järvesediment-
tejä, ja ne sisältävät kuiva-ainetta noin 69 milj. tn. Koko pintalähes laskettuna kuiva-ainetta on keskimäärin 310 kg/m², ja sen keskimääräinen varastoittumisnopeus on ollut 32 g/m²/v. Kuiva-aineesta on hiiltä noin 3700 milj. kg. Koko pintatähte laskettu keskimääräinen hiilivarasto on 17 kg/m² ja keskimääräinen varastotumisnopeus 1,7 g/m²/v.

Fig. 333. The composition, density and carbon content of the long core taken from survey point 1 in Lake Kemijärvi. Top right shows the carbon content of the surface core.

Fig. 334. The composition, density and carbon content of the long core taken from survey point 2 in Lake Kemijärvi. Top right shows the carbon content of the surface core.

Fig. 335. Echo-sounding profile of the western part of Lake Kemijärvi. Arrow indicates site current prevents the deposition of lake sediments.
Javarusjärvi

Tutkimuspiste 1 sijaitsee järven koillisosassa, missä veden syvyys oli 3,4 m. Pitkä näyte ulottuu sedimentin pinnasta 6,90 m:n syvyyteen (kuva 337). Näytteen alaosa (6,90–6,68 m) on liejusavea. Sen päällä on savilejua (6,68–5,30 m) ja liejua (5,30–0 m). Näytteenottimen kärkipinnan syvyydessä on 6,90 m. Sen yläpuolella hilipitoisuus kohoaa vahitellen, saavuttaa 13 %:n tason 3,9 m:n syvyydessä ja pysyy sillä tasolla pintaan saakka.

Sedimentin hilipitoisuuden kohoaminen liittyy soiden laajenemiseen valuma-alueella. Soistuminen...

Järven syntymisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 150 g/m². Siitä hiilen osuus on ollut 15 g/m². Pitkästä näytteestä ajoitettiin radiohiilimenetelmällä kolme tasoa. Jos niiden lisäksi käytetään pohjan ikäänä järven arvioitua syntyajankohtaa, voidaan varastoitumisnopeudet laskea neljälle kerrokselle. Kuiva-aineen ja hiilen varastuminen on ollut hyvin nopeaa alimmassa ensimmäisen vuosituhannen aikana syntyneessä kerroksessa (kuva 338). Sen jälkeen syntyneissä kerroksissa kuiva-aineen varastoitumisnopeus on ollut noin 80 g/m² ja hiilen noin 9,5 g/m². Kolmen ylimmän kerroksen väliset erot ovat pieniä. Radiohiilimenetelmällä ajoitettuihin näytteisiin on voinut kulkeutua vanhentavaa aineesta, joten edellä kuvattuihin varastoitumisnopeuksien muutoksiin on syytä suhtautua varauksin.

Javarusjärven järvisedimentit sisältävät noin 1,5 milj. t kuiva-ainetta. Koko pinta-alalle laskeutuva kuiva-ainetta on keskimäärin 290 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 29 g/m². Kuiva-aineesta on hiiltä noin 150 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 2,8 g/m².

Saarijärvi

Saarijärvi syntyi välittömästi mannerjäätikkön reunan peräännöitä alueelta noin 10 400 vuotta sitten. Sen kehitykseksi on vaikuttanut valuma-alueen alavimpinä paikojen soistuminen.

Tutkimuspiste 1 sijaitsee altaan lounaisreunalla, missä veden syvyys oli 4,7 m. Pitkä näyte ulottuu sedimentin pinnasta 5,79 m:n syvyteen, ja kairaus päättyi moreeniin. Näytteen alaosaa (5,79–5,55 m) on liejusavea. Sen päällä on saviliejuua (5,55–5,05 m) ja liejua (5,05–0 m). Järven syntayankotoa vastaava syvyys on 5,79 m (kuva 340). Sen yläpuolella hiilipitoisuus kohoaa nopeasti 14 %:n tasolle, mutta alenee nopeasti 3,7 m:n syvyydessä ja pysyy alhaisena pintaan saakka.

Hiilipitoisuuden nopea alennus liittyy järven limnologisissa oloissa tapahtuneeseen muutokseen. Samalla kunkin hiilipitoisuus laskee, laskevat myös alumini-, kalsium-, kalium-, magnesium-, natrium- ja rikkopitoisuudet. Rauta- ja fosforipitoisuudet taas nousevat. Rautapitoisuus kohoaa 20–30 %:n tasolle, joten keski- ja yläosan sedimentti on lähinnä rautahydroksidia. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 79 g/m². Siitä hiilen osuus on ollut 5,3 g/m².

Saarijärven järvisedimentit sisältävät kuiva-ainetta noin 0,37 milj. tn. Tasaisesti koko pinta-alalle las-
kettuna kuiva-ainetta on keskimäärin 210 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 20 g/m²/v. Kuiva-aineesta on hiiltä noin 25 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 14 kg/m² ja keskimääräinen varastoitumisnopeus 1,4 g/m²/v.

Fig. 339. Location of survey points in Lake Saarijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 340. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 1 in Lake Saarijärvi. Top right shows the carbon content of the surface core.

Vuontisjärvi

Vuontisjärvi sijaitsee Kemijoen vesistöalueen luoteisosassa Pallastunturin juurella, sen itäpuolella, ja kuuluu Enontekiön kuntaan. Järven pinta-ala on 1,43 km² ja pinnan korkeus 262 m. Se on muodoltaan avoin (kuva 341). Valuma-alue on suurimmaksi osaksi jyrkkää tunturin rinnetta, ja se ulottuu lännessä Vuontiskeron huipulle noin 400 m järven pinnan yläpuolelle. Vuontisjärvi on tyyplä mittaan latvajärvi.

Vuontisjärvi syntyi mannerjäätikön reunan peräännytyä alueelta noin 10 000 vuotta sitten. Siitä alkaen järvi on ollut itsenäisenä altaana. Valuma-alueen soistuminen on jyrkän topografian takia ollut vähäistä.

Tutkimuspisteitä on kahdeksan (kuva 341). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastosta.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 11,8 m. Pitkä näyte ulottuu sedimentin pinnasta 4,58 m:n syvyyteen. Näytteen ala- ja keskiosa (4,58–1,60 m) ovat liejua ja yläosa (1,60–0 m) savilieja (kuva 342). Liejukerroksen alaosa on rakenteeltana kerroksellinen. Näytteenottimen kärkkappaleessa oli hiesua, vaikka sitä ei saatuutkaan näytteeseen. Siten järven syntypäätteet vastaavat syvyys on 4,58 m. Välittömästi sen yläpuolella hiilipitoisuus on 8 %:n tasolla, ja se pysyy samalla tasolla lähes pintaa kaakso. Hiilipitoisuuskääristä pääteellä järvi on saavuttanut vakaat sedi-
mentaatio-olot hyvin nopeasti. Pienet, lyhytaikaiset hiilipitoisuuden alenemiset voivat johtua eroosion voimistumisesta valuma-alueella esimerkiksi metsäpalojen seurauksena.

Mannerjäätikön reunan perääntymisen jälkeen on tälle paikalle varastoituun vuosittain kuiva-ainetta keskimäärin 71 g/m². Siitä hiilen osuus on ollut 5,4 g/m². Jos pohjan ikästä käytetään radiohiiliajoituksen tulosta, saadaan vastaaviksi varastotunumisnouksiksi 97 g/m²/v ja 7,4 g/m²/v. Kerroksittain laskettuna saadaan suurimmaksi näiden lähdestä kolminkertaistuneet nopeudet noin 4000 vuotan syntyneelle kerrokselle ja pienimmät viimeksi kuluneiden 2400 vuoden aikana syntyneelle kerrokselle (kuva 343). Muissa kerroksissa varastotunumisnouksit ovat keskimääräisellä tasolla. Sedimentin ominaisuuksista päätellen sedimentaatio-olot ovat pysyneet varsin vakaina. Joten suurin varastotunumisnouksen vaihteluihin on syytä suhtautua varauksella.

Radiohiiliajoituksen mukaan sedimenttikerroksen pohjan ikä on 7240 vuotta. Sen perusteella järven

Fig. 341. The location of survey points in Lake Vuontisjärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Fig. 342. Vuontisjärven tutkimuspisteellä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiiliajoitusten tulokset. Ylhäällä oikealla pintojen pinta-ajan hiilipitoisuus.

Fig. 342. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Vuontisjärvi. Top right shows the carbon content of the surface core.

Fig. 343. The long-term accumulation rate of dry matter and carbon at survey point 1 in Lake Vuontisjärvi.

Vuontisjärven järvisedimentit sisältävät kuiva-ainetta noin 0,37 milj. t. Tasaisesti koko pintatalalle laskettuna kuiva-ainetta on keskimäärin 260 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 26 g/m²/v. Kuiva-aineesta on hiiltä noin 28 milj. kg. Koko pintatalalle laskettu keskimääräinen hiilivarasto on 20 kg/m² ja keskimääräinen varastoitumisnopeus 2,0 g/m²/v.

Rytijärvi

Rytijärvi sijaitsee Kemijoen vesistöalueen etelä- osassa Rovaniemen maalaiskunnassa. Sen pinta-ala on 0,28 km² ja pinnan korkeus 151,5 m. Järvi on avoin, on noin 1 km:n pituinen, noin 0,3 km leveä ja suuntautuu lännestä itään (kuva 344). Huomattava osa sen valuma-alueesta on Paskonvaaran pohjoisrintettä, joka voimakkaasta vietosta huolimatta on varsin soistunut. Rytijärvi on tyypiltään latvajärvi.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 3,2 m. Pitkä näyte ulottuu sedimentin pinnasta 2,79 m:n syvyyteen. Näytteen alaosaa (2,79–1,84 m) on savea. Sen päällä on liejussavea (1,84–1,37 m) ja lieju (1,37–0 m). Kuroutumisajan kohtaan vastaava syvyys on 1,84 m. Sen yläpuolella hiilipitoisuus kohoaa, saavuttaa 11 %:n tason runsaan 1 m:n syvyydessä ja pysyy sen jälkeen samalla tasolla pintaan saakka (kuva 345). Samalla tassa pyysyvää hiilipitoisuus ilmentää vakaita sedimentaatio-olotoja. Radiohiilihajoituksesta mukaan Rytijärven sedimentaatio-olojen vaikutuminen on kestänyt noin 2000 vuotta. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuositauhin kuiva-ainetta keskimäärin 36 g/m². Siitä hiilen osuus on ollut 3,2 g/m².

Rytijärven järvisedimentit sisältävät kuiva-ainetta noin 48 000 tn. Koko pinta-alueelle laskettuna kuiva-ainetta on keskimäärin 170 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 18 g/m²/v. Kuiva-aineesta on hiiltä noin 4,3 milj. kg. Koko pintatalalle laskettu keskimääräinen hiilivarasto on 15 kg/m² ja keskimääräinen varastoitumisnopeus 1,6 g/m²/v.

![Kuva 344. Tutkimuspisteiden sijainti Rytijärvelä. Ylhäällä oikealla järven sijainti lusuaan rajoittavalla valuma-alueella.](image)

Fig. 344. The location of survey points in Lake Rytijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

![Kuva 345. Rytijärven tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilihajoituksen tuloksia. Ylhäällä oikealla pinta-asteen hiilipitoisuus.](image)

Fig. 345. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 1 in Lake Rytijärvi. Top right shows the carbon content of the surface core.
Viitatunturinlampi

Viitatunturinlampi sijaitsee Kemijoen vesistöalueen eteläosassa Kemijärven pohjoispuolella. Sen pinta-ala on noin 0,15 km² ja pinnan korkeus 240,6 m. Järvi on avoin, noin 800 m pitkä, noin 200 m leveää ja suuntautunut pohjoisolokuutena eteläkaakko kohoon (kuva 346). Valuma-alue on mäkkää moreenia, missä alavimmat paikat ovat suurin osin tuulien ja järven virtauksien vaikutuksesta. Viitatunturinlampi on tyyppistä järvi järviä.

Viitatunturinlampi syntyi mannerjäätikön reunan perääännyttä alueelta noin 10 400 vuotta sitten. Sen jälkeen vedenpinta on pysynyt laskukynyn tasolla.

Tutkimuspisteitä on neljä (kuva 346). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentikerroksen määritettiin maastossa.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 4,6 m. Pitkä näyte ulottuu sedimentin pinnasta 2,18 m:n syvyyteen (kuva 347). Näytteen alaosassa (2,18–2,00 m) on turpeensekästä liejua, ja sen päällä on liejua (2,00–0 m). Altaan pohjalle kerrostunut turpeensekäiset liejat osoittavat rannojen soistumisen alkaneen jo hyvin varhaisessa vaiheessa. Järven syntyajankohtaa vastaava syvyys on 2,18 m. Sen yläpuolella hiilipitoisuus on runsaat 20 %, mutta pitoisuus alenee hitaasti pintaa kohti päätyen 15 %:n tasolle sedimentin pinnassa. Tälle paikalle on varastotunut vuosittain kuiva-ainetta keskimäärin 17 g/m². Siitä hiilen osuus on ollut 3,4 g/m².

Järvedensäätökerroksen paksuus vaihtelee lammen eri osissa, ja vuosittahansien kuluessa lampi on matalanituminen täyttymisen takia. Maastossa tutkituilla pisteillä liejakerroksen paksuus ylittää veden nykyisen syvyyden. Voimakkainta mataloitudeen on ollut pisteellä 4, missä alkuperäisen syvyyden 4,6 m:n nykyisestä on jäljellä enää 1,0 m.

Viitatunturinlammilla järvedensäätökerroksen sisältää kuiva-ainetta noin 28 000 tn. Koko pinta-ala alueelle laskettu kuiva-ainetta on keskimäärin 180 kg/m², ja sen keskimääräinen varastotumisnopeus on ollut 18 g/m²/v. Kuiva-aineesta on hiljaltä noin 5,5 milj. kg. Koko pinta-ala alueelle laskettu keskimääräinen hiilivarasto on 37 kg/m² ja keskimääräinen varastotumisnopeus 3,5 g/m²/v.

Fig. 346. The location of survey points in Lake Viitatunturinlampi. Top right shows the location of the small lake in the drainage basin delimited by the outlet.

Fig. 347. The composition, density, carbon content and the result of radiocarbon dating of the long core taken from survey point 1 in Lake Viitatunturinlampi. Top right shows the carbon content of the surface core.
Lehtojärvi

Lehtojärvi sijaitsee Kemijoen vesistöalueen kaakkoisosassa Posiolla. Sen pinta-ala on 0,12 km² ja pinnan korkeus 259,4 m. Järvi on avoin (kuva 348). Sen valuma-alueella on moreenikumpuja ja -mäkiä ja mäkien välisissä painanteissa turvekerroksia ja lampia. Lehtojärvi on tyyppiltään latvajärvi.

Lehtojärvi syntyi mannerjäätikön reunan perännettyä alueelta noin 10 500 vuotta sitten. Sen jälkeen vedenpinta on pysynyt laskukynyn säättämällä tasolla. Vakaasta vedenpinnan tasosta huolimatta järvi on mataloituun osittaisen täytymisen takia.

Tutkimuspisteitä on seitsemän (kuva 348). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestystä määritettiin maastossa.

Tutkimuspiste 1 sijaitsee järven eteläosassa, missä veden syvyys oli 3,6 m. Pitkänäyteulottuusedimentin pinnasta 3,51 m:n syvyyteen. Kairaus päättyi kovaan pohjaan, mutta näytteeseen ei saatu mineraalimateriaa. Näyte on kokonaan liejua (kuva 349). Järven synty-

Fig. 348. The location of survey points in Lake Lehtojärvi. Top left shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 349. Lehtojärven tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiokarbondatointien tulokset. Ylhäällä oikealla pintaanlyteen hiilipitoisuus.

Fig. 349. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Lehtojärvi. Top right shows the carbon content of the surface core.

Fig. 350. The long-term accumulation rate of dry matter and carbon at survey point 1 in Lake Lehtojärvi.
Lampi 130602

Lampi 130602 sijaitsee Kemijoen vesistöalueen luoteisosassa Enontekiöllä, eikä sitä ole nimetty peruskartalla. Sen pinta-ala on 0,12 km² ja pinnan korkeus 302 m. Lampi on avoin ja soiden ympäröimä (kuva 351). Lampi 130602 on tyyppiltään reittijärvi.

Mannerjäätikönréunan peräännytä alueelta noin 10 700 vuotta sitten oli Enontekiön itäpuolella paikallinen jääjärvi. Jääjärvi-ajaksi jäi kuitenkin lyhytaikaiseksi, ja Lampi 130602 kuroutui pian jäätiköstä vapautumisen jälkeen.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 0,80 m. Pitkä näyte ulottuu sedimentin pinnasta 2,5 m:n syvyyteen. Näytteen alaosa (2,50–2,40 m) on savea. Sen päällä on saviliejua (2,40–2,30 m) ja liejua (2,30–0 m). Kuroutumisajapaksuus ja seinän syvyys on 2,40 m (kuva 352). Sen yläpuolella hiilipitoisuus kohoaa 14 %-n tasolle ja pysyy siinä pintaan saakka. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 27 g/m². Siitä hiilen osuus on ollut 3,8 g/m².

Lehtojärvenjärvedimentissä on varastoitunut kuiva-ainetta noin 21 000 tn. Koko pinta-ala laskettuna kuiva-ainetta on keskimäärin 180 kg/m², ja sen keskimmääräinen varastoitumisnopeus on ollut 17 g/m²²/v. Kuiva-aineesta on hiiltä noin 3,1 milj. kg. Koko pinta-ala laskettuna keskimääräinen hiilivarasto on 25 kg/m²² ja keskimmääräinen varastoitumisnopeus 2,4 g/m²²/v.

Kuva 351. Tutkimuspisteiden sijainti Lammella 130602. Ylhäällä oikealla lammen sijainti luusuana rajoittuvalla valuma-alueella. Fig. 351. The location of survey points on small lake 130602. Top right shows the location of the small lake in the drainage basin delimited by the outlet.

Kuva 352. Lammen 130602 tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys ja hiilitoisuus. Ylhäällä oikealla pintaalan näytteen hiilitoisuus. Fig. 352. The composition, density and carbon content of the long core taken from survey point 1 on small lake 130602. Top right shows the carbon content of the surface core.
Rimpijärvi

Rimpijärvi sijaitsee Kemijoen vesistöalueen pohjoisosassa Kittilässä. Sen pinta-ala on 0,09 km² ja pinnan korkeus noin 201 m. Järvi on rikkonainen ja lähes kauattaaltaan suorantainen (kuva 353). Järven ei laske eikä sieltä lähde yhtään avointa uomaa. Rimpijärvi on tyyppiltään latvajärvi. Vedet laskevat suota pitkin noin 400 m:n päässä olevaan Jeesiöjokeen.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 2,0 m. Pitkä näyte ulottuu sedimentin pinnasta 2,82 m:n syvyysseen (kuva 354). Säätteen alaosa (2,82–2,61 m) on järven syntyajankohdalta, ja sen päällä on liejuja (2,61–0 m). Liejukerroksen yli on hyvin vetinen: vesipitoisuus peräti 97 % ja tiheys vain 0,029 g/cm³. Turpeen ja liejun rajapinta (2,61 m) vastaa järven syntyajankohtaa. Sen yläpuolella hiilipitoisuudet ovat erittäin korkeita ja pysyvät samalla tasalla lähempänä saakka. Jötäytäjä ja tehtyä tiedot tehtiin näytteen. Turverohken pohjalta ajoitetun näytteen ikä on jäättöön perätyminemistä historiaan nähden liian vanha. Jos turverohken yläosa saattaa ajoitustulos oletetaan oikeaksi, kesti suovainen noin 1500 vuotta. Järvenkepit alkoi noin 8600 vuotta sitten, ja sen aikana tälle paikalle on varastoitunut kuiva-ainetta keskimäärin 8,8 g/m². Siitä hiilen osuus on ollut 3,7 g/m². Kerrosten väliset erot ovat pieniä, mikä osoittaa sedimentaatiolennon pysyneen vakain.

Turpeen ja liejän osuus vaihtelee järven eri osissa.

Kuva 353. Tutkimuspisteiden sijainti Rimpijärvellä. Ylhäällä oikealla järven sijainti luusuaan rajoittavalla valuma-alueella. Fig. 353. The location of survey points in Lake Rimpijärvi. Top right shows the location of the lake in the drainage basin delimited by the outlet.

Kuva 354. Rimpijärven tutkimuspisteitä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiokarbonsäteilyn tulokset. Ylhäällä oikealla pientä näytteen hiilipitoisuus. Fig. 354. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Rimpijärvi. Top right shows the carbon content of the surface core.
Pisteellä 2 moreenin päällä on 0,9 m saraturvetta ja sen päällä 1,3 m liejua. Pisteellä 3 taas on hiekan päällä 3,2 m turvetta eikä liejua ollenkaan. Turpeen ja liejun rajapinnan ikä todennäköisesti vaihtelee altaan eri osissa. Rimpijärven järvesimentit sisältyvät kuiva-ainetta noin 3400 t. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 38 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 4,4 g/m²/v. Kuiva-aineesta on hiiltä noin 1,4 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 16 kg/m² ja keskimääräinen varastoitumisnopeus 1,8 g/m²/v.

TORNIONJOEN - MUONIONJOEN VESISTÖÄLUE (67)

Tornionjoen - Muonionjoen vesistöalue sijaitsee Suomen ja Ruotsin rajalla ulottuen Perämeren randalta Norjan rajalle (kuva 355). Sen pinta-ala on noin 40 000 km², josta 64 % jää Ruotsin puolelle. Suomen puoleisen osan korkein kohta on 1307 m ja keskimääräinen korkeus 242 m. Vesistöalueen pohjoisosan on vedenkoskematonta aluetta, jossa kuitenkin paikalliset jääjerveyt ovat olleet yleisiä. Muinaisen Itämeren Ancylusjärvi-vaihe ulottui vähän Kolarin pohjoispuolelle ja Litorinameri-vaihe Pelloon.

Vesistöalueesta on moreenimaata 50 %, turvemaata 18 % ja vesistöä 13 %. Hienojakoiset mineraalimaat puuttuvat kokonaan.

Kuva 355. Tornionjoen - Muonionjoen vesistöalueelta tutkitun Lammen 130201 sijainti. Fig. 355. The location of studied small lake 130201 in the Tornionjoki - Muonionjoki drainage basin.

Lampi 130201

Lampi 130201 sijaitsee Tornionjoen - Muonionjoen vesistöalueen pohjoisosa Enontekiöllä. Lammen pinta-ala on 0,04 km² ja pinnan korkeus noin 345 m. Lampi on noin 600 m pitkä ja noin 60 m leveä ja rajoittuva turve- ja moreenimaihin (kuva 356). Lampi on tyyplään latvajärvi.

Lampi syntyi mannerjäätikön reunan peräänmyytyä alueelta noin 10 500 vuotta sitten. Sen jälkeen lampen koko ja muoto ovat vaihdelleet turverantojen etenemisen ja perääntymisen seurauksena.

Tutkimuspiste 1 sijaitsee lammen pohjoisossa, missä veden syvyys oli 1,0 m. Pitkä näyte ulottuu sedimentin pinnasta 1,38 m:n syvyyteen ja rajoittuu alapäästä hiekaan. Näytteen alaosaa (1,38–1,05 m) on turpeensekaista liejua (kuva 357). Sen päällä on turvetta (1,05–0,04 m) ja liejua (0,04–0 m). Järven syntyajanjaahttaa vastaava syvyys on 1,38 m. Lammen rannat ovat soistuneet hyvin varhaisessa vaiheessa. Rantavyöhykkeestä suuntaan saattaa olla muutokset sekä mineraalimainen että lammen suuntaan. Näyttää kuitenkin, että lammen pinta on muuttunut tammiksi noin 2000 vuotta sitten. Kyseessä on maksimi-ikä, sillä osa turvekerroksista on seudun jääjerveytä muun muassa jäätikköjärven leveys. Jäätikköjä on noin 50, sillä osa turvekerroksista on seudun jääjerveytä muun muassa jäätikköjärven leveys.
tunut järvesidementejä vain muutama senttimetri.

Turpeen pääällä oleva järvesidementti-kerros on lähinnä turpeensekaista liejua. Siitä ei ole tehty laboratoriomääritystä, mutta muiden vastaavien kerroststen perusteella sen tiheydessä voidaan olettaa noin 0,03 g/cm³ ja hiilipitoisudeksi noin 40 %. Lammen järvesidemmentikerros sisältää kuiva-ainetta noin 120 tn. Koko pinta-alalle laskettu kuiva-ainetta on 3,0 kg/m². Kuiva-aineesta on hiiltä noin 48 000 kg. Koko pinta-alalle laskettu keskimääräinen hiilivara on 1,2 kg/m². Lammen syntyajankohtana olevan aineiston perusteella. Jos lammen syntyajankohtana käytetään lammen peränteen reunan peräntimen sijaintia, saadaan kuiva-aineen keskimääräiseltä varastotransfereksi 0,29 g/m²/v ja hiilen varastotransfereksi 0,11 g/m²/v. Todelliset varastotransfereet ovat huomattavasti näitä suuremmat.

Kuva 356. Tutkimuspisteiden sijainnit Lammella 130201. Ylhäällä vasemmalla lamen sijainnit luusan rajoittavalla valuma-alueella. Fig. 356. The location of survey points on small lake 130201. Top left shows the location of the small lake in the drainage basin delimited by the outlet.

Kuva 357. Lammen 130201 tutkimuspisteellä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilialojusten tulokset. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 357. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 on small lake 130201. Top right shows the carbon content of the surface core.
Tenon vesistöalue sijaitsee Norjan vastaisella rajalla, ja sen vedet laskevat Norjan puolella Jääme-reen. Vesistöalueen pinta-ala on noin 15 000 km², josta suurin osa (65 %) on Norjan puolella (kuva 358). Suomen puoleisen osan keskimääräinen korkeus on 300 m. Mannerjäätikön reunan perääntytyttä Jääme- ren vuono ulottui Utsjoen laakson ja Pulmankijoen laakson pohjoisosaan. Muuten vesistöalue on ollut vedenkoskematonta.

Vesistöalueesta on moreenimaata 51 %, kalliota 21 % ja vesistöjä 13 %. Turvemaan osuus on pieni (4 %), ja savikot puuttuvat kokonaan.

Kuva 358. Tenon vesistöalueelta tutkitun Pulmankijärven sijainti. Fig. 358. The location of studied Lake Pulmankijärvi in the Teno River drainage basin.

Pulmankijärvi

Pulmankijärvi sijaitsee Tenon vesistöalueen itäosassa Utsjoella ja ulottuu osittain Norjan puolelle. Sen pinta-ala on 10,8 km² ja pinnan korkeus 14,6 m. Järven suurin syvyys on noin 35 m, joten sen pohja ulottuu noin 20 m merenpinnan alapuolelle. Järvi on avoin, noin 10 km pitkä, noin 1 km:n levyinen ja suuntautunut pohjoisluoteeseen (kuva 359). Järveä reunustavat molemmilta päädynteistä jyrkät louhikkoiset rinteet, jotka kohoavat yli 100 m järven pinnan yläpuolelle. Järven eteläpuolella Pulmankijoen laakson pohjaa peittää harjut (Kujansuu 1981b). Pulmankijärvi on luokiteltavissa reittiäjärveksi. Valuma-alueen vesialue on jatkautunut monen pienen järven kesken.

Mannerjäätikön reunan perääntyessä jää Pulmankijärven kohdalle kuolleen jään selänne. Jääselänne esti sulamisvesien kuljettaman aineksen kerrostumisen järven kohdalle, mutta sen eteen kasautui aluksi savea ja myöhemmin karkeampaa lajittunua aineesta. Jääselänteestä siltettua ulottui Jäämeren vuono Pulmankijärven altaaseen ja sen pinta oli noin 65 m järven nykyistä pinnasta (kuva 359). Järven alueen keskiosan eteläpuolella on säännöllinen, ja sen sedimenttikerros on säännöllinen (satoja mS/m). Se johtuu

sedimentin pinnasta 4,11 m:n syvyyteen, ja sen kerrosjärjestys on poikkeava (kuva 360). Näytteen alaosa (4,11–3,79 m) on savea. Sen pääällä on lustosavea (3,79–2,80), liejusavea (2,80–2,67 m), saviliejua (2,67–1,83 m), liejusavea (1,83–0,80 m), savea (0,80–0,20 m) ja liejusavea (0,20–0 m). Sedimenttikerros on osittain lusterakenteinen. Saviliejukkeroksen yläosa on laajakaistama. Pulmankijärven jäykkä aalto on sen pohjoisosan eteen kulkeva. Pulmankijärven alueen keskiosan kohdalla on merkittävä savea, mutta sen osuus on pieni (4 %), ja savikot puuttuvat kokonaan.

Kuva 359. Pulmankijärven allas ja sedimenttiorganisaatio. Fig. 359. The outwash of Lake Pulmankijärvi and sediment transport arrangement.

Pulmankijärven allas on yksi tutkimuspiste (kuva 359). Kaikuluotauslinjaa on yhtenevä 10 km.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 34,7 m. Pitkä näyte ulottuu

sisältöön vähintään 200 sanaa.
mitä todennäköisimmin vuonovaiheen aikana altaan
pohjalle kerrostuneista suolaisista sedimenteistä. Pul-
markijärven pohjasta noin 50 % on järviselementtejä,
ja ne sisältävät kuiva-ainetta noin 5,6 milj. tn. Koko
pinta-alalle laskettuna kuiva-ainetta on keskimäärin
510 kg/m², ja sen keskimääräinen varastoitumisnopeus
on ollut 100 g/m²/v. Kuiva-aineesta on hiiltä noin
54 milj. kg. Koko pinta-alalle laskettu keskimääräinen
hiilivarasto on 5,0 kg/m² ja keskimääräinen varastoi-
tumisnopeus 1,0 g/m²/v.

PAATSJOEN VESISTÖALUE (71)

Paatsjoen vesistöalue sijaitsee maan pohjoisosassa,
ja se ulottuu Venäjän puolesta Norjan vastaiselle
rajalle (kuva 361). Vesistöalueen Suomen puoleisen
osan pinta-ala on noin 14 000 km². Alueen korkeus
vahtee 110–604 m ja on keskimäärin 240 m. Vesis-
töalue on Inarijärven lähipyöristöä lukuun ottamatta
vedenkoskematonta.

Vesistöalueesta on moreenimateriaa 50 %, kalliota
18 %, vesistöjä 15 % ja turvemaata 9 %. Sora- ja hiek-
kamaan osuus on 6 %, ja hienojakoiset mineraalimaat
puuttuvat tyystin.
Inarijärvi

Inarijärvi on Paatsjoen vesistöalueen keskusjärvi. Sen pinta-ala on 1090 km² ja pinnan korkeus 119,8 m. Inarijärvi on maan suurimpia järviä. Sillä on pinta-alaa noin 80 km, leveyttä 40 km, ja sen keskisyvyys on 14,3 m. Inarijärvi on tyyppiltään latvajarvi.

Järvellä on useita saariltaan selkiä ja kapeita salmijalkaista ja lahtia (kuva 362). Salmien ja lahtien suuntaan vaikuttavat murroslineat, joista useimmat ovat suuntautuneet lounaasta koilliseen tai luoteesta kaakkoiseen (Ristiluoma 1968). Koska koilliseen suuntautuvat murroslineat yhtyvät viimeisen mannerjäätikön virtaus suuntaan, ovat koilliseen suuntautuneet salmet ja lahdet syvempiä ja laajempiä kuin kaakkoiseen suuntautuvat kapeita.

Tutkimuspiste 1 sijaitsee järven eteläosassa Nuoransuuselällä, missä veden syvyys oli 19,2 m. Pitkä näyte ulottuu sedimentiin pinnasta 4,46 m syvyyteen. Näytteen alaosaa (4,46–4,27 m) on savea. Sen päällä on liejusavettä (4,27–4,05 m) ja saviliejuva (4,05–0 m). Kuroutumisajankohtaa vastaa syvyys on 4,27 m (kuva 363). Sen yläpuolella hiilipitoisuus kohoa ja on korkeimmillaan kerrostuman keski- vaiheilla. Hiilipitoisuuden tulipalainen alennuminen 2,8 m:n ja 2,0 m:n syvyydessä johtuvat todennäköistä I valojen alueella tapahtuneista muutoksista. Kuroutumisen jälkeen tällä paikalla on varastoitu vuosiittain kuiva-ainetta keskimäärin 110 g/m². Siitä hiilen osuus on ollut 3,2 g/m².
Tutkimuspiste 2 sijaitsee järven länkiosassa Ukonselällä, missä veden syvyys oli 28,3 m. Pitkä näyte ulottuu sedimentin pinnasta 2,64 m:n syvyteen. Näytteen alaosaa (2,64–2,35 m) on savea. Sen päällä on liejusavea (2,35–2,23 m) ja saviliejua (2,23–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,35 m (kuva 364). Sen yläpuolella hiilipitoisuus kohoaa aluksi nopeasti, myöhemmin hidastuen ja päätyy runsaan 4 %:n tasolle järvesimienttikerroksen yläosassa. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 42 g/m². Siitä hiilen osuus on ollut 1,5 g/m².

Tutkimuspiste 3 sijaitsee järven itäosassa Sammakkoselällä, missä veden syvyys oli 45,2 m. Pitkä

Kuva 362. Luotauslinjojen ja tutkimuspisteiden sijainti Inarijärvellä. Ylhäällä vasemmalla järven sijainti luusauan rajoittuvalla valuma-alueella.
Fig. 362. The location of echo-sounding transects and survey points in Lake Inarijärvi. Top left shows the location of the lake in the area delimited by the outlet.
näyte ulottuu sedimentin pinnasta 2,10 m:n syvyyteen. Näytteen alaosa (2,10–1,47 m) on lustosavea. Sen päällä on savea (1,47–1,35 m), liejusavea (1,35–1,15 m) ja saviliejua (1,15–0 m). Kuroutumisajankohtaa vastaava syvyys on 1,35 m (kuva 365). Sen yläpuolella hiilipitoisuus kohoaa aluksi nopeasti myöhemmin hidastuen ja päätyy runsaan 3%:n tasolle. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 25 g/m². Siitä hiilen osuus on ollut 0,69 g/m².

Tutkimuspiste 4 sijaitsee järven keskiosassa Kasarinseitsemissa, missä veden syvyys oli 32,8 m. Pitkä näyte ulottuu sedimentin pinnasta 3,56 m:n syvyyteen. Näytteen alaosa (3,56–3,00 m) on lustosavea. Sen päällä on savea (3,00–2,78 m), liejusavea (2,78–2,58 m), saviliejua (2,58–1,00 m) ja liejua (1,00–0 m). Kuroutumisajankohtaa vastaava syvyys on 2,78 m (kuva 366). Sen yläpuolella hiilipitoisuus kohoaa ja päätyy runsaan 7%:n tasolle sedimenttikerroksen pinnassa. Kuroutumisen jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 45 g/m². Siitä hiilen osuus on ollut 2,2 g/m².

Edellä esitetyt varastoitumisnopeudet osoittavat maksiminopeuksia kullakin tutkimuslinjalla. Suurimmat varastoitumisnopeudet ovat Ivalojen edustalla sijaitsevaan Nuoransuuseläälle (tutkimuspiste 1). Joen kuljettaman aineksen sedimentaatio on nopeinta jokisuussa, mutta järvisedimenttikerros on tavallista paksumpi vielä Nanguvuononselällä saakka. Vastaavanlaiset sedimentaatio-olot ovat myös järven

Kuva 363. Inarijärvjen tutkimuspisteeltä 1 otetun pitkänäyetteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 363. The composition, density and carbon content of the long core taken from survey point 1 in Lake Inarijärvi. Top right shows the carbon content of the surface core.

Kuva 364. Inarijärvjen tutkimuspisteeltä 2 otetun pitkänä yetteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 364. The composition, density and carbon content of the long core taken from survey point 2 in Lake Inarijärvi. Top right shows the carbon content of the surface core.

Kuva 365. Inarijärvjen tutkimuspisteeltä 3 otetun pitkänäyetteen koostumus, tiheys ja hiilipitoisuus. Ylhäällä oikealla pintanäytteen hiilipitoisuus. Fig. 365. The composition, density and carbon content of the long core taken from survey point 3 in Lake Inarijärvi. Top right shows the carbon content of the surface core.

Inarijärven pohjasta noin 35% on järvisedimenttejä, ja ne sisältävät kuiva-ainetta noin 130 milj. t. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 120 kg/m², ja sen keskimääräinen varastoitumisnopeus on olut 11 g/m²/v. Kuiva-aineesta on hiiltä noin 4700 milj. kg. Koko pinta-alalle laskettuna keskimääräinen hiiliharasto on 4,3 kg/m² ja keskimääräinen varastoitumisnopeus 0,39 g/m²/v. Kujansu et al. (1998) arvioivat sedimentin tiheyden pienemmäksi ja hiilipitoisuuden alhaisemmaksi ja päätyivät siten huomattavasti pienempään (0,1 g/m²/v) hiilen varastoitumisnopeuteen.

Joukkaisjärvi

Joukkaisjärvi sijaitsee Inarijärven luoteispuolella. Sen pinta-ala on 0,35 km² ja pinnan korkeus 151 m. Järvi on noin 1,5 km pitkä, 0,2 km leveä ja suunnatuutunut lounasta koilliseen (kuva 367). Joukkaisjärvi on tyyppiltään latvajärvi.

Joukkaisjärvi syntyi välittömästi mannerjäätikön reunan perääntyvää Kaamasen alueelta noin 11 200 kal. a. bp.
vuotta sitten. Järven kehityksessä ei ole tapahtunut merkittäviä muutoksia, vaan allas on vähitellen madaltunut täyttymisen takia. Vedenpinta on pysynyt koko ajan laskukynnyn säättämällä tasolla.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 1,4 m. Pitkä näyte ulottuu sedimentin pinnasta 2,50 m:n syvyyteen. Näytteen alaosassa on muutaman senttimetrin paksuinen silttikerros. Sen päällä oleva sedimenttikerros on kokonaan liejuva. Järven syntyajankohtaa vastaavaa syvyys on 2,46 m (kuva 368). Sen yläpuolella hiilipitoisuus on 20 %, mutta sen yläpuolella syvyys 4 m on 14 %:n tasolle ja pysyy siinä pintaan saakka. Hiilipitoisuuskurvature kuvastaa alku vaiheen voimakkaan voimakasta väkivaltaa jälkeen varsin vaakaisesti sedimentaatio-oloyta.

Liejukerroksen pohjan iäksi saatiin radiohiililtä 12 000 kal BP, mikä on hieman vanhempi kuin arvioitu järveen reo foiden euror ajan. Järven arvioidun syntyajankohdan jälkeen tälle paikalle on varastoitunut kuiva-ainetta keskimäärin 19 g/m². Siitä hiilen osuus on ollut 2,8 g/m².

Kairaukset päätyivät kaikilla pisteillä kova an pohjaan, joka useinmiten oli silti. Järveäni järveäni järveä järveä. Tutkimuspistettä 2 lukuun ottamatta sen paksuus ylittää veden syvyysen. Altaan täyttyminen on ollut nopeinta lounaisosassa järven laskevan puron edustalla. Pisteellä 6 veden syvyys oli vain 0,5 m, mutta sedimenttikerroksen paksuus peräti 5,8 m. Jos vedenpinnan oletetaan pysyneen syntyajankohtaa vastaavalla tasolla, on ala alkuperäisestä tilavuudesta täyttynyt lähis 70 %.

Joukkaisjärven järveden kisattavat kuiva-anet noin 56 000 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 160 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 14 g/m²/v. Kuiva-aineesta on hiiltä noin 8,5 miljoonaa kg. Koko pinta-alalle laskettuna keskimääräinen hiilivarasto 24 kg/m² ja keskimääräinen varastoitumisnopeus 2,2 g/m²/v.

Leppälompola

Leppälompola sijaitsee Inarijärven luoteispuolella. Sen pinta-ala on 0,08 km² ja pinnankorkeus 147 m. Järvi on avoin ja sen kautta virtaavat laajan valuma-alueen vedet. Leppälompola on tyyppiläinen reitijärvi.

Tutkimuspiste 1 sijaitsee järven keskiosassa, missä veden syvyys oli 0,5 m. Näyte ulottuu sedimentin pinnasta 0,8 m:n syvyyteen ja on kokonaan liejuva. Kairaus päättyi kiveen, joten järven syntyajankohtaa vastaava syvyys on 0,8 m. Syntyajankohdan jälkeen tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 14 g/m². Siitä hiilen osuus on ollut 2,6 g/m².

Leppälompola on matala, ja sen sedimenttikerros on ohut. Pisteellä 2 veden syvyys oli 0,8 m ja liejukerroksen paksuus 0,3 m. Pisteellä 3 taas vettä oli 0,5 m eikä liejuva ollenkaan. Altaan mataluus estää sedimenttien kertyminen Leppälompolaan. Hitaan virtaaman aikana altaaseen kerrostunut aines huhtoutuu pois seuraavan voimakkaan kevätilävän aikan. Jos liejukerroksen

Fig. 369 The location of survey points in Lake Leppälompola. Top right shows the location of the small lake in the drainage basin delimited by the outlet.
keskipaksuudeksi oletetaan 0,4 m, on keskimääräinen kerrostumisnopeus vain 0,04 mm/v. Kerrostuminen ei kuitenkaan ole tapahtunut tasaisesti, vaan altaan painanteet ja virtaukselta sivussa olevat kohdat ovat täytyneet jo varhaisessa vaiheessa.

Lepälompolan järvisementit sisältävät kuiva-
inetta noin 6400 tn. Koko pinta-alle laskettuna kuiva-alkeet on keskimäärin 80 kg/m², ja sen keski-
määräinen varastoimisnopeus on ollut 7,2 g/m²/v. Kuiva-aineesta on hiiltä noin 1,2 milj. kg. Koko pinta-
alalle laskettu keskimääräinen hiilivarastot on 14 kg/m² ja keskimääräinen varastoimisnopeus 1,3 g/m²/v.

Lampi 140151

Lampi 140151 sijaitsee Paatsjoen vesistöalueen pohjoisosassa Inarissa. Sen pinta-ala on 0,04 km² ja pinnan korkeus 217 m. Se on osa Kaamasjoen pohjoispuolella olevaa, soiden yhdistämää lampiketjua. Lampi 140151 on tyyppiltään latvajärvi.

Tutkimuspisteitä on kolme (kuva 370). Näytete laboratoriomäärykkäsi varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentin kerrosjärjestys määritettiin maastossa.

Tutkimuspiste 1 sijaitsee lammen itäpäässä, missä veden syvyys oli 1,0 m. Pitkä näyte ulottuu sedimen-
tin pinnasta 0,58 m:n syvyyteen (kuva 371). Näyte ja soistuu alapäästä hiekkaan. Hiekkan päällä on rus-
kosamallturvetta (0,58–0,28 m) ja turpeenekäista liejua (0,28–0 m). Turvekerrokset pohjasta ja pinnasta tehtyjen radiohiilijaotusten perusteella voidaan tut-
kimuspaikan päällä soistuneen vajan 2000 vuotta jäättömän reunan periajantimen jälkeen ja suovaiheen kestämään noin 4000 vuotta. Järviavaileen alakülväjäksen tälle saikku on varastoitunut vuosittain kuiva-aineetta noin 9,2 kg/m². Siitä on ollut 1,5 g/m².

Tutkimuspisteellä 2 tavattiin hiekkaan hautautunut turvekerros, joka on nuorena lammen kautta vielä suovaiheen. Pisteeltä 3 ei näet tavattu. Pieniä ottavia tietoja suomisivun tuottojaan ja virtavaisaa vesi on kuluttanut mahdollisen turvekerroksen pois.

Lammen 140151 järvisementit sisältävät kuiva-
inetta noin 680 tn. Koko pinta-alle laskettuna kuiva-alkeet on keskimäärin 17 kg/m², ja sen keski-
määräinen varastoimisnopeus on ollut 3,1 g/m²/v. Kuiva-aineesta on hiiltä noin 0,16 milj. kg. Koko pinta-alle laskettu keskimääräinen hiilivarastot on 4,1 kg/m² ja keskimääräinen varastoimisnopeus 0,75 g/m²/v.

Kuva 370. Tutkimuspiisteiden sijainti Lammella 140151. Yläoikealla lammen sijainti luosuun rajatuvalla valuma-alueella. Fig. 370. The location of survey points on small lake 140151. Top right shows the location of the small lake in the drainage basin delimited by the outlet.

Kuva 371. Lammen 140151 tutkimuspiesteellä 1 otetun pitkän näyteen koostumus, tihys, hiilipitoisuus ja radioidiohijointun tulokset. Fig. 371. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 on small lake 140151.
KOUTAJOEN LATVAVESISTÖalue (73)

Koutajoen latvavesistöalue sijaitsee Venäjän vastaisella rajalla Kuusamon ja Sallan välissä (kuva 372). Vedet laskevat Paanajärven kautta Vienanmereen. Suomen puoleisen osan pinta-ala on noin 4900 km² ja sen keskimääräinen korkeus on 269 m. Mannerjäätikön reunan perääntyessä alueella olijääjärviä. Muuten sen on vedenkoskematonta. Vesistöalueesta on moreenimaata 61 %, vesistöjä 13 % ja turvemaata 12 %.

Yli-Kitka

Yli-Kitka sijaitsee Koutajoen latvavesistöalueen länsiosassa ja kuuluu Posion ja Kuusamon kunnii. Järven pinta-ala on 240 m² ja pinnan korkeus 240,4 m. Useimmat niemet ja saaret ovat suuntautuneet lännestä itään vastapäätä mannerjäätikön liikeseutta (kuva 373). Yli-Kitka on tyyppiltään latvajärvi.

Tutkimuspiesteitä on yksi, ja siltä otettiin näytyt laboratoriomäärityksiä varten (kuva 373). Kaikulotauslinja on yhteensä 47 km.

Tutkimuspieste 1 sijaitsee järven länsiosassa, missä veden syvyys oli 13,6 m. Pitkät näyte ulottuivat sedimentin pinnasta 2,44 m:n syvyyteen. Näytteen alaosaa (2,44–2,20 m) oli siltiä. Sen päällä on saviliejua (2,20–2,10 m) ja liejua (2,10–0 m). Järven syntyajan kohtaa vastaava syvyys on 2,20 m (kuva 374). Sen yläpuolella islipoisisuus kohoaa nopeasti 10 %:n tasolle, laskee sitten 6 %:n tasolle ja pysyy siinnä pintaan saakka. Veden koskematonta alueen järjet ovat syntyneet ilman meri- tai suurjärviavaiheita. Siksi ne vakiintuivat nopeasti ja niiden sedimenttien hillipitoisuudet ovat varsin korkeita pohjalta alkaen.

Fig. 373. The location of echo-sounding transects and survey point in Lake Yli-Kitka. Top left shows the location of the lake in the area delimited by the outlet.

Fig. 374. The composition, density and carbon content of the long core taken from survey point 1 in Lake Yli-Kitka. Top right shows the carbon content of the surface core.

Fig. 375. The long-term accumulation rate of dry matter and carbon at survey point 1 in Lake Yli-Kitka.
Järvedimentit kuiva-aineen ja hiilen varastona ulottuvat suojaisissa paikoissa matalaan veteen saakka. Virtausten takia liejuttomiksi jääneitä alueita on jopa 18 m:n syvyydessä. (Saarelainen 1980.)

Kaikuluotausten perusteella Yli-Kitkan pohjasta noin 60 % on järvedimenttejä, ja ne sisältävät kuiva-ainetta noin 34 milj. tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 140 kg/m², ja sen keskimääräinen varastoitumisnopeus on ollut 13 g/m²/v. Kuiva-aineesta on hiiltä noin 2500 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiiliharakko on 10 kg/m² ja keskimääräinen varastoitumisnopeus 0,97 g/m²/v.

Talvijärvi

Talvijärvi sijaitsee Koutajoen latvavesistöalueen eteläosassa Kuusamossa, Rukatunturin juurella. Järven pinta-ala on 0,17 km² ja pinnan korkeus 296 m. Valuma-alueen korkeuserot ovat suuret, sillä tunturin laki kohoaa lähes 200 m järven pinnan yläpuolelle. Talvijärvi on tyyppiltään latvajärvi.

Tutkimuspiste 1 sijaitsee järven koillisosaan, missä veden syvyys on 2,1 m. Pitkä näyte ulottuu sedimentin pinnasta 4,30 m:n syvyyteen. Näytteenottimen kärkipallot otettiin säilyneenä muovipakastilta. Tutkimuspiste 1 on kuusi (kuva 376). Näytteet laboratoriomäärityksiä varten otettiin yhdeltä pisteeltä. Muilla pisteillä sedimentikerrosten määritettiin maastossa.

Kuva 376. Tutkimuspisteiden sijainti Talvijärvellä. Ylhäällä vasemmalla järven sijainnit luusuana rajoittuvat valuma-alueella. Fig. 376. The location of survey points in Lake Talvijärvi. Top left shows the location of the lake in the area delimited by the outlet.

Kuva 377. Talvijärven tutkimuspisteeltä 1 otetun pitkän näytteen koostumus, tiheys, hiilipitoisuus ja radiohiilihajoitusten tulokset. Ylhäällä oikealla pinta-näytteen hiilipitoisuus. Fig. 377. The composition, density, carbon content and the results of radiocarbon dating of the long core taken from survey point 1 in Lake Talvijärvi. Top right shows the carbon content of the surface core.
tälle paikalle on varastoitunut vuosittain kuiva-ainetta keskimäärin 27 g/m². Sitä hiilen osuus on ollut 5,7 g/m². Ajoitustulosten perusteella lasketut keskimääräiset varastotumisnopeudet ovat samalla tasolla kerrostuman ala- ja yläosaassa.

Tutkimuspiste 1 ei sijaitse suurimman sedimentti-alueella, sillä pisteellä 2 järvesiin järvestä kerrostuman ala- ja yläosaatk. Piste 3 liujatulostuksenosuus on niin tiivis, ettei sitä pystytä läpäisemään laippakairalla.

Talvijärven järvesiin järvestä kuiva-ainetta on noin 33 000 tn. Koko pinta-alalle laskettuna kuiva-ainetta on keskimäärin 200 kg/m² ja sen keskimääräinen varastotumisnopeus on ollut 18 g/m²/v. Kuiva-ainesta on hiiltä noin 7,0 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 41 kg/m² ja keskimääräinen varastotumisnopeus 3,9 g/m²/v.

TULOSTEN TARKASTELU

Järvialtaat

Altainen synty ja muoto

Järvet sijaitsevat maaston painanteissa, joiden syntyyn ovat vaikuttaneet sekä kallioperä että viimeisen jääkauden toiminta. Altainen muoto määrittää yleisimmin kalliopohjan muodon ja maaperämuodostumien mukaan.

Etenevä jäätikkö paljasti etenkin jäätikköjen liikkeen suuntaisia ruhjevyöhykkeitä. Sen sijaan liikesuuntaan nähden poikkeisaiden ruheet pyrkivät täyttymään jäätikkön kuljettamalla aineksella. Pitkiä kallioperäisiä ruhjeita järveä näkyy järvenliuskomaisuuksissa.

Järvialtaisten keskisyvyys on yleisesti lähemmäs 10 m, mutta alle hehtaarin järvien enää noin 2 m. Suurimmilla muolloilla ja erityisesti soikea ja makoava liuskaisuus on yleinen. Pienimmät liuskaisuutensa ovat noin 1,3 km² ja suuremmat liuskaisuudet ovat yleensä suuremmat kuin 10 km². Tutkittujen järvialtaiden keskimääräinen liuskaisuus on 5,4.

Tammalampien, Tuomaslammen ja Valkeisen muoto on yleensä pyöreä tai pitkärinnontain. Turvekerrokset rajoittuvat lahteja olevat yleensä pyramiditavat. Säikäppän eräät järven muotoja ovat yleensä pitkät ja rikkonaiset. Koko pinta-alalle laskettua kuiva-ainetta on keskimäärin 200 kg/m² ja sen keskimääräinen varastotumisnopeus on noin 18 g/m²/v. Kuiva-ainesta on hiiltä noin 7,0 milj. kg. Koko pinta-alalle laskettu keskimääräinen hiilivarasto on 41 kg/m² ja keskimääräinen varastotumisnopeus 3,9 g/m²/v.

Järvialtaan pohjan kuluminen aiheuttaa yleensä liikkeet johtuvat joko aallokosta tai virtauksista. Aallokko on yleensä seurausta tuulen välittömästä toiminnasta, kuten tuulen välittömästä toiminnasta, kun taas virtaukset aiheuttavat tuulen liikkeitä vesistönläpivirtauksia ja altaan eri osien väliset ilmanpaineet erot. Aallokon toiminta rajoittuu yleensä matalaan rantavyöhykkeeseen, mutta virtaukset on esintävät veden syvydestä riippumatta (vrt. kuva 299). Kuluminen vyöhykkeessä järven pohja on yleensä moreenia tai tiukkaa savea.

Kulkeutuminen vyöhykkeessä veden liike on jo hidastunut siinä määrin, ettei altaan pohja enää kulua. Toisaalta jatkuva kerrostuminen voi todeta yleensä matalaan rantavyöhykkeeseen, mutta virtaukset ovat esintävät veden syvydestä riippumatta. Kulkeutuminen vyöhykkeessä järven pohja on yleensä moreenia tai tiukkaa savea.

Järvialtaan muoto ja seuraukset siihen aiheuttavat veden liikkeet johtuvat joko aallokosta tai virtauksista. Aallokko on yleensä seurausta tuulen välittömästä toiminnasta, kun taas virtaukset aiheuttavat tuulen liikkeitä vesistön läpivirtauksia ja altaan eri osien väliset ilmanpaineet erot. Aallokon toiminta rajoittuu yleensä matalaan rantavyöhykkeeseen, mutta virtaukset on esintävät veden syvydestä riippumatta (vrt. kuva 299). Kulminen vyöhykkeessä järven pohja on yleensä moreenia tai tiukkaa savea.

Kulkeutuminen vyöhykkeessä veden liike on jo hidastunut siinä määrin, ettei altaan pohja enää kulua. Toisaalta jatkuva kerrostuminen voi todeta yleensä matalaan rantavyöhykkeeseen, mutta virtaukset ovat esintävät veden syvydestä riippumatta. Kulkeutuminen vyöhykkeessä järven pohja on yleensä moreenia tai tiukkaa savea.

Kulkeutuminen vyöhykkeessä veden liike on jo hidastunut siinä määrin, ettei altaan pohja enää kulua. Toisaalta jatkuva kerrostuminen voi todeta yleensä matalaan rantavyöhykkeeseen, mutta virtaukset ovat esintävät veden syvydestä riippumatta. Kulkeutuminen vyöhykkeessä järven pohja on yleensä moreenia tai tiukkaa savea.

Fig. 378. A theoretical presentation of the location of the erosion, transportation and sedimentation bottom in conditions of stable water level (A). As the water level rises, the area covered by the sedimentation bottom expands and zone limits move to higher elevations (B). As the water level falls, the area covered by the sedimentation bottom contracts and zone limits move to lower elevations (C). Following a change in water level, the bottom begins to adapt to the new sedimentation conditions.
Järven synty

Veden koskemattoman alueen järven syntyvät heti jääjän reunan perääntyessä, mikä tapahtui Suomen alueella noin 13 000–10 000 vuotta sitten (kuva 379). Jäätkön reuna oli Ensimmäisellä Salpausselällä noin 12 100 vuotta sitten, Toisella Salpausselällä noin 11 600 vuotta sitten ja Keski-Suomen reunamuodostumalla noin 11 000 vuotta sitten (Salonen et al. 2002). Veden koskemattomalla alueella järven ikä määräytyy pelkästään jääjän reunan perääntymisen mukaan, eikä järven korkeudenvälistä ole merkitystä. Vanhimmat järvet löytyvät siten maan kaakkoisosasta.

Itämerestä tai Jäämerestä. Järven kurotuminen on voinut olla kertakäikkinen tapahtuma, tai se on tapahtunut useammassa vaiheessa. Tässä yhteydessä kurotuminisella ymnäärretään yhteyden katkeamista meneen. Myöhemmät kurotumiset erottavat toisistaan järven eri kehitysvaiheita.

Järven synty kurottamulla alkoi ensimmäiseksi jäänkäästä vapautuneilla alueilla maan kaakkosissa ja on jatkunut Pohjanlahden rannikolla nykyäikaan saakka. Järviä syntyi kuroutumalla tiuhaan tahtiin ja on jatkunut Pohjanlahden rannikolla nykyaikaan jäätiköstävapautuneilta alueilta ja kaakkoisosassa järven eri kehitysvaiheita. Kuitenkin ollut ihminen.

Maankuoren kallistumisen vaikutus

veden mukana kulkeutuvan kiintoaineen määrä ja ominaisuudet.

Jos laskukynnys sijaitsi hitaimman maanka- hoamisen alueella, yleensä kaakkois- tai itäpäässä, laski vedenpinta koko altaassa. Koko kurotuksen jälkeisen ajan kustutuneita järviä ovat mm. Kivijärvi ja Keurusselkä.

Kuva 380. Onkiveten valuma-alueen kehitys maankuoren kallistumisen seurauksena. Fig. 380. The development of Lake Onkivesi’s drainage basin as a consequence of the tilting of the earth’s crust.

vuotta sitten. Pihlajaveden tulva tavoitti Kyläniemen kynnysken noin 10 000 vuotta sitten. Sen seurauksena vedenpinnan kohoaminen nopeutui Salpausselkien välisellä osalla.

Pielisen ja Höytiäisen välisen lasku-uoman tiettäen toimineen jäätikön perääntymisvaiheen aikaan. Höytiäisen pohjasta tutkittujen sedimenttien perusteella Pielisen suunnasta on tullut voimakas mineraaliaineksen pulssi vielä Höytiäisen kuroutumisen jälkeen. Uoman voidaan päätellä toimineen toistamiseen Pielisen tulvan kohoamisen loppuvaiheessa ja
kuivuneen lopullisesti Pielisen lasku-uoman siirtyttyä järven kaakkoispäähän noin 9500 vuotta sitten.

Laskukynynksen muutokset

Maankuoren kallistumisen lisäksi järveltaiten kokoon vaikuttivat laskukynynksen korkeuden muutokset. Yleensä kyseessä on laskukynynksen luonnollinen kuluminen ja siitä johtuva vedenpinnan lasku ja järven pieneneminen. Laskukynynksen luonnollistista kohoamista voivat saada aikaan mm. siirrokset ja suuret maanvyörymät. Niiden ei kuitenkaan tiedetä vaikuttaneen tutkittujen järven kehitykseen.

Hmnien toiminta

Järvedimenttikerrokset

Järvedimenttikerroksilla tarkoitetaan järven syntyajan-kohdan jälkeen järvi-alueen pohjalle kerrostunutta ainestaa. Sedimentaatio-olot erilaisuuden takia vaihtelevat kerrosten paksuudesta ja koostumuksesta altaittain.

Järvedimenttipohjan osuus

Järvedimenttipohjaan suosia

Järvedimenttipohjaan suosia

Järvedimenttipohjaan suosia

Järvedimenttipohjaan suosia

Järvedimenttipohjaan suosia

Järvedimenttipohjaan suosia

Suurimmista kerrosten paksuuksista ei kuitenkaan ole paljon apua varastojen ja varastoitu nimisopueksien laskettaessa. Käyttökelpoisempia ovat järvisedimenttikerroksen keskimääräiset paksuudet, jotka on laskettu koko järven alalle. Esimerkiksi Suojärveillä järvisedimenttikerroksen paksuus on 1,1 m. Tasaisesti koko pinta-alueelle levitetynä järvisedimenttikerroksen paksuudeksi tulee siten 0,50 m.

Järvisedimenttikerrosten pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Vuoksen vesistöalueella järvisedimenttikerroksen keskimääräinen paksuus vaihtelee Viinijärven 0,34 m-stä Räimäjärven 4,0 m:iin. Suurimmassa järvisissä keskimääräinen paksuus jää muutamaa poikkeuksellisesti keskimääräiset paksuudet ovat täysin taitotekniikan ja monimuotoisten aineiden osuuden mukaisia. Järven kokoon nähden pienimmän pinta-alaan puhuttua keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,59 m, Kymijoki 0,97 m ja Kemijoki 1,4 m.

Kemijoki 1,3 m. Päätäkin on keskimääräinen paksuus 0,58 m, mitä on kymmenen keskiarvona. Kymijoen vesistöalueella järvisedimenttikerroksen keskimääräinen paksuus kasvaa latvavesille päin. Päijänteessä järvisedimenttejä on vain 0,26 m, koska järven koko on usein poltto-aineiden poistamiseksi käytettynä. Järvedistettjen paksuudet ylittävät 1,5 m. Villä järven koon pienentäessä. Poikkeuksen siitä mukaan keskimääräinen paksuus ylittää 1,5 m. Kemijokeen 1,3 m. paksuudeksi tulee siten 0,50 m. Järvisedimenttikerrosten pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus ylittää 1,5 m. Villä järven koon pienentäessä. Poikkeuksen siitä mukaan keskimääräinen paksuus ylittää 1,5 m. Kemijokeen 1,3 m. paksuudeksi tulee siten 0,50 m. Järvisedimenttikerrosten pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.

Järvedistettjen pinta-aloiolla painotettu keskimääräinen paksuus on suurimmilla vesistöalueilla seuraavanlainen: Vuoksi 0,77 m, Kymijoki 0,70 m, Kokemäenjoki 0,80 m, Oulujoki 1,6 m ja Kemijoki 1,3 m.
Hanna Pajunen

kevyenä kulkeutua huomattavasti suurempina kappaleina. Mineraliaaineet ja eloperäinen aines ovat usein peräisin eri lähteistä, mutta ne sekoittuvat kuljetuksen ja kerrostumisprosessin aikana.

Tyypillisessä järvisedimenttikerroksessa eloperäisen aineen osuus kasvaa pintaan kohdistuessa kohti, ja se on jaettavissa päällekkään oleviin liejusavi-, savilieju- ja liejukerroksin. Lähäskää aina järvisedimentin eivät muodosta edellä kuvattua maalajisarjaa. Suurissa järvisissä järvisedimenttikerroksen alaosa on usein liejusavea ja yläosa saviliejuva. Pienissä järvissä liejusavikerros voi puuttua ja eräissä tapauksissa järvisedimenttikerroksen on kokonaan liejusaviksi.

sijaitsevissa järvissä vesipitoisuus on alemmallalla tasolla kuin suhteellisen korkealla sijaitsevissa järvissä, mikä kuvastaa hienon mineraalaineeksen runsautta valuma-alueella. Vesipitoisuuden aleneminen heti tarkastelujakson alun jälkeen johtuu siitä, että aineistoon tulee noin 9500 vuotta sitten runsaasti suhteellisen alhaalla sijaitsevia suoria järviä. Vesipitoisuuden aleneminen suurimmissa sedimenttikerroksissa taas johtuu siitä, että mineraalaineeneksen kulkeutuminen kerrostumisalueille on lisääntynyt valuma-alueella tapahtuneiden maankäytön muutosten tai vedenpinnan laskun takia.

Tilavuudella painotetut keskimääräiset vesipitoisuudet ovat suurimmilla vesistöalueilla seuraavat: Vuoksi 78 %, Kymijoki 77 %, Kokemäenjoki 74 %, Oulujoki 78 % ja Kemijoki 77 %. Vesistöalueittain lasketut vesipitoisuudet ovat samalla tasolla Kokemäenjoen vesistöalueella lukuun ottamatta. Järvedimmän vesipitoisuus vaihtelee yleensä 70–90 %. Vesipitoisuus on keskimääräistä alhaisempi mm. Onkiveden (66 %), Vesijärven (63 %) ja Tampereen ympäristön suurten järvenidmän keskilukessa. Keskimääräistä korkeampia vesipitoisuuksia taas tavattiin suhteellisen korkealla sijaitsevien järven kuten Yli-Kitkan (87 %), Kostonjärven (88 %) ja Ontojärven (88 %) sedimenteissä. Kaikki yli 90 %-n keskimääräiset vesipitoisuudet tavattiin alle 0,5 km
2
:ni järviissä. Ne joko sijaitsevat Pohjois-Suomen vedenkoskemattomilla alueilla tai ovat turveranta.

Kun järviwohtaiset vesipitoisuudet painotetaan järvedimmäisiä sedimenttikerroksen tilavuudella, saadaan tutkittujen kerrosten keskimääräinen vesipitoisuus 78 %. Tilavuudella painotetut, kokoluokitattain lasketut vesipitoisuudet ovat

yli 100 km
2
: 78 %,
100–10 km
2
: 77 %,
10–1,0 km
2
: 80 %,
1,0–0,1 km
2
: 79 % ja
alle 0,1 km
2
: 90 %.

Järvedimmäiset vesipitoisuus on pienissä järviissä yleensä korkeampi kuin suurissa järviissä. Mineraali-

aineksen saatavuuden takia allaskohtaiset erot voivat

cuitenkin olla huomattavia.

Arvio Suomen järvedimmäisistä vesipitoisuuksista saadaan painottamalla kokoluokitettain lasketut vesipitoisuudet kuninkokoluokan sedimenttien tilavuudella. Keskimääräisesto vesipitoisuudeksia saadaan tällöin 79 %, joka on yhden prosenttiyksikön korkeampi kuin tutkittujen kerrosten keskimääräinen vesipitoisuus.

Pitkästä näyttöistä tehtiin 3260 vesipitoisuusmääristää. Määriytysten keskiarvo kokoilta saatiin 79 %, määriyntä 82 %, keskihajonnaksi 11 ja vaihteluväliksi 32–98 %.

Kuva 381. Järvedimmän keskimääräinen vesipitoisuus pitkissä näytteissä.

Fig. 381. The average water content of the lake sediment extracted by means of the long cores.

Tiheys

Koska järvedimmäiset sisältävät mineraalimäärikkien ominaispaino on huomattavasti suurempi kuin eloperäisen aineksen, määriytyy sedimenttien tiheys pitkällä mineraalineeseen osuuden mukaan. Yleensä sedimentin tiheys on sitä suurempi, mitä enemmän siinä on mineraalineesta. Tiheät kerrokset ovat myös painavia, mikä edelleen tiivistää alla olevia kerkoisia. Kerrosten tiivistyminen edellyttää sitä, että niissä oleva vesi pääsee poistumaan.

Yleensä järvedimmäisen kerroksen tiheys pienenee pintaa kohti (kuva 382). Osa siitä johtuu alimpien kerrosten puristumisesta kokoon, osa taas on seurausta järven ja sen valuma-alueen luonnollisesta kehityksestä. Nopeinta tiheyden pienenneminen on heti

Tutkittujen järvedimenttien keskimääräinen, kerrosten tilavuudella painottettu keski tihieys on 0,26 g/cm³. Suurimmilla vesistöalueilla tilavuudella painotetut keskimääräiset tiheydet ovat Vuoksi 0,26 g/cm³, Kymijoki 0,28 g/cm³, Kokemäenjoki 0,32 g/cm³, Oulujoki 0,27 g/cm³ ja Kemijoki 0,25 g/cm³. Kokemäenjoki vesistöalueen korkeakoho keskiarvo johtuu Tampereen etelä- ja itäpuolen suurista järvestä, missä järvedimenttin keskimääräinen tiheys on 0,40–0,50 g/cm³. Toisaalta vesistöalueen kahdessa pienimmässä järvesissä tiheys jää alle 0,10 g/cm³. Pienen sedimenttämäärän takia niillä ei juuri ole vaikutusta keskimääräiseen tiheyteen.

Kokoluokittain laskettu, tilavuudella painotettu järvedimenttikerrosten keskimääräinen tiheys on

Yli 100 km²	0,26 g/cm³
100–10 km²	0,28 g/cm³
10–1,0 km²	0,23 g/cm³
1,0–0,1 km²	0,25 g/cm³ ja
alle 0,1 km²	0,11 g/cm³

Suurimman kokoluokan tiheimmät (>0,40 g/cm³) järvedimenttikerrokset ovat jo edellä mainittujen Tampereen etelä- ja itäpuolen suurten järven lisäksi Vesijärvenllä, Pielavedellä ja Onkivedellä. Niiden ympäröissä on runsaasti hienojakoisia sedimenttejä. Kokoluokan pienimmät tiheyydet (0,13 g/cm³) ovat Yli-Kittassaa, Kiantajärvellä ja Ontojärvellä, jotka kaikki sijaitsevat muinaisen Itämeren ylimmän rannan yläpuolella.

Seuraavien kolmen kokoluokan (100–0,1 km²) tiheimmät järvedimentit ovat savialueiden järvissä, harjujen liepeillä olevissa järvissä tai järviä, joihin on kerrostunut poikkeuksellisen paljon jokien kuljetettavaa mineraliaineesta. Esimerkkejä savialueiden järviä ovat Sääksjärvi (0,39 g/cm³) ja Lapipinjärven Pyhäjärvi (0,41 g/cm³). Harjujen liepeillä sijaitsevia järviä taas ovat Nerkonjärvi (0,37 g/cm³), Kevään (0,37 g/cm³), Räimäjärvi (0,47 g/cm³), Pirkkajärvi (0,43 g/cm³) ja Vihteljärvi (0,59 g/cm³). Niistä useimmat ovat kokeneet voimakkaita vedenpinnan vaihteluita, mikä on edistänyt hienon mineraliaineksen kulkeutumista järvialtaaseen. Jokien kuljettavan mineraliaineen taas on suunnata Pienen-Pyhännän (0,43 g/cm³) ja Perilammen (0,46 g/cm³) sedimenttien suureen tiheyteen. Löyhimät järvedimenttikerrokset ovat järvissä, jotka sijaitsevat vedenkoskemattonilla alueilla tai lähellä muinaisen Itämeren ylärintaa. Tällaisia järiä ovat esim. Kostonjärvi (0,12 g/cm³), Joukkaisjärvi (0,085 g/cm³), Talvi-järvi (0,068 g/cm³) ja Suonenjoen Vehmasjärvi (0,091 g/cm³).

Pienimmän kokoluokan (alle 0,1 km²) sedimenttien keskimääräinen tiheys poikkeaa merkittävästi muista. Kokoluokan tiheimmät sedimentit (0,36 g/cm³) ovat Postilammessa, joka on kokenut voimakkaita vedenpinnan vaihteluita ja joka on suurimmien osan historiastaan ollut osa suurta vesistöä. Siksi se ei edusta tyyppillistä pientä järveä. Keskimääräinen tiheys on

<table>
<thead>
<tr>
<th>Tiheys g/cm³</th>
<th>Density g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>0,2</td>
<td>0,3</td>
</tr>
<tr>
<td>0,3</td>
<td>0,4</td>
</tr>
<tr>
<td>0,4</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Kuva 382. Järvedimenttin keskimääräinen tiheys pitkissä näytteissä. Fig. 382. The average density of the lake sediment extracted by means of the long cores.
räinen tiheys on alle 0,080 g/cm³ seitsemässä järvessä, jotka kaikki sijaitsevat suhteellisen korkealla tai ovat turverantaisia. Pienimmän kokoluokan järvikohdaiset tiheydet vaihtelevat merkittävästi, eikä kokoluokan keskimääräistä tiheyttä voida otoksen pienen koon takia pitää kovin luotettavana.

Arvio Suomen järvedimenttien keskimääräisestä tiheystä saadaan painottamalla kokoluokittain lasketut tiheydet kunink kokoluokan sedimentin tilavuudella. Keskimääräiseksi tiheydeksi saadaan tällöin 0,25 g/cm³, joka on hieman pienempi kuin tutkittujen kerrosten keskimääräinen tiheys.

Kuivairton tiheys laskettiin pitkistä näytteistä otetuille 3260 osanäytteille. Tiheyskseen keskiarvoksi saatiin 0,25 g/cm³, mediaaniksi 0,20 g/cm³, kesikahjonaksi 0,16 ja vaihteluväliksi 0,019–1,1 g/cm³.

Hehkutushäviö

Tutkittujen järvedimenttikerrosten tilavuudella painotettu keskimääräinen hehkutushäviö on 14 %. Suurimmilla vesistöalueilla vastaavalla tavalla painotetut keskimääräiset hehkutushäviöt ovat Vuoksi 15 %, Kymijoki 14 %, Kokemäenjoki 11 %, Oulujoki 13 % ja Kemijoki 16 %.

Kokoluokittain laskettu, tilavuudella painotettu järvedimenttikerrosten keskimääräinen hehkutushäviö on

<table>
<thead>
<tr>
<th>Kokoluokka</th>
<th>Hehkutushäviö (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>yli 100 km²</td>
<td>14 %</td>
</tr>
<tr>
<td>100–10 km²</td>
<td>15 %</td>
</tr>
<tr>
<td>10–1,0 km²</td>
<td>21 %</td>
</tr>
<tr>
<td>1,0–0,1 km²</td>
<td>25 % ja</td>
</tr>
<tr>
<td>alle 0,1 km²</td>
<td>51 %</td>
</tr>
</tbody>
</table>

Arvio Suomen järvedimenttien keskimääräisestä hehkutushäviöstä saadaan painottamalla kokoluokittain lasketut hehkutushäviöt kunink kokoluokan sedimentin tilavuudella. Keskimääräiseski hehkutushäviöksi saadaan tällöin 20 %, joka on huomattavasti korkeampi kuin tutkittujen kerrosten keskimääräinen hehkutushäviö.

Pitkistä näytteistä tehtiin 3260 hehkutushäviömääritystä. Määritysten keskiarvoksi saatiin 22 %, mediaaniksi 16 %, kesikahjonaksi 14 ja vaihteluväliksi 1,5–94 %.

Hiilipitoisuus

Järvedimenttien hiilipitoisuus ilmentää eloperäisen aineksen osuutta, ja se vaihtelee valuma-alueen ominaisuuksien ja vallinneiden sedimentaatio-olojen mukaan. Siten hiilipitoisuus vaihtelee merkittävästi eri alaiden välillä, mutta myös saman alaen eri kerrosten välillä. Altainen väliset erot ovat suurimmillaan vesireittien latvoilla sijaitsevien lampien ja vesireittien alaosassa sijaitsevien suurten järven välillä. Kerrosten väliset erot voivat kuvastaa sedimentaatioympäristön vähittäistä muutosta, tai ne voivat liittyä esimerkiksi...
Vertikaalinen vaihtelu

Sedimenttihiilipitoisuuden kohoaminen vakiintumisvaiheen aikaan johtuu lähinnä se, että pohjavyöhykkeiden lisäksi tärkeämaan eteneminen ja maalajin muuttumisena. Tapauksissa tasonmuutos näkyy hiilipitoisuuden alenemiseen ja terveellisestä turbulenssiympäristöstä, joka on tapahtunut. Hiilipitoisuuden aleneminen voi näkyy muoviohjelmien aloittamiseen ja nuorimmat metsänhoidon tehostamisaikoihin. Varhaisimmat tasonmuutos tapahtuu muoviohjelmien aloittamiseen ja nuorimmat metsänhoidon tehostamisaikoihin.

Vastaavanlainen hiilipitoisuuden aleneminen on havaittavissa monien sedimenttitkerrosten pintoisissa. Se on käytetty osittain järven vakiintumisvaiheen laskun jälkeen. Vedenpinnan lasku on yleensä niin suuri, että se voi vaikuttaa sedimenttikerrosten hiilipitoisuuteen. Vedenpinnan lasku on yleensä niin suuri, että se voi vaikuttaa sedimenttikerrosten hiilipitoisuuteen. Vedenpinnan lasku on yleensä niin suuri, että se voi vaikuttaa sedimenttikerrosten hiilipitoisuuteen. Vedenpinnan lasku on yleensä niin suuri, että se voi vaikuttaa sedimenttikerrosten hiilipitoisuuteen. Vedenpinnan lasku on yleensä niin suuri, että se voi vaikuttaa sedimenttikerrosten hiilipitoisuuteen.

Fig. 384. Typical carbon content graphs for lake sediment beds. At the time the stabilisation stage following the emergence of the lake, the carbon content rises quickly, but then settles down to the level corresponding to stabilised conditions. In supra-aquatic areas (A) the stabilisation occurred considerably faster than in areas that were influenced by the ancient sea stages (B). The rising of the flood of ancient Lake Suur-Saimaa caused erosion of the shoreline mires in the south-eastern part, which is manifested in the sediment layers in the form of carbon content rising to exceptionally high levels (C). When the southern outlets opened, the water level began to fall, the shoreline mires were no longer within the reach of the shoreline forces, and the carbon content began to return to the normal level. The opening of a new outlet can lead to a rapid fall in water level and this is usually manifested as a decline in the carbon content (D). More recent falls in water level and the strengthening of erosion within the drainage basin are manifested as declining of the carbon content in the surface part of the sediment (B, C and D). Profile A is from survey point 1 in Lake Kostonjärvi, Profile B is from survey point 1 in Lake Kyyvesi, Profile C is from survey point 3 in Lake Orivesi, and Profile D is from survey point 1 in Lake Keitele.

nuorimmassa osassa laskuun. Suhteellisen korkealla
sijaitsevissa järvissä sedimentin hiilipitoisuus on
huomattavasti keskimääräistä korkeampi. Käyrän
vaihteluihin vaikuttavat Pohjois-Suomen pienten tur-
verantaisten järvi rivarintumisista. Suhteellisen alhaalla
sijaitsevien järven sedimentteissä hiilipitoisuuden
keskimääräinen vaihtelu on vähäisempi.

Keskkeisimmät syyt hiilipitoisusten vertikaaliseen
vaihteluun ovat 1) järven pohjavyöhykkeiden kehit-
tyminen syntyajankohdankulkeen jälkeen, 2) valuma-alueen
vähittäinäinen soistuminen ja 3) ihmisen aikaansaamat
muutokset. Esimerkiksi ilmaston muutosten vaikutus
hukku yleensä allas- ja valuma-aluekohtaisen teki-
jöiden alle. Hiilipitoisuuden vaihtelun kytkeyminen
ilmaston muutoksiin on erityisen houkuttelevaa silloin,
kun sedimenttikerrosten korkeimmat hiilipitoisuudet
ovat jääkauden jälkeisen lämpöoptimin aikaan syn-
tyneissä sedimenteissä. Lämpimissä oloissa järven
oma tuotto on nopeaa, ja se voi lisätä eloperäisen
aineen osuutta kerrostuvassa sedimentissä. Saman-
aikaisesti myös eloperäisen aineen hajoaminen on
nopeaa, millä voi olla päinvastainen vaikutus sedi-
mentin hiilipitoisuuteen. Lohjanjärven sedimenttien
hiilipitoisuuden kohoa on vasta lämpöoptimin
jälkeen on selitetty valuma-alueen soistumisella,
ravinneaineen vähemmällä ja eloperäisen aineen
hajoamisen hoidon toiminnan ilmaston viihtyperässä
(Kukkonen 1970).
Alueellinen vaihtelu

Suurimmilla vesistöalueilla järvesedimentti-kerrosten tilavuudella painotettuna keskimääräinen hiilipitoisuus ovat Vuoksi 5,8 %, Kymijoki 4,8 %, Kokemäenjoki 3,9 %, Oulujoki 4,3 % ja Kemijoki 5,5 %.

Vuoksen vesistöalueella järvesedimenttikerrosten hiilipitoisuus on hieman muita vesistöalueita korkeampia, mikä johtuu muinaisen Suur-Saimaan tulvan kohoamisvaiheen aikana tapahtuneesta rantasoiden eroosiosta. Rantasoistakulun turve on kohoattanut hiilipitoisuuden tavanomaista korkeammaksi ainakin Saimaan (7,6 %), Pihlajaveden (8,1 %), Haukiveden (7,3 %), Driveden (7,7 %) ja Puruveden (7,3 %) sedimenteissä.

Monet Kymijoen vesistöalueen suuret järvet ovat kokeneet voimakkaita vedenpinnan vaihteluita, mutta merkkejä rantasoiden eroision vaikutuksesta ei havaita. Esimerkiksi Pielaveden järvesedimenttien keskimääräinen hiilipitoisuus on 2,8 %, Nilakan 3,1 %, Konneveden 4,8 % ja Päijänteen 2,7 %. Hiilipitoisuus on huomattavasti korkeampi suhteellisesti korkeammalla sijaitsevissa järveissä ja hiilipitoisuus on nopeampaa seurauksena elokesin seinestä sitä suurempaan ympäristöön kulkeutuessa.

Keskimmääräiset pitoisuudet

Tutkittujen järvesedimentti-kerrosten tilavuudella painotettu keskimääräinen hiilipitoisuus on 5,1 %. Kokoluokittaisen laskettuna vastaavat keskimääräiset hiilipitoisuudet ovat

<table>
<thead>
<tr>
<th>Tilavuus</th>
<th>Hiilipitoisuus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>yli 100 km²</td>
<td>5,0</td>
</tr>
<tr>
<td>100–10 km²</td>
<td>6,2</td>
</tr>
<tr>
<td>10–1,0 km²</td>
<td>9,5</td>
</tr>
<tr>
<td>1,0–0,1 km²</td>
<td>12 % ja</td>
</tr>
<tr>
<td>alle 0,1 km²</td>
<td>26 %</td>
</tr>
</tbody>
</table>

Kuva 385. Järvesedimentin keskimääräinen hiilipitoisuus pitkissä näyteissä.

Fig. 385. The average carbon content of the lake sediment extracted by means of the long cores.
Järvedimenttien vaihtelu lisääntyy kokoluokan pienentyessä, mikä vähentää erityisesti pienimmälle kokoluokalle saadun keskiarvon luotettavuutta. Joka tapauksessa keskimääräinen hiilipitoisuus kasvaa selvästi kokoluokan pienentyessä, mikä sopii hyvin yhteen Suomen järvedimentteistä aiemmin tehtyjen havaintojen kanssa (Karjalainen et al. 2000).

Arvio Suomen järvedimenttien keskimääräisestä hiilipitoisuudesta saadaan painottamalla kokoluokit-

Ominaisuuksien välinen riippuvuus

Vähän eloperäistä aineista sisältävien järvedi-
menttien ominaisuuksut muistuttavat mineraalimaiden omnainaisuuksia. Sen sijaan runsasta eloperäistä ainesta sisältävissä sedimentissä ominaisuuksien välinen riippuvuus on erilainen. Ominaisuuksien välisen riippuvuuden kuvaajalla on vähän eloperäistä ainesta sisältävissä sedimentissä erilainen kulmakerroin kuin runsasta eloperäistä aineesta sisältävissä. Vähän eloperäistä aineista sisältävissä sedimentissä vesipitoisuus kohoaa nopeasti ja tiheys pienenee nopeasti hiilipitoisuuden kohotessa (kuvat 386 ja 387). Run-

saasti eloperäistä aineesta sisältävissä sedimenteis-

Kuva 386. Pitkien näytteiden keskimääräiset vesipitoisuudet hiilipitoisuuden suhteen.

Fig. 386. The average water content of the long cores in relation to their carbon content.
ollessa noin 15 %:n tasolla. Jos pitkän järvisedimenttinäytteen keskimääräinen hehkutushäviö on alle 15 % (hiilipitoisuus alle 6 %), kuvaa hehkutushäviö ja hiilipitoisuuden välistä riippuvuutta yhtälö $y=0,435 \times x-0,847$. Jos taas keskimääräinen hehkutushäviö on yli 15 % (hiilipitoisuus yli 6 %), kuvaa ominaisuuksien välistä riippuvuutta yhtälö $y=0,505 \times x-1,8$. Yhtälöt on laskettu tutkimuspistekohdista riippuvuksien keskiarvona.

Pitkiänäytteiden (185 kpl) keskimääräisten ominaisuuksien perusteella laskettuna tulee hiilipitoisuuden ja hehkutushäviön keskimääräiseksi suhteeksi $0,40$. Koska savisissa järvisedimenteissä hehkutushäviö on elooperäisen aineksen osuuteen liian suuri, jää hehkutusaineiden ja hehkutushäviön suhde niihin huomattavasti keskimääräistermä pienemmäksi. Vastaavasti runsaasti elooperäistä ainesta sisältävissä sedimenteissä suhde on suurempi. Saviset järvisedimentit ovat yleensä liejusavea ja runsaasti elooperäistä ainesta sisältävät liejua, mutaa tai turpeensekaista liejua.

![Fig. 387. The average densities of the long cores in relation to their carbon content.](image-url)
Kuiva-aineen varastot

Tutkittujen järven pinta-alalla painotettu keskimääräinen kuiva-ainevarasto on 220 kg/m2. Suurimmilla vesistöalueilla vastaavat keskiarvot ovat Vuoksi 200 kg/m2, Kymijoki 200 kg/m2, Kokemäenjoki 260 kg/m2, Oulujoki 420 kg/m2 ja Kemijoki 310 kg/m2.

Tampereen etelä- ja itäpuolen suurten järven kuiva-ainevarastot vastaavat Kokemäenjoen vesistöalueen keskimääräistä varastoa. Näisjärven varasto on jo selvästi pienempi, mutta vesistöalueen pienimmät varastot löytyvät Isosta Leppäjärvestä ja Valkeasta-Kotisesta. Näisjärven ympäristössä savikkojen osuus on pienempi kuin muiden Tampereen ympäristön suurten järven ympäristössä, mikä selittää Näisjärven pienemmän kuiva-ainevaraston. Vesistöalueen suurin kuiva-ainevarasto (1100 kg/m2) on Sääksjärvessä.

Kokoluokittain lasketut, järven pinta-alalla painotetut keskimääräiset kuiva-ainevarastot ovat
Kokoluokittain lasketut kuiva-ainevarastot kasvavat kokoluokan pienentymisessä lukuun ottamatta pienintä luokkaa. Pienimmässä luokassa allaskohtaiset erot ovat suuria. Matalimpiin alaisiin ei ole kertynyt juuri lainkaan kuiva-ainetta, mutta aikoinaan Suur-Saimaan ja Juurusveden yhteyteen kuuluneessa Postilammissa kuiva-ainetta on perätä 750 kg/m².

Arvio Suomen järvisäpääröten keskimääräiset, kuiva-ainevarastosta saadaan painottamalla kokoluokittain lasketut kuiva-ainevarastot vastaavan kokoluokan järven pinta-alueella. Järvisäpääröten keskimääräiset kuiva-ainevarastot sijaan siten 290 kg/m². Se on suurempi kuin tutkittujen järven keskimääräinen varasto, mikä johtuu siitä, että suuret järvet ovat ylihoidettuina tutkimusaineistossa.

Kun edellä esitetyt, kokoluokittain lasketut keskimääräiset kuiva-ainevarastot kerrotaan kunkin kokoluokan järven pinta-alueella, saadaan Suomen järvisäpääröten keskimääräiset kuiva-ainevarastot kokoluokittain laskettuna

<table>
<thead>
<tr>
<th>Luokka</th>
<th>Vaihtoehto 1</th>
<th>Vaihtoehto 2</th>
<th>Vaihtoehto 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>yli 100 km²</td>
<td>220 kg/m²</td>
<td>3100 milj. tn</td>
<td>2000 milj. tn</td>
</tr>
<tr>
<td>100–10 km²</td>
<td>330 kg/m²</td>
<td>2400 milj. tn</td>
<td>1800 milj. tn</td>
</tr>
<tr>
<td>10–1,0 km²</td>
<td>350 kg/m²</td>
<td>2000 milj. tn</td>
<td></td>
</tr>
<tr>
<td>1,0–0,1 km²</td>
<td>470 kg/m² ja 120 kg/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alle 0,1 km²</td>
<td>120 kg/m²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kuiva-aineen varastoitumisnopeudet

Kuiva-ainevarastojen koko vaihtelee järven välillä, samoin varaston kertymiseen kulunut aika. Tutkittujen järven pinta-aloilta painottettu kuiva-aineen keskimääräinen varastoitumisnopeus on 22 g/m²/v. Suurimmilla vesistöalueilla vastaavat varastoitumisnopeudet ovat Vuoksi 19 g/m²/v, Kymijoki 20 g/m²/v, Kokemäenjoki 29 g/m²/v, Oulujoki 44 g/m²/v ja Kemijoki 34 g/m²/v.

Kokoluokittain lasketut, pinta-aloilta painotetut kuiva-aineen keskimääräiset varastoitumisnepoet ovat

<table>
<thead>
<tr>
<th>Vaihtoehto 1</th>
<th>Vaihtoehto 2</th>
<th>Vaihtoehto 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>yli 100 km²</td>
<td>22 g/m²/v</td>
<td>39 g/m²/v</td>
</tr>
<tr>
<td>100–10 km²</td>
<td>35 g/m²/v</td>
<td></td>
</tr>
<tr>
<td>1,0–0,1 km²</td>
<td>50 g/m²/v ja 12 g/m²/v</td>
<td></td>
</tr>
</tbody>
</table>

Suurimmat kuiva-aineen varastoitumisnepoet ovat kokoluokassa 1,0–0,1 km² ja pienimmät kokoluokassa <0,1 km². Suurimpia ja pienimpia varastoitumisnepoettä ovat vierekkäisiin kokoluokkiin jokseenkin taipumattomuutussa. Pienimpän alueen määrä-alueet ovat yleensä vailla aminojaa ja aiemmin vaikeuttaa mineraalimaineen kulkeutumista lampen. Lämnet ovat usein myöös turverantaisia, mikä edelleen eristää niitä mineraalimaata.

Tietylle kokoluokalle tyyppillistä kuiva-aineen varastoitumisnepoettä on mahdoton saattaa, sillä kokoluokien sisällä varastoitumisnepoettä erot voivat

Hannu Pajunen

<table>
<thead>
<tr>
<th>Vesiistälu (Drainage basin)</th>
<th>Järven nimi (Lake)</th>
<th>Luusuan sijaintikunta (Outlet district)</th>
<th>Pinta-ala (km²) (Area)</th>
<th>Varasto (kg/m²) (Store)</th>
<th>Varastautumisnopeus (g/m²/v) (Accumulation rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Kinnasjärvi</td>
<td>Tuupovaara</td>
<td>1,40</td>
<td>170</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2 Tammalammit</td>
<td>Tohmajärvi</td>
<td>0,06</td>
<td>96</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>3 Piilampi</td>
<td>Ruokolahti</td>
<td>0,12</td>
<td>200</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>4 Saimaa</td>
<td>Imatra</td>
<td>1540</td>
<td>140</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4 Pielinen</td>
<td>Eno</td>
<td>871</td>
<td>360</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>4 Pihlajavesi</td>
<td>Puumala</td>
<td>755</td>
<td>150</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4 Haukivesi</td>
<td>Savonlinna</td>
<td>620</td>
<td>120</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vesistöalue</th>
<th>Järven nimi</th>
<th>Luusuan sijaintikunta</th>
<th>Pinta-ala (km²)</th>
<th>Varasto (kg/m²)</th>
<th>Varastoitumisnopeus (g/m²/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drains area</td>
<td>Lake</td>
<td>Outlet district</td>
<td>Area (km²)</td>
<td>Store (kg/m²)</td>
<td>Accumulation rate (g/m²/v)</td>
</tr>
<tr>
<td>4</td>
<td>Orivesi</td>
<td>Savonranta</td>
<td>536</td>
<td>200</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Kallavesi</td>
<td>Leppävirta</td>
<td>517</td>
<td>150</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Pyhäselkä</td>
<td>Rääkkylä</td>
<td>361</td>
<td>210</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Puruvesi</td>
<td>Punkaharju</td>
<td>330</td>
<td>130</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Höytiäinen</td>
<td>Kontiolahti</td>
<td>293</td>
<td>210</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Suvasvesi</td>
<td>Heinävesi</td>
<td>276</td>
<td>100</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Pyhäjärvi</td>
<td>Kitee</td>
<td>248</td>
<td>280</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Juojärvi</td>
<td>Heinävesi</td>
<td>228</td>
<td>100</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>Koitere</td>
<td>Ilomantsi</td>
<td>167</td>
<td>230</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Juurusvesi</td>
<td>Siilinjärvi</td>
<td>159</td>
<td>460</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Vinijärvi</td>
<td>Liperi</td>
<td>148</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Onkivesi</td>
<td>Maaninka</td>
<td>120</td>
<td>420</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Luonteri</td>
<td>Anttola</td>
<td>108</td>
<td>120</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Unnukka</td>
<td>Varkaus</td>
<td>103</td>
<td>280</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Kangasjärvi</td>
<td>Juva</td>
<td>19.5</td>
<td>430</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Kolkonjärvi</td>
<td>Rantasalmi</td>
<td>18.8</td>
<td>72</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>Keyritty</td>
<td>Rautavaara</td>
<td>18.2</td>
<td>290</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Nerkoonjärvi</td>
<td>Isalmi</td>
<td>15.5</td>
<td>1100</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Ätäskö</td>
<td>Kitee</td>
<td>13.0</td>
<td>480</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Nurmiärvi</td>
<td>Rautjärvi</td>
<td>9.73</td>
<td>180</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Kuonanjärvi</td>
<td>Kerimäki</td>
<td>5.88</td>
<td>670</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Kevätön</td>
<td>Siilinjärvi</td>
<td>4.07</td>
<td>480</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Ihalanjärvi</td>
<td>Ruokolahti</td>
<td>2.83</td>
<td>130</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Räämajärvi</td>
<td>Siilinjärvi</td>
<td>1.29</td>
<td>1900</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Kalliojärvi</td>
<td>Juuka</td>
<td>1.13</td>
<td>200</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Ylä-Siljajärvi</td>
<td>Nilså</td>
<td>1.11</td>
<td>630</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Muntsurinjärvi</td>
<td>Lieksa</td>
<td>1.05</td>
<td>310</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Iso-Lyly</td>
<td>Kaavi</td>
<td>0.98</td>
<td>430</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Pitkäjärvi</td>
<td>Siilinjärvi</td>
<td>0.64</td>
<td>900</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Lyhyenjärvi</td>
<td>Siilinjärvi</td>
<td>0.61</td>
<td>600</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Ristijärvi</td>
<td>Valtimo</td>
<td>0.30</td>
<td>960</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Kojärvi</td>
<td>Kerimäki</td>
<td>0.26</td>
<td>270</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Ruuhilampi</td>
<td>Pieksänmaa</td>
<td>0.15</td>
<td>380</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Haukilampi</td>
<td>Ristiina</td>
<td>0.08</td>
<td>120</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Tuomaslampi</td>
<td>Savitaipale</td>
<td>0.04</td>
<td>200</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Musti</td>
<td>Tuusniemi</td>
<td>0.04</td>
<td>250</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Postilampi</td>
<td>Nilså</td>
<td>0.03</td>
<td>750</td>
<td>79</td>
</tr>
</tbody>
</table>
Vesistöalue

<table>
<thead>
<tr>
<th>Järven nimi</th>
<th>Luusuan sijaintikunta</th>
<th>Pinta-ala (km²)</th>
<th>Varasto (kg/m²)</th>
<th>Varastoitumisnopeus (g/m²/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Päijänne</td>
<td>Asikkala</td>
<td>1110</td>
<td>81</td>
<td>8,6</td>
</tr>
<tr>
<td>14 Keitele</td>
<td>Äänekoski</td>
<td>502</td>
<td>210</td>
<td>22</td>
</tr>
<tr>
<td>14 Puula</td>
<td>Hirvensalmi</td>
<td>325</td>
<td>190</td>
<td>18</td>
</tr>
<tr>
<td>14 Konnevesi</td>
<td>Konnevesi</td>
<td>187</td>
<td>94</td>
<td>9,9</td>
</tr>
<tr>
<td>14 Nilakka</td>
<td>Tervo</td>
<td>163</td>
<td>230</td>
<td>25</td>
</tr>
<tr>
<td>14 Kivijärvi</td>
<td>Kannonkoski</td>
<td>155</td>
<td>320</td>
<td>33</td>
</tr>
<tr>
<td>14 Suontee</td>
<td>Joutsa</td>
<td>149</td>
<td>230</td>
<td>22</td>
</tr>
<tr>
<td>14 Kyynesi</td>
<td>Kangasniemi</td>
<td>133</td>
<td>320</td>
<td>31</td>
</tr>
<tr>
<td>14 Vesijärvi</td>
<td>Asikkala</td>
<td>111</td>
<td>900</td>
<td>88</td>
</tr>
<tr>
<td>14 Pielavesi</td>
<td>Pielavesi</td>
<td>111</td>
<td>370</td>
<td>39</td>
</tr>
<tr>
<td>14 Kolima</td>
<td>Viitasaari</td>
<td>101</td>
<td>220</td>
<td>24</td>
</tr>
<tr>
<td>14 Vuohijärvi</td>
<td>Jaala</td>
<td>87,8</td>
<td>50</td>
<td>4,8</td>
</tr>
<tr>
<td>14 Suontienselkä</td>
<td>Suonenjoki</td>
<td>41,0</td>
<td>230</td>
<td>24</td>
</tr>
<tr>
<td>14 Muuratjärvi</td>
<td>Muurame</td>
<td>31,7</td>
<td>160</td>
<td>17</td>
</tr>
<tr>
<td>14 Pieksamäenjärvi</td>
<td>Pieksamäenmaa</td>
<td>21,0</td>
<td>260</td>
<td>24</td>
</tr>
<tr>
<td>14 Karjärvi</td>
<td>Jaala</td>
<td>20,4</td>
<td>320</td>
<td>32</td>
</tr>
<tr>
<td>14 Kotajärvi</td>
<td>Lemi</td>
<td>3,41</td>
<td>270</td>
<td>24</td>
</tr>
<tr>
<td>14 Johdasjärvi</td>
<td>Jaala</td>
<td>1,89</td>
<td>310</td>
<td>30</td>
</tr>
<tr>
<td>14 Haukijärvi</td>
<td>Maaninka</td>
<td>1,52</td>
<td>420</td>
<td>41</td>
</tr>
<tr>
<td>14 Saanjärvi</td>
<td>Saanjärvi</td>
<td>1,25</td>
<td>330</td>
<td>31</td>
</tr>
<tr>
<td>14 Pyhäluoma</td>
<td>Pieksamäenmaa</td>
<td>1,24</td>
<td>560</td>
<td>56</td>
</tr>
<tr>
<td>14 Tervajärvi</td>
<td>Luumäki</td>
<td>1,15</td>
<td>350</td>
<td>30</td>
</tr>
<tr>
<td>14 Vehmasjärvi</td>
<td>Suonenjoki</td>
<td>0,47</td>
<td>130</td>
<td>11</td>
</tr>
<tr>
<td>14 Vehmasjärvi</td>
<td>Kuopio</td>
<td>0,41</td>
<td>290</td>
<td>26</td>
</tr>
<tr>
<td>14 Ylimmäinen Sammallampi</td>
<td>Jaala</td>
<td>0,33</td>
<td>660</td>
<td>62</td>
</tr>
<tr>
<td>14 Pieni-Montonen</td>
<td>Mikkeli</td>
<td>0,27</td>
<td>380</td>
<td>36</td>
</tr>
<tr>
<td>14 Mäkijärvi</td>
<td>Kuopio</td>
<td>0,21</td>
<td>390</td>
<td>34</td>
</tr>
<tr>
<td>14 Hanhijärvi</td>
<td>Jämsänkoski</td>
<td>0,17</td>
<td>830</td>
<td>85</td>
</tr>
<tr>
<td>14 Keskijärvi</td>
<td>Luhanka</td>
<td>0,12</td>
<td>830</td>
<td>83</td>
</tr>
<tr>
<td>14 Valkeinen</td>
<td>Suonenjoki</td>
<td>0,10</td>
<td>280</td>
<td>28</td>
</tr>
<tr>
<td>16 Pyhätjärvi</td>
<td>Lapinjärvi</td>
<td>12,9</td>
<td>1500</td>
<td>170</td>
</tr>
<tr>
<td>22 Kypärjärvi</td>
<td>Vihti</td>
<td>0,54</td>
<td>700</td>
<td>76</td>
</tr>
<tr>
<td>23 Vahermanjärvi</td>
<td>Nummi-Pusula</td>
<td>2,04</td>
<td>120</td>
<td>11</td>
</tr>
<tr>
<td>34 Pyhäjärvi</td>
<td>Eura</td>
<td>154</td>
<td>360</td>
<td>58</td>
</tr>
<tr>
<td>35 Näsijärvi</td>
<td>Tampere</td>
<td>265</td>
<td>110</td>
<td>11</td>
</tr>
<tr>
<td>35 Längelmävesi</td>
<td>Kangasala</td>
<td>180</td>
<td>230</td>
<td>24</td>
</tr>
<tr>
<td>35 Vanajavesi</td>
<td>Lempäälä</td>
<td>179</td>
<td>400</td>
<td>43</td>
</tr>
<tr>
<td>Drainage basin</td>
<td>Lake</td>
<td>Outlet district</td>
<td>Area (km²)</td>
<td>Store (kg/m²)</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>35</td>
<td>Pyhäjärvi</td>
<td>Nokia</td>
<td>124</td>
<td>210</td>
</tr>
<tr>
<td>35</td>
<td>Keurusselkä</td>
<td>Mänttä</td>
<td>119</td>
<td>290</td>
</tr>
<tr>
<td>35</td>
<td>Mallasvesi Roine</td>
<td>Valkeakoski</td>
<td>107</td>
<td>240</td>
</tr>
<tr>
<td>35</td>
<td>Kukkia</td>
<td>Luopioinen</td>
<td>44,3</td>
<td>100</td>
</tr>
<tr>
<td>35</td>
<td>Sääksjärvi</td>
<td>Kokemäki</td>
<td>37,8</td>
<td>1100</td>
</tr>
<tr>
<td>35</td>
<td>Kuohijärvi</td>
<td>Luopioinen</td>
<td>35,0</td>
<td>200</td>
</tr>
<tr>
<td>35</td>
<td>Pihlajavesi</td>
<td>Keuru</td>
<td>19,9</td>
<td>290</td>
</tr>
<tr>
<td>35</td>
<td>Uuranjärvi</td>
<td>Multia</td>
<td>4,01</td>
<td>350</td>
</tr>
<tr>
<td>35</td>
<td>Sääjärvi</td>
<td>Janakkala</td>
<td>1,96</td>
<td>600</td>
</tr>
<tr>
<td>35</td>
<td>Havanganjärvi</td>
<td>Virrat</td>
<td>1,73</td>
<td>530</td>
</tr>
<tr>
<td>35</td>
<td>Sulkuejärvi</td>
<td>Kihniö</td>
<td>1,03</td>
<td>220</td>
</tr>
<tr>
<td>35</td>
<td>Ekojärvi</td>
<td>Lammi</td>
<td>0,77</td>
<td>500</td>
</tr>
<tr>
<td>35</td>
<td>Puntasjärvi</td>
<td>Kuru</td>
<td>0,57</td>
<td>230</td>
</tr>
<tr>
<td>35</td>
<td>Ailnen Rautjärvi</td>
<td>Lammi</td>
<td>0,51</td>
<td>300</td>
</tr>
<tr>
<td>35</td>
<td>Iso Leppäjärvi</td>
<td>Kuru</td>
<td>0,07</td>
<td>85</td>
</tr>
<tr>
<td>35</td>
<td>Valkea-Kotinen</td>
<td>Lammi</td>
<td>0,04</td>
<td>90</td>
</tr>
<tr>
<td>36</td>
<td>Vihteljärvi</td>
<td>Kankaanpää</td>
<td>0,32</td>
<td>1400</td>
</tr>
<tr>
<td>42</td>
<td>Paukajärvi</td>
<td>Virrat</td>
<td>0,32</td>
<td>87</td>
</tr>
<tr>
<td>44</td>
<td>Kätkänjärvi</td>
<td>Lehtimäki</td>
<td>2,60</td>
<td>210</td>
</tr>
<tr>
<td>44</td>
<td>Alainen Mustalampi</td>
<td>Töysä</td>
<td>0,04</td>
<td>340</td>
</tr>
<tr>
<td>46</td>
<td>Kalijärvi</td>
<td>Pedersören kunta</td>
<td>0,25</td>
<td>250</td>
</tr>
<tr>
<td>47</td>
<td>Lappajärvi</td>
<td>Lappajärvi</td>
<td>142</td>
<td>330</td>
</tr>
<tr>
<td>48</td>
<td>Tvärasjön</td>
<td>Lestijärvi</td>
<td>1,32</td>
<td>420</td>
</tr>
<tr>
<td>51</td>
<td>Lestjärvi</td>
<td>Lestijärvi</td>
<td>65,1</td>
<td>380</td>
</tr>
<tr>
<td>54</td>
<td>Pyhäjärvi</td>
<td>Pyhäjärvi</td>
<td>126</td>
<td>330</td>
</tr>
<tr>
<td>54</td>
<td>Haralampi</td>
<td>Haapavesi</td>
<td>0,05</td>
<td>21</td>
</tr>
<tr>
<td>55</td>
<td>Pieni Hetelampi</td>
<td>Pyhäjoki</td>
<td>0,06</td>
<td>86</td>
</tr>
<tr>
<td>59</td>
<td>Oulujärvi</td>
<td>Vaala</td>
<td>893</td>
<td>480</td>
</tr>
<tr>
<td>59</td>
<td>Kiantajärvi</td>
<td>Suomussalmi</td>
<td>153</td>
<td>220</td>
</tr>
<tr>
<td>59</td>
<td>Ontojärvi</td>
<td>Kuhmo</td>
<td>104</td>
<td>170</td>
</tr>
<tr>
<td>59</td>
<td>Hosanjärvi</td>
<td>Suomussalmi</td>
<td>3,94</td>
<td>140</td>
</tr>
<tr>
<td>59</td>
<td>Ahmasjärvi</td>
<td>Utajärvi</td>
<td>3,75</td>
<td>410</td>
</tr>
<tr>
<td>59</td>
<td>Kylmäjärvi</td>
<td>Suomussalmi</td>
<td>1,03</td>
<td>290</td>
</tr>
<tr>
<td>59</td>
<td>Pieni-Pyhäntä</td>
<td>Ristijärvi</td>
<td>0,90</td>
<td>580</td>
</tr>
<tr>
<td>59</td>
<td>Perilampi</td>
<td>Ristijärvi</td>
<td>0,10</td>
<td>1200</td>
</tr>
<tr>
<td>59</td>
<td>Teerilampi</td>
<td>Kuhmo</td>
<td>0,03</td>
<td>57</td>
</tr>
<tr>
<td>60</td>
<td>Loukkojärvi</td>
<td>Kiiminki</td>
<td>1,15</td>
<td>140</td>
</tr>
</tbody>
</table>
Table 3 continues.

<table>
<thead>
<tr>
<th>Vesistöalue</th>
<th>Järven nimi</th>
<th>Luusuan sijaintikunta</th>
<th>Pinta-ala (km²)</th>
<th>Varasto (kg/m²)</th>
<th>Varastoitumisnopeus (g/m²/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Kostonjärvi</td>
<td>Taivalkoski</td>
<td>42,9</td>
<td>160</td>
<td>15</td>
</tr>
<tr>
<td>61</td>
<td>Pintamojärvi</td>
<td>Pudasjärvi</td>
<td>3,41</td>
<td>330</td>
<td>33</td>
</tr>
<tr>
<td>61</td>
<td>Pikku Ahvenjärvi</td>
<td>Pudasjärvi</td>
<td>0,19</td>
<td>390</td>
<td>43</td>
</tr>
<tr>
<td>61</td>
<td>Tutulampi</td>
<td>Taivalkoski</td>
<td>0,15</td>
<td>220</td>
<td>22</td>
</tr>
<tr>
<td>64</td>
<td>Vittikolampi</td>
<td>Rovaniemenn mäki</td>
<td>0,07</td>
<td>140</td>
<td>14</td>
</tr>
<tr>
<td>65</td>
<td>Kemijärvi</td>
<td>Kemijärvi</td>
<td>222</td>
<td>310</td>
<td>32</td>
</tr>
<tr>
<td>65</td>
<td>Javarusjärvi</td>
<td>Kemijärvi</td>
<td>5,16</td>
<td>290</td>
<td>29</td>
</tr>
<tr>
<td>65</td>
<td>Saarijärvi</td>
<td>Posio</td>
<td>1,73</td>
<td>210</td>
<td>20</td>
</tr>
<tr>
<td>65</td>
<td>Vuontisjärvi</td>
<td>Enontekiö</td>
<td>1,43</td>
<td>260</td>
<td>26</td>
</tr>
<tr>
<td>65</td>
<td>Rytijärvi</td>
<td>Rovaniemenn mäki</td>
<td>0,28</td>
<td>170</td>
<td>18</td>
</tr>
<tr>
<td>65</td>
<td>Viitatunturinlampi</td>
<td>Kemijärvi</td>
<td>0,15</td>
<td>180</td>
<td>18</td>
</tr>
<tr>
<td>65</td>
<td>Lehtojärvi</td>
<td>Posio</td>
<td>0,12</td>
<td>170</td>
<td>17</td>
</tr>
<tr>
<td>65</td>
<td>Lamppa 130602</td>
<td>Enontekiö</td>
<td>0,12</td>
<td>180</td>
<td>17</td>
</tr>
<tr>
<td>65</td>
<td>Rimpilärvi</td>
<td>Kittilä</td>
<td>0,09</td>
<td>38</td>
<td>4,4</td>
</tr>
<tr>
<td>67</td>
<td>Lamppa 130201</td>
<td>Enontekiö</td>
<td>0,04</td>
<td>3,0</td>
<td>0,29</td>
</tr>
<tr>
<td>68</td>
<td>Pulmankijärvi</td>
<td>Utsjoki</td>
<td>10,8</td>
<td>510</td>
<td>100</td>
</tr>
<tr>
<td>71</td>
<td>Inarijärvi</td>
<td>Inari</td>
<td>1090</td>
<td>120</td>
<td>11</td>
</tr>
<tr>
<td>71</td>
<td>Joukkaisjärvi</td>
<td>Inari</td>
<td>0,35</td>
<td>160</td>
<td>14</td>
</tr>
<tr>
<td>71</td>
<td>Leppälompola</td>
<td>Inari</td>
<td>0,08</td>
<td>80</td>
<td>7,2</td>
</tr>
<tr>
<td>71</td>
<td>Lamppa 140151</td>
<td>Inari</td>
<td>0,04</td>
<td>17</td>
<td>3,1</td>
</tr>
<tr>
<td>73</td>
<td>Yli-Kittá</td>
<td>Kuusamo</td>
<td>240</td>
<td>140</td>
<td>13</td>
</tr>
<tr>
<td>73</td>
<td>Talvijärvi</td>
<td>Kuusamo</td>
<td>0,17</td>
<td>200</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 4. Changes in the accumulation rate of dry matter in lakes containing drainage layers.

<table>
<thead>
<tr>
<th>Tapahtuma Event</th>
<th>Tutkimuspaikka Survey site</th>
<th>Pitkäaikainen (g/m²/yr)</th>
<th>Purkauksen jälkeen (g/m²/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valvatuksen purkaus vuonna 1861</td>
<td>Drainage of Lake Valvatus in 1861</td>
<td>Haukivesi, Joroisselkä</td>
<td>150</td>
</tr>
<tr>
<td>Höytiäisen purkaus vuonna 1859</td>
<td>Drainage of Lake Höytiäinen in 1859</td>
<td>Pyhäselkä</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orivesi, Savonselelkkä</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orivesi, Paassilelkkä</td>
<td>45</td>
</tr>
<tr>
<td>Hiišijärven purkaus vuonna 1761</td>
<td>Drainage of Lake Hiišijärvi in 1761</td>
<td>Perilampi</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pieni-Pyhäntä</td>
<td>140</td>
</tr>
</tbody>
</table>
Fig. 389. The long-term accumulation rates of dry matter determined using the paleomagnetic method (A–I) and the radiocarbon method (J–Q). The profiles are from the following lakes: A Pielinen, B Vesijärvi, C Pielavesi, D Kolima, E Maaratjärvi, F Keuruun Piilajavesi, G Oulujärvi, H Ontojärvi, I Yli-Kotka, J Räimäjärvi, K Puula, L Kuopion Vehmasjärvi, M Valkea-Kotinen, N Vittikkolampi, O Javaruusjärvi, P Vuontisjärvi and Q Lehtojärvi.
Hiilen varastot

Järveden tutkimuksen mukaan Suomen järveden keskimääräistä hiilivarastoa voidaan olettaa keskimäärin 10 kg/m². Suurin hiilivarasto tulee eteläisiin Suomen vesistöalueisiin, eteläinen suuren pinta-alan tyypillinen järvien keskimääräinen hiilivarasto on 10 kg/m². Hiilivarastojen väliaikainen vaihtelua on hyvin omin tehtäville Suomen vesistöalueille.

Keskimääräinen hiilivarasto kasvaa yleensä järven koon pienentymisessä, joten eteläisen Suomen vesistöalueilla suurimmilla ja keskimäärin suurilla järvissä hiilivarastot kasvavat. Olkun vesistöalueilla suurin hiilivarasto on 40 kg/m², koko Suomessa keskimäärin 9,6 kg/m².

Järveden keskimääräinen hiilivarasto kasvaa yleensä järven koon pienentymisessä, joten eteläisen Suomen vesistöalueilla suurimmilla ja keskimäärin suurilla järvissä hiilivarastot kasvavat.
Ero johtuu suurten järven painottumisesta liikaa tutkimusaineistossa.

Kun edellä esitetyt, kokoluokkaiden lasketut keskimääräiset hiilivarastot kerrotaan kunkin kokoluokan järven pinta-alalla, saadaan Suomen järvesimenttien hiilivarastoksi kokoluokkaita

<table>
<thead>
<tr>
<th>Vesistöalue Drainage basin</th>
<th>Järven nimi Lake</th>
<th>Luusuan sijainti-kunta Outlet district</th>
<th>Pinta-ala (km²) Area (km²)</th>
<th>Varasto (kg/m²) Store (kg/m²)</th>
<th>Varastoitumisnopeus (g/m²/v) Accumulation rate (g/m²/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kinnasjärvi</td>
<td>Tuupovaara</td>
<td>1,40</td>
<td>27</td>
<td>2,2</td>
</tr>
<tr>
<td>1</td>
<td>Tammalammit</td>
<td>Tohmajärvi</td>
<td>0,06</td>
<td>29</td>
<td>2,5</td>
</tr>
<tr>
<td>3</td>
<td>Piilampi</td>
<td>Ruokolahti</td>
<td>0,12</td>
<td>40</td>
<td>3,5</td>
</tr>
<tr>
<td>4</td>
<td>Saimaa</td>
<td>Imatra</td>
<td>1540</td>
<td>11</td>
<td>1,0</td>
</tr>
<tr>
<td>4</td>
<td>Pieinen</td>
<td>Eno</td>
<td>871</td>
<td>6,8</td>
<td>0,62</td>
</tr>
<tr>
<td>4</td>
<td>Pihlajavesi</td>
<td>Puumala</td>
<td>755</td>
<td>12</td>
<td>1,2</td>
</tr>
<tr>
<td>4</td>
<td>Haukivesi</td>
<td>Savonlinna</td>
<td>620</td>
<td>8,5</td>
<td>0,85</td>
</tr>
<tr>
<td>4</td>
<td>Orivesi</td>
<td>Savonranta</td>
<td>536</td>
<td>16</td>
<td>1,5</td>
</tr>
<tr>
<td>4</td>
<td>Kallavesi</td>
<td>Leppävirta</td>
<td>517</td>
<td>4,6</td>
<td>0,49</td>
</tr>
<tr>
<td>4</td>
<td>Pyhäselkä</td>
<td>Rääkkylä</td>
<td>361</td>
<td>10</td>
<td>0,95</td>
</tr>
<tr>
<td>4</td>
<td>Puruvesi</td>
<td>Punkaharju</td>
<td>330</td>
<td>9,8</td>
<td>0,89</td>
</tr>
<tr>
<td>4</td>
<td>Höytiäinen</td>
<td>Kontiolahhti</td>
<td>293</td>
<td>7,7</td>
<td>0,70</td>
</tr>
<tr>
<td>4</td>
<td>Suvavesi</td>
<td>Heinävesi</td>
<td>276</td>
<td>4,4</td>
<td>0,46</td>
</tr>
<tr>
<td>4</td>
<td>Pyhäjärvi</td>
<td>Kitee</td>
<td>248</td>
<td>22</td>
<td>2,0</td>
</tr>
<tr>
<td>4</td>
<td>Juojärvi</td>
<td>Heinävesi</td>
<td>228</td>
<td>6,1</td>
<td>0,60</td>
</tr>
<tr>
<td>4</td>
<td>Koitere</td>
<td>Ilomantsi</td>
<td>167</td>
<td>17</td>
<td>1,5</td>
</tr>
<tr>
<td>4</td>
<td>Juurusvesi</td>
<td>Siilinjärvi</td>
<td>159</td>
<td>13</td>
<td>1,3</td>
</tr>
<tr>
<td>4</td>
<td>Viinijärvi</td>
<td>Liperi</td>
<td>148</td>
<td>3,0</td>
<td>0,28</td>
</tr>
<tr>
<td>4</td>
<td>Onkivesi</td>
<td>Maaninka</td>
<td>120</td>
<td>8,1</td>
<td>0,85</td>
</tr>
<tr>
<td>4</td>
<td>Luonteri</td>
<td>Mikkeli</td>
<td>108</td>
<td>8,3</td>
<td>0,77</td>
</tr>
<tr>
<td>4</td>
<td>Unnukka</td>
<td>Varkaus</td>
<td>103</td>
<td>9,4</td>
<td>0,97</td>
</tr>
</tbody>
</table>

Järvesimenttien hiilivarastosta on niukasti inven-tointeihin perustuvia tietoja. Hiilitas Sexual kysymyksissä käytetty luvut perustuvat arvioihin. Kanadassa Albertan osavaltion järvesimenttien keskimääräiseksi hiilivarastoksi on arvioitu 147 kg/m² (Campbell et al. 2000), mikä on lähes kahdeksankertainen Suomen järvesimenttien hiilivarastoon nähden. Ero johtuu lähinnä Albertan järvesimenttikerrosten suuremmaksi arvioidusta paksuudesta (5,9 m) ja korkeamaksi arvioidusta hiilipitoisuudesta (18 %).
<table>
<thead>
<tr>
<th>Vesistöalue</th>
<th>Järven nimi</th>
<th>Luusuan sijaintikunta</th>
<th>Pinta-ala (km²)</th>
<th>Varasto (kg/m²)</th>
<th>Varastoitumisnopeus (g/m²/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Kangasjärvi</td>
<td>Juva</td>
<td>19,5</td>
<td>51</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>Kolkonjärvi</td>
<td>Rantasalmi</td>
<td>18,8</td>
<td>7,1</td>
<td>0,68</td>
</tr>
<tr>
<td>4</td>
<td>Keyrrity</td>
<td>Rautavaara</td>
<td>18,2</td>
<td>26</td>
<td>2,6</td>
</tr>
<tr>
<td>4</td>
<td>Nerkoonjärvi</td>
<td>liisalmi</td>
<td>15,5</td>
<td>27</td>
<td>2,8</td>
</tr>
<tr>
<td>4</td>
<td>Ätäskö</td>
<td>Kitee</td>
<td>13,0</td>
<td>34</td>
<td>3,0</td>
</tr>
<tr>
<td>4</td>
<td>Nurmijärvi</td>
<td>Rautjärvi</td>
<td>9,73</td>
<td>14</td>
<td>1,2</td>
</tr>
<tr>
<td>4</td>
<td>Kuonanjärvi</td>
<td>Kerimäki</td>
<td>5,88</td>
<td>65</td>
<td>6,2</td>
</tr>
<tr>
<td>4</td>
<td>Kevätön</td>
<td>Siilinjärvi</td>
<td>4,07</td>
<td>19</td>
<td>2,0</td>
</tr>
<tr>
<td>4</td>
<td>Ihalanjärvi</td>
<td>Ruokolahti</td>
<td>2,83</td>
<td>20</td>
<td>1,7</td>
</tr>
<tr>
<td>4</td>
<td>Räimäjärvi</td>
<td>Siilinjärvi</td>
<td>1,29</td>
<td>69</td>
<td>7,3</td>
</tr>
<tr>
<td>4</td>
<td>Kalliojärvi</td>
<td>Juuka</td>
<td>1,13</td>
<td>42</td>
<td>3,8</td>
</tr>
<tr>
<td>4</td>
<td>Ylä-Silikajärvi</td>
<td>Nilsiä</td>
<td>1,11</td>
<td>57</td>
<td>5,9</td>
</tr>
<tr>
<td>4</td>
<td>Munkturijärvi</td>
<td>Lieksa</td>
<td>1,05</td>
<td>20</td>
<td>1,8</td>
</tr>
<tr>
<td>4</td>
<td>Iso-Lyly</td>
<td>Kaavi</td>
<td>0,98</td>
<td>51</td>
<td>4,9</td>
</tr>
<tr>
<td>4</td>
<td>Pitkäjärvi</td>
<td>Siilinjärvi</td>
<td>0,64</td>
<td>30</td>
<td>3,1</td>
</tr>
<tr>
<td>4</td>
<td>Lyhyenjärvi</td>
<td>Siilinjärvi</td>
<td>0,61</td>
<td>36</td>
<td>3,8</td>
</tr>
<tr>
<td>4</td>
<td>Ristjärvi</td>
<td>Valtimo</td>
<td>0,30</td>
<td>39</td>
<td>3,6</td>
</tr>
<tr>
<td>4</td>
<td>Koijärvi</td>
<td>Kerimäki</td>
<td>0,26</td>
<td>57</td>
<td>5,1</td>
</tr>
<tr>
<td>4</td>
<td>Ruuhilampi</td>
<td>Pieksänmaa</td>
<td>0,15</td>
<td>91</td>
<td>8,5</td>
</tr>
<tr>
<td>4</td>
<td>Haukilampi</td>
<td>Ristiina</td>
<td>0,08</td>
<td>21</td>
<td>2,0</td>
</tr>
<tr>
<td>4</td>
<td>Tuomaslampi</td>
<td>Savitaipale</td>
<td>0,04</td>
<td>26</td>
<td>2,2</td>
</tr>
<tr>
<td>4</td>
<td>Musti</td>
<td>Tuusniemi</td>
<td>0,04</td>
<td>41</td>
<td>4,0</td>
</tr>
<tr>
<td>4</td>
<td>Postilampi</td>
<td>Nilsiä</td>
<td>0,03</td>
<td>48</td>
<td>5,0</td>
</tr>
<tr>
<td>14</td>
<td>Päijänne</td>
<td>Asikkala</td>
<td>1110</td>
<td>2,2</td>
<td>0,23</td>
</tr>
<tr>
<td>14</td>
<td>Keitele</td>
<td>Äänekoski</td>
<td>502</td>
<td>5,8</td>
<td>0,61</td>
</tr>
<tr>
<td>14</td>
<td>Puula</td>
<td>Hirvensalmi</td>
<td>325</td>
<td>15</td>
<td>1,4</td>
</tr>
<tr>
<td>14</td>
<td>Konnevesi</td>
<td>Konnevesi</td>
<td>187</td>
<td>4,5</td>
<td>0,48</td>
</tr>
<tr>
<td>14</td>
<td>Nilakka</td>
<td>Tervo</td>
<td>163</td>
<td>7,3</td>
<td>0,77</td>
</tr>
<tr>
<td>14</td>
<td>Kivistö</td>
<td>Kannonkoski</td>
<td>155</td>
<td>14</td>
<td>1,4</td>
</tr>
<tr>
<td>14</td>
<td>Suontee</td>
<td>Joutsa</td>
<td>149</td>
<td>14</td>
<td>1,4</td>
</tr>
<tr>
<td>14</td>
<td>Kyyvesi</td>
<td>Kangasniemi</td>
<td>133</td>
<td>27</td>
<td>2,5</td>
</tr>
<tr>
<td>14</td>
<td>Vesijärvi</td>
<td>Asikkala</td>
<td>111</td>
<td>22</td>
<td>2,2</td>
</tr>
<tr>
<td>14</td>
<td>Pielavesi</td>
<td>Pielavesi</td>
<td>111</td>
<td>10</td>
<td>1,1</td>
</tr>
<tr>
<td>14</td>
<td>Kolima</td>
<td>Viltasaari</td>
<td>101</td>
<td>7,4</td>
<td>0,78</td>
</tr>
<tr>
<td>14</td>
<td>Vuohijärvi</td>
<td>Jaala</td>
<td>87,8</td>
<td>2,1</td>
<td>0,20</td>
</tr>
<tr>
<td>14</td>
<td>Suontienselkä</td>
<td>Suonenjoki</td>
<td>41,0</td>
<td>16</td>
<td>1,7</td>
</tr>
<tr>
<td>Vesistöalue</td>
<td>Järven nimi</td>
<td>Järven sijaintikunta</td>
<td>Luusuan ala (km²)</td>
<td>Varasto (kg/m²)</td>
<td>Varastoitumisnopeus (g/m²/v)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>14</td>
<td>Muuratjärvi</td>
<td>Muurame</td>
<td>31,7</td>
<td>6,7</td>
<td>0,70</td>
</tr>
<tr>
<td>14</td>
<td>Pieksänjärvi</td>
<td>Pieksänmaa</td>
<td>21,0</td>
<td>34</td>
<td>3,1</td>
</tr>
<tr>
<td>14</td>
<td>Karijärvi</td>
<td>Jaala</td>
<td>20,4</td>
<td>11</td>
<td>1,0</td>
</tr>
<tr>
<td>14</td>
<td>Kotajärvi</td>
<td>Lemi</td>
<td>3,41</td>
<td>18</td>
<td>1,6</td>
</tr>
<tr>
<td>14</td>
<td>Johdasjärvi</td>
<td>Jaala</td>
<td>1,89</td>
<td>20</td>
<td>1,9</td>
</tr>
<tr>
<td>14</td>
<td>Haukijärvi</td>
<td>Maaninka</td>
<td>1,52</td>
<td>37</td>
<td>3,7</td>
</tr>
<tr>
<td>14</td>
<td>Saarijärvi</td>
<td>Saarijärvi</td>
<td>1,25</td>
<td>32</td>
<td>2,9</td>
</tr>
<tr>
<td>14</td>
<td>Pyhäluoma</td>
<td>Pieksänmaa</td>
<td>1,24</td>
<td>35</td>
<td>3,5</td>
</tr>
<tr>
<td>14</td>
<td>Tervajärvi</td>
<td>Luumäki</td>
<td>1,15</td>
<td>30</td>
<td>2,6</td>
</tr>
<tr>
<td>14</td>
<td>Vehmasjärvi</td>
<td>Suonenjoki</td>
<td>0,47</td>
<td>29</td>
<td>2,6</td>
</tr>
<tr>
<td>14</td>
<td>Vehmasjärvi</td>
<td>Kuopio</td>
<td>0,41</td>
<td>49</td>
<td>4,5</td>
</tr>
<tr>
<td>14</td>
<td>Ylimmäinen Sammallampi</td>
<td>Jaala</td>
<td>0,33</td>
<td>33</td>
<td>3,1</td>
</tr>
<tr>
<td>14</td>
<td>Pieni-Montonen</td>
<td>Mikkeli</td>
<td>0,27</td>
<td>50</td>
<td>4,7</td>
</tr>
<tr>
<td>14</td>
<td>Mäkkijärvi</td>
<td>Kuopio</td>
<td>0,21</td>
<td>62</td>
<td>5,5</td>
</tr>
<tr>
<td>14</td>
<td>Hanhijärvi</td>
<td>Jämsänkoski</td>
<td>0,17</td>
<td>63</td>
<td>6,5</td>
</tr>
<tr>
<td>14</td>
<td>Keskijärvi</td>
<td>Luhanka</td>
<td>0,12</td>
<td>46</td>
<td>4,7</td>
</tr>
<tr>
<td>14</td>
<td>Valkeinen</td>
<td>Suonenjoki</td>
<td>0,10</td>
<td>19</td>
<td>2,0</td>
</tr>
<tr>
<td>16</td>
<td>Pyhäjärvi</td>
<td>Lapinjärvi</td>
<td>12,9</td>
<td>48</td>
<td>5,3</td>
</tr>
<tr>
<td>22</td>
<td>Kypärjärvi</td>
<td>Vihti</td>
<td>0,54</td>
<td>38</td>
<td>4,1</td>
</tr>
<tr>
<td>23</td>
<td>Vahermanjärvi</td>
<td>Nummi-Pusula</td>
<td>2,04</td>
<td>13</td>
<td>1,2</td>
</tr>
<tr>
<td>34</td>
<td>Pyhäjärvi</td>
<td>Eura</td>
<td>154</td>
<td>13</td>
<td>2,0</td>
</tr>
<tr>
<td>35</td>
<td>Näsijärvi</td>
<td>Tampere</td>
<td>265</td>
<td>4,2</td>
<td>0,44</td>
</tr>
<tr>
<td>35</td>
<td>Längelmävesi</td>
<td>Kangasala</td>
<td>180</td>
<td>4,2</td>
<td>0,43</td>
</tr>
<tr>
<td>35</td>
<td>Vanajavesi</td>
<td>Lempäälä</td>
<td>179</td>
<td>10</td>
<td>1,1</td>
</tr>
<tr>
<td>35</td>
<td>Pyhäjärvi</td>
<td>Nokia</td>
<td>124</td>
<td>3,9</td>
<td>0,44</td>
</tr>
<tr>
<td>35</td>
<td>Keurusselkä</td>
<td>Mänttä</td>
<td>119</td>
<td>16</td>
<td>1,7</td>
</tr>
<tr>
<td>35</td>
<td>Mallasvesi Roine</td>
<td>Valkeakoski</td>
<td>107</td>
<td>5,1</td>
<td>0,53</td>
</tr>
<tr>
<td>35</td>
<td>Kukka</td>
<td>Luopioinen</td>
<td>44,3</td>
<td>3,3</td>
<td>0,34</td>
</tr>
<tr>
<td>35</td>
<td>Sääksjärvi</td>
<td>Kokemäki</td>
<td>37,8</td>
<td>36</td>
<td>5,6</td>
</tr>
<tr>
<td>35</td>
<td>Kuohijärvi</td>
<td>Luopioinen</td>
<td>35,0</td>
<td>9,5</td>
<td>0,98</td>
</tr>
<tr>
<td>35</td>
<td>Pihlajavesi</td>
<td>Keuru</td>
<td>19,9</td>
<td>22</td>
<td>2,1</td>
</tr>
<tr>
<td>35</td>
<td>Uuranjärvi</td>
<td>Multia</td>
<td>4,01</td>
<td>42</td>
<td>3,9</td>
</tr>
<tr>
<td>35</td>
<td>Sääjärvi</td>
<td>Janakkala</td>
<td>1,96</td>
<td>53</td>
<td>4,6</td>
</tr>
<tr>
<td>35</td>
<td>Havanganjärvi</td>
<td>Virkat</td>
<td>1,73</td>
<td>79</td>
<td>8,5</td>
</tr>
<tr>
<td>35</td>
<td>Sulkuejärvi</td>
<td>Kihniö</td>
<td>1,03</td>
<td>20</td>
<td>2,2</td>
</tr>
<tr>
<td>35</td>
<td>Ekojärvi</td>
<td>Lammi</td>
<td>0,77</td>
<td>55</td>
<td>5,7</td>
</tr>
<tr>
<td>35</td>
<td>Puntasjärvi</td>
<td>Kuru</td>
<td>0,57</td>
<td>44</td>
<td>4,0</td>
</tr>
</tbody>
</table>
Table 5 continues.

<table>
<thead>
<tr>
<th>Vesistöalue Drainage basin</th>
<th>Järven nimi Lake</th>
<th>Luusuan sijainti-kunta Outlet district</th>
<th>Pinta-ala (km²) Area (km²)</th>
<th>Varasto (kg/m²) Store (kg/m²)</th>
<th>Varastoitumisnopeus (g/m²/ν) Accumulation rate (g/m²/ν)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Alinen Rautjärvi Lammi</td>
<td>0,51</td>
<td>50</td>
<td>4,4</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Iso Leppäjärvi Kuru</td>
<td>0,07</td>
<td>27</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Valkea-Kotinen Lammi</td>
<td>0,04</td>
<td>32</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Vihteljärvi Kankaanpää</td>
<td>0,32</td>
<td>31</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Paukajärvi Virrat</td>
<td>0,32</td>
<td>23</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Kätkänjärvi Lehtimäki</td>
<td>2,60</td>
<td>21</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Alainen Mustalampi Töysä</td>
<td>0,04</td>
<td>77</td>
<td>7,7</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Kalijärvi Pedersören kunta</td>
<td>0,25</td>
<td>36</td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Lappajärvi Lappajärvi</td>
<td>142</td>
<td>13</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Tvärasjön Lestijärvi</td>
<td>1,32</td>
<td>46</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Lestijärvi Lestijärvi</td>
<td>65,1</td>
<td>20</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Pyhäjärvi Pyhäjärvi</td>
<td>126</td>
<td>11</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Haralampi Haapavesi</td>
<td>0,05</td>
<td>8,5</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Pieni Hetelampi Pyhäjoki</td>
<td>0,06</td>
<td>23</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Oulujärvi Vaala</td>
<td>893</td>
<td>17</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Kiinantajärvi Suomussalmi</td>
<td>153</td>
<td>15</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Ontojarvi Kuhmo</td>
<td>104</td>
<td>12</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Hossanjärvi Suomussalmi</td>
<td>3,94</td>
<td>11</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Ahmasjärvi Utajarvi</td>
<td>3,75</td>
<td>46</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Kylmäjärvi Suomussalmi</td>
<td>1,03</td>
<td>20</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Pieni-Pyhäntä Ristijärvi</td>
<td>0,90</td>
<td>22</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Perilampi Ristijärvi</td>
<td>0,10</td>
<td>47</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Teerilampi Kuhmo</td>
<td>0,03</td>
<td>6,9</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Loukkojärvi Kiiminki</td>
<td>1,15</td>
<td>20</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Kostonjärvi Taivalkoski</td>
<td>42,9</td>
<td>14</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Pintamojärvi Pudasjärvi</td>
<td>3,41</td>
<td>30</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Pikku Ahvenjärvi Pudasjärvi</td>
<td>0,19</td>
<td>50</td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Tutulampi Taivalkoski</td>
<td>0,15</td>
<td>43</td>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Vittikolampi Rovaniemelik</td>
<td>0,07</td>
<td>40</td>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Kemijärvi Kemijärvi</td>
<td>222</td>
<td>17</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Javarusjärvi Kemijärvi</td>
<td>5,16</td>
<td>29</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Saarijärvi Posio</td>
<td>1,73</td>
<td>14</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Vuontisjärvi Enontekiö</td>
<td>1,43</td>
<td>20</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Rytijärvi Rovaniemelik</td>
<td>0,28</td>
<td>15</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Viitatunturinlampi Kemijärvi</td>
<td>0,15</td>
<td>37</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Lehtojärvi Posio</td>
<td>0,12</td>
<td>31</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Lampi 130602 Enontekiö</td>
<td>0,12</td>
<td>25</td>
<td>2,4</td>
<td></td>
</tr>
</tbody>
</table>
Hiilen varastoitumisnopeudet

Järvesidemittien hiilivarasto on kertynyt jääkauden jälkeisenä aikana. Koska järvet ovat eri-ikäisiä, vai- kuttaa varastoitumisnopeuksiin varaston koon lisäksi varaston kertymiseen kulunut aika. Vanhimmassa järvestä varastoituminen on jatkunut jo 12 000 vuotta, mutta nuorimmassa vain 5000 vuotta. Tässä yhteydessä tarkoitetaan pitkän aikavälin varastoitumisnopeudella järven syntyajan jälkeistä keskimääräistä varastoitumispeutta.

Pitkän aikavälin nopeudet

Tutkittujen järven pinta-aloilla painottettu hiilen keskimääräinen varastoitumisnopeus on 1,0 g/m²/v. Suurimmilla vesistöalueilla vastaavat hiilen varastoitumisnopeudet ovat Vuoksi 0,96 g/m²/v, Kymijoki 0,82 g/m²/v, Kokemäenjoki 0,94 g/m²/v, Oulujoki 1,7 g/m²/v ja Kemijoki 1,8 g/m²/v. Pohjoisien suurten vesistöalueiden keskimääräiset varastoitumisnopeudet ovat kaksinkertaisia Suomen suurin vesistöalueisiin verrattuna. Varastoitumisnopeuksien ero selittyy turvemaiden osuudella, joka on pohjoisilla vesistöalueilla yli kaksi kertaa eteläisiin verrattuna. Maaston painanteita peittävät pohjoisessa suuri kysymys, etelässä järven. Alapuolisen vesipuiston kannalta suut ovat eloperäisen aiheen lähteitä ja järven eloperäisen aiheen sedimentoitaita.

Suurin osa järvesidemittien sisältämästä eloperäisestä aiheen oikeinä on peräisin Suomen vesistöalueesta, josta se on kulkenut jään vuoksi järveen varten tai luutteen. Vaikka eloperäinen aines on liikkuu vedensuumen vedenmukaan käytöstä, on tullut kulkeutumisessa. Vaikka eloperäinen aines on liikkuu vedensuumen vedenmukaan käytöstä, on tullut kulkeutumisessa."
varastoitumisnopeudeksi suurissa (>5000 km/havumetsävyöhykkeen ja tundran rajalla. Dean ja järven keskimääräisen nopeuden, vaikka se sijaitsee järven varastoitumisnopeus ylittää reilusti Suomen sillä Ekojärvi toimii Kuohijärven laskevien vesien tehokkaana sedimentaatioalana.

Kokoluokittain lasketut pinta-aloilta painotetut keskimääräiset hiilen varastoitumisnopeudet ovat

\[
yli 100 \text{ km}^2 \quad 0,95 \text{ g/m}^2/\text{v}, \\
10–100 \text{ km}^2 \quad 1,8 \text{ g/m}^2/\text{v}, \\
1–10 \text{ km}^2 \quad 3,1 \text{ g/m}^2/\text{v}, \\
1,0–0,1 \text{ km}^2 \quad 4,0 \text{ g/m}^2/\text{v} \text{ ja} \\
alle 0,1 \text{ km}^2 \quad 2,4 \text{ g/m}^2/\text{v}.
\]

Kokoluokittain lasketut varastoitumisnopeudet kasvavat kokoluokan pienentymisessä lukuun ottamatta pienintä kokoluokkaa. Pienimmässä kokoluokassa hiilen varastoitumisnopeus pienenee lähinnä sedimentikerroksen ohennemisen takia.

Valtakunnallinen arvio hiilen keskimääräisestä varastoitumisnopeudesta saadaan painottamalla kokoluokittain lasketuja nopeuksia kunnokkokuluokan järvien pinta-alalla. Keskimääräiseksi hiilen varastoitumisnopeudeksi pitkällä aikavälillä saadaan 2,0 g/m²/ra. Se on kaksinkertainen tutkittujen järvien varastoitumisnopeuteen nähden. Ero johtuu suurten järvien pinta-alavuorosta. Suomen järvisenvedementteihin on varastoitunut vuosituhansien ajan kultaisen aineiston perusteella.

Hiilitasenteissa on hiilen varastoitumisnopeus yleensä arvioitu huomattavasti suuremmaksi. Forsius et al. (1996) arvioivat Suomen järvisenvedementteihin varastoituvan vuosituhannella ajan kokonaisluvulla hiilen pinta-alueella 0–750 000 tn hiiltä, josta keskimääräinen nopeus on 2,8–23 g/m²/ra. Se on kaksinkertainen tutkittujen järvien varastoitumisnopeuteen nähden. Ero johtuu suurten järvien pinta-alavuorosta. Suomen järvisenvedementteihin on varastoitunut vuosituhannella ajan kultaisen aineiston perusteella.

Vakavampien tutkimusten perusteella on osoitettu, että hiilen varastoitumisnopeus on huomattavasti suurempi, kun koko aikavälinelähteet ovat yksilöillä suuremmat. Seyfert (1992) arvioi, että Suomen järvien keskimääräinen varastoitumisnopeus on ollut 2,0 g/m²/ra jopa 20 000 vuoden aikana.

Koko aikaväliä pitkin, mutta hielen varastoitumisnopeus on suurimmillaan 2,0 g/m²/ra, mikä on nopea varastoitumisnopeuksesta arvioituna. Osa nopeuksista on johtuessa pieniä korkeita korkeuseroja tai pieniä lähdeyhteyksiä, jotka voi vaikuttaa vaatimukseen vaatimukseen.

Viimeaikaiset nopeudet

Ihmisen vesistöjä ja niiden valuma-alueita muuttava toiminta on nopeuttanut kuiva-aineen varastoitumista, mutta mitä hiilen varastoitumisnopeudelle on tapahtunut, on vaikeammin arvioitavissa. Kerrostumisnopeus

Järvisenvedement kuiva-aineen ja hiilen varastona

285
Kuva 390. Hiilen pitkän aikavälin keskimääräinen varastoitumisnopeus Kukkian yläpuolisessa vesireitissä.

Fig. 390. The long-term average accumulation rate of carbon in the water system upstream from Lake Kukkia.

on kasvanut samalla, kun kerrostuvan sedimentin hiilipitoisuus on alentunut. Kerrostumisnopeuden kasvu ja hiilipitoisuuden aleneminen kumoavat osittain toisensa. Hiilen viimeaikaisten varastoitumisnopeuksien arviointia vaikeuttaa se, että eloperäisen aineksen hajoaminen on sedimentin pinnassa vielä kesken. Pyövää vaki joukkueen muutoksia ei siten voida erottaa näennäisestä muutoksista. Hiilipitoisuuden varastoitumisnopeuden viimeaikaisia muutoksia voidaan kastella näyttävissä, jotka on ajoitetut paleomagneettisella menetelmällä, ovat rakenteeltaan vuosikerrallisia tai sisältävät tunnettuihin tapahtumiin liittyviä merkkihistorioitteja.

Historiallisesti tunnettujen onnettomuksien aikaansaamia tulvakerroksia käytettiin varastoitumis-
sevat lähellä purkauspaikkaa. Näissä altaissa viime-
aikeiset sedimentaatio-olot eivät ole vertailukelpoisia
purkausta edeltäneen ajanjakson kanssa.

Purkauksen yhteydessä alapuolisii altaiisiin
kulkeutui mineraaliaineksen ohella runsaasti myös
eloperäistä ainesta, jota kerrostui koko altaan alu-
neele. Vähitellen kulumis- ja kulkeutumispoihjalle
lasketunut aines on siirtynyt jatkuvan kerrostumisen
alueille. Purkauksen jälkeinen vakiintuminen voi
monessa tapauksessa olla vielä kesken. Purkauksen
vaikutus sedimentaatio-oloihin pienenee siirryttäessä
kauemmaksi alajuoksulle. Samalla paraneee myös
purkauskerrosten käyttökelpoisuus tarkasteltaessa
hiilen varastoittumisnopeuksien muutoksia.

Taulukko 6. Hiilen varastoittumisnopeuden muutos purkauskerroksia sisältävissä järvissä.

Table 6. Changes in the accumulation rate of carbon in lakes containing drainage layers.

<table>
<thead>
<tr>
<th>Tapahtuma</th>
<th>Tutkimuspaikka</th>
<th>Pitsäaikainen (g/m²/yr)</th>
<th>Purkauksen jälkeen (g/m²/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valvatuksen purkaus vuonna 1861</td>
<td>Haukivesi, Joroisselkä</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>Drainage of Lake Valvatus in 1861</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Höytiäisen purkaus vuonna 1859</td>
<td>Pyhäselkä</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Drainage of Lake Höytiäinen in 1859</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiisijärven purkau vuonna 1761</td>
<td>Orivesi, Paasselkä</td>
<td>3,1</td>
<td>3,6</td>
</tr>
<tr>
<td>Drainage of Lake Hiisijärvi in 1761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perilampi</td>
<td>4,0</td>
<td>7,2</td>
</tr>
<tr>
<td></td>
<td>Pieni-Pyhäntä</td>
<td>5,5</td>
<td>6,4</td>
</tr>
</tbody>
</table>

Fig. 391. The long-term accumulation rates of carbon determined using the paleomagnetic method (A–I) and the radiocarbon method (J–Q). The profiles are from the following lakes: A Pieilen, B Vesijärvi, C Pielavesi, D Kolima, E Muuratjärvi, F Pihlajavesi (Keuru), G Oulujärvi, H Ontojärvi, I Yli-Kotka, J Räimäjärvi, K Puula, L Vehmasjärvi (Kuopio), M Valkea-Kotinen, N Vittikkolampi, O Javarusjärvi, P Vuontisjärvi, and Q Lehtojärvi.
Ajoitusmenetelmän vaikutus varastoitumisnopeuden muutoksiin

Näytteenä on osoitettu, että ajoitettavat osanäytteet ongelmallisiksi osoittuivat radioisiirto-asteiden sen suuntaan, että osa liian vanhoja. Kerrostumisajankohtaa vanhempaa hiiltä. Ajoitustuotteen kerrostumisajankohtaa laskemista on kulkeutunut näytteen erityisesti mustaliuskeissa. näytteiltä on oletettu, että vuosikerrallisten menetelmien käytöstä johtuvat virheet ovat yleensä suuret ja niiden vaikutus on oletettu oikeaksi, osa liian vanhoja.

Syyynä liian vanhoihin tuloksiin on yleensä se, että ajoitettavat osanäytteet on kulkeutunut näytteen kerrostumisajankohtaa vanhemmalla hiiltä. Ajoitustuotteen on sitten oltava täysin oikea, mutta näyte on soveltuva yhteenjärven kehityshistorian kanssa. On sitten oltava selvälii vanha hiili. Järvisedimenttiarkennustyössä on kerrottu tehtyjen ajoitusten luotettavuutta voidaan vain arvailla, mutta todennäköisesti osa niistä on oikea, osa liian vanhoja.

sedimentin ominaisuudet muuttuvat, on syytä epäillä vanhentavan aineksen vääristävän ajoitustuloksia.

Fig. 392. The drainage basin of Lake Loukkojärvi, black schist area and directions of flow of the glacier. Black schist area as presented by Arkimaan et al. (2000) and directions of flow of the glacier as presented by Salonen (1985).

Kuva 393. Teoreettinen esitys vanhentavan aineksen vaikutuksesta hiilen varastotumisnopeutta esittävän käyrän muotoon.

Fig. 393. Theoretical presentation on the effect of aging material on the shape of the graph presenting the accumulation rate of carbon.
Järvialtaiden täyttyminen

Vaikka uusia järviä syntyy jatkuvasti lähinä maankohoamisen seurauksena, vähenee järvimäärä kuitenkin altaiden täyttymisen seurauksena. On arvioitu, että tähän mennessä on täynnä yönä 100 000 järveä (Salonen et al. 2002). Täyttyminen hävittää ennen kaikkea pieniä järviä, jotka mataloitutuvaan riittävästi muuttuvat soiksi. Altaan järviä haaravat osat myöhemmin merkinään vain turpeen alaiset järvisedimentti kerrokset (kuva 394).

Järvialtaiden täyttyminen on luonnollinen ja vääjäämättä etenevä prosessi. Se, missä vaiheessa täyttymisprosessi on, vaihtelee altaittain huomattavasti. Täyttymisaste jää alle 5 %:n suurissa ja syvissä järvisissä kuten Päijänneessä, Inarijärvessä ja Näsjärvessä, mutta ylittää 20 % suhteellisissa matalissa suurissä järvisissä kuten esimerkiksi Suonteen Suuonteen, Kyyvedessä, Keuruselässä ja Vesijärvessä. Monissa pienissä järvisissä täyttymisaste ylittää 50 %.

Suomenjärvien keskimääräiseksi täyttymisasteeksi saadaan 14 % olettamalla järvialtaiden alkuperäiseksi keskisyvyydeksi 8,4 m ja sedimenttikerrosten keskimääräiseksi maksudeksi 1,2 m. Altaiden alkuperäinen syvyys on saatu lisäämällä järven nykyiseen keskisyvyteen 7,2 m (Kuusisto 1987) järvisedimenttikerosten keskimääräinen paksuus. Erä kokoluokkien järville voidaan laskea vastaava keskimääräinen täyttymisaste käyttämällä kokoluokkaita esitettyjä keskisyvyyksiä (Kuusisto 1992) ja tässä tutkimuksessa saatujat järvisedimenttikerroksen keskimääräisiä paksuuksia. Täyttymisaste jää selvästi pienimmäksi suurimmassa kokoluokussa, kaksinkertaistuessa suuravassa ja on 30–40 % kolmessa pienimmässä kokoluokassa (taulukko 7).

Järven täyttymiseen kuluvaa aikaa voidaan arvioida kärkeasti keskimääräisen kerrostumisnopeuden ja veden syvyyden perusteella. Nopeimmin täyttysivät vajaan 1 km²:n järvet ja hitaaimmin suurimpan kokoluokan järvet. Kyseessä on kokoluokan järven keskimääräinen täyttymisaika. Osa järviä tulee täyttymään nopeammin, mutta syvät, hitaasti sedimenttejä kerrostavat järvet sinnittelevät huomattavasti pitemmän, esimerkiksi Päijänne tähänastisella sedimentaationopeudella ja nykyisellä veden syvyydessä noin 600 000 vuotta.

<table>
<thead>
<tr>
<th>Kokoluokka (km²)</th>
<th>Altainen alkuperäinen syvyys (m)</th>
<th>Täyttymisaste (%)</th>
<th>Täyttymiseen kuluvaa aika (v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size class (km²)</td>
<td>Original depth of basins (m)</td>
<td>Rate of filling-in (%)</td>
<td>Estimated life-time (yr)</td>
</tr>
<tr>
<td>>100</td>
<td>10,9</td>
<td>7,5</td>
<td>120 000</td>
</tr>
<tr>
<td>100-10</td>
<td>7,3</td>
<td>16</td>
<td>50 000</td>
</tr>
<tr>
<td>10-1</td>
<td>5,1</td>
<td>30</td>
<td>24 000</td>
</tr>
<tr>
<td>1-0,1</td>
<td>5,0</td>
<td>38</td>
<td>16 000</td>
</tr>
<tr>
<td><0,1</td>
<td>3,6</td>
<td>31</td>
<td>22 000</td>
</tr>
</tbody>
</table>

Taulukko 7. Järvialtaiden alkuperäinen syvyys, nykynen täyttymisaste ja täyttymiseen kuluvaa aika kokoluokkaittain. Table 7. The original depth of the lake basins, their present degree of filling, and time to be spent in filling by size class.
Fig. 394. The location of lake sediments in basins of different sizes and the progress of the filling process of lake basins. The scale of the diagrams increases as the basin decreases.
SUMMARY: LAKE SEDIMENTS AS A STORE OF DRY MATTER AND CARBON

Methods

The carbon store contained in lake sediments in Finland was determined by studying a total of 140 lakes (Fig. 1, Table 1). All lakes larger than 100 km² in area were included in the study. Lakes smaller than this were chosen based partly on statistical and partly on subjective grounds. Most of the lakes were included in an earlier water-quality study and the results of that study constituted one selection criterion. The objective was to bring together as representative a collection as possible of lakes by region and lake type.

The estimation of the volume of the lake sediment beds was based on echo-soundings and on coring carried out in the winter by drilling through the ice into the lake bottom. Echo-soundings were conducted when examining large lakes. The transfer of the sounding equipment to small lakes was not practical and so their sediment volumes were estimated on the basis of core samples.

Echo-soundings were carried out over a total distance of 2360 km on 76 lakes. The sediment volumes were estimated on the basis of data collected from the echo-sounding transects. This being so, it was important from the viewpoint of the final results to have the echo-sounding transects positioned to provide maximum representativeness. The aim was to collect echo-sounding data both from below open stretches of lake as well as from lake bottoms underlying sheltered areas and also from different lake-depth zones.

The coring points of small lakes were usually placed at random in different parts of the lake. In the case of lakes whose depth contours were known, survey points were placed in such a way that different depth zones were included. Each point it included determining the depth of the lake at that point and then a continuous series of samples was taken of the sediment layer using a Russian-type peat sampler. The sample series usually extended from the surface of the sediment to a depth corresponding to the lake initiation. The soil type of the sediment layer were determined and recorded.

The data collected from the survey points were used to compute the average thickness of the lake sediment bed. This result and the area of the lake were used to compute the volume of the lake sediment layer. The mass computation method was used as an aid in computing the volume.

Samples for laboratory analyses were taken from the area of the maximum sedimentation. The best sampling times were the mild days of late winter. The sampling equipment with its transportation devices weighs about 900 kg and this imposes certain requirements on the carrying capacity of the ice. Each sampling point was accessed to obtain both a surface core and a so-called ‘long core’.

The surface core was taken using a Limnos type of sampler and it was then divided regularly into seven sub-samples: 0–2 cm, 2–5 cm, 5–10 cm, 10–15 cm, 15–20 cm, 20–25 cm and 25–30 cm.

The long core was taken into the plastic tube using a piston sampler. Because the lake sediment bed can be ten metres thick and there can be tens of metres of water overlying it, purpose-designed equipment was needed in sampling. The foremost parts of the sampling equipment were the top of the sampler, the extendable main pipe fastened to it and the piston. The main pipe housed a plastic tube and its lower end had a headpiece containing a flap device to prevent the core from sliding back. The sinking of the sampler into the sediment was promoted by lead weights laid onto the top part. A tripod and a winch were used in lowering and raising the sampler.

Having been assembled on the ice overlying the lake, the sampler lowered by means of the winch to less than 0.5 m from the surface of the sediment (Fig. 2). The piston located in the headpiece was locked to the tripod by means of a wire rope. While the sampler was still being lowered, the vacuum created below the stationary piston drew in the sample into the plastic tube. The sampler ceased to sink when its head point came into contact with the hard bottom or when the sampler became full and remained hanging on the end of the wire rope of the piston. The full sampler was then drawn to the top of the ice using the winch. The plastic sampling tube was drawn out from the main pipe. It was cut down into lengths suitable for transportation, the tubes were marked and their ends were sealed.

While being transported, the cores were prevented from freezing and they were stored at a temperature of +4°C. The long cores were opened by slicing the tube open. Each core was treated to reveal an undisturbed surface and the colour and the stratigraphy of the soil types were determined. Then each core was divided into sub-samples 20 cm in length according...
to the observed horizons.

The sub-samples of the surface core and the long core were examined to determine the water content, loss on ignition and carbon content. The drying temperature applied was 105°C and the ignition temperature was 550°C. Density was determined by computations based on the water content, loss on ignition and assumed density of the mineral matter. This procedure has been described earlier in detail (Pajunen et al. 2000). The carbon content was determined using the LECO CHN-600 analyser. Due to the high combustion temperature (950°C), it is possible that the results include also carbon of inorganic origin. Some signs of its share are to be seen when examining the carbon content of sediments deposited in the same basin before lake isolation. The carbon content of the sediments of the early Baltic Sea is less than 1% almost without an exception and therefore the proportion of inorganic carbon in lake sediments cannot be greater than this (cf. Kukkonen 1973). Given the conditions prevailing in Finland, carbon of inorganic origin has no significant impact on the carbon content and carbon store of lake sediments.

The determining of core age was done using dating methods as well as the well-known history of deglaciation and shoreline displacement (Saarnisto 2000). Using the stratigraphy and carbon content data, it was possible to determine from the long cores the depth corresponding to the time of initiation. The corresponding age can be concluded from the development history once we know the location of the lake and the height of the outlet threshold. The paleomagnetic dating method was used to date 24 long cores. The radiocarbon method was used to date 160 samples obtained from 69 lakes. The results of this study are presented in calendar years (cal BP).

The amount of total dry matter contained in the lake sediments was computed by multiplying the volume of the sediment by its average density. The amount of carbon was obtained from the amount of dry matter based on the average carbon content of the dry matter. The average stores (kg/m²) were obtained by dividing the dry matter store and carbon store by area of the lake. The long-term average accumulation rates (g/m²/a) were obtained by dividing the average dry matter store and average carbon store by the age of the lake. The obtained rates of accumulation are lake-specific and conclusions on changes in this rate cannot be drawn with them as the basis.

On the other hand, the rates of accumulation computed for the survey points are site-specific. Because the samples were taken from places with the thickest lake sediment bed, the rates of accumulation per survey point are generally higher than the lake-specific rates. The average site-specific rate of accumulation of dry matter was computed by multiplying the average accumulation rate of a lake sediment bed (mm/a) by average density (1000*g/cm³). The average rate of carbon accumulation was computed from the average accumulation rate of dry matter with the average carbon content of the bed as the basis. In cases where it was possible to divide the lake sediment bed into parts per dated levels, the average accumulation rate of each bed was computed in the corresponding manner.

Formation of lakes

As it receded, the sheet of ice left behind dry land as well as water-covered areas. There are continuous supra-aquatic areas of land north and east of the line joining Kolari–Kemijärvi–Kajaani–Joensuu. The central part of present-day Finland has supra-aquatic areas in the form of individual islands, but along the present-day coastline there were no such areas.

The lakes in supra-aquatic areas were created immediately as the edge of the glacier receded. This took place about 13 000–10 000 years ago in the region which is today known as Finland. The age of lakes in supra-aquatic areas is determined simply by the point in time when the edge of the glacier receded. The location of the lake in terms of elevation is of no significance. Thus, the oldest lakes are to be found in the southeastern part of the country.

Lake Kinnasjärvi in Tuupovaara, which was released from under the glacier about 12 200 years ago, is the oldest of the examined lakes. Lake Koitere emerged about 11 500 years ago and Lake Kalliojärvi in Juuka about 11 200 years ago. The small lakes in Inari, at the very north of present-day Finland, emerged at the same time as Lake Kalliojärvi. The lakes in the Province of Kainuu began to emerge some 11 000 years ago. Lake Kiantajärvi emerged about 10 800 years ago and the lakes in Kuusamo and Posio emerged no later than 10 500 years ago. Lake Vuontisjärvi, in Enontekiö, in the northwestern corner of present-day Finland, emerged about 10 000 years ago.

As glacier receded, ice lakes were formed in suitable places of the terrain at the edge of the glacier. These were usually short-lived and waters discharged from them when the edge of the glacier withdrew further. The biggest ice lakes were located in that part of present-day Finland, which is northwest of the marginal formation called Toinen Salpausselkä, in the area of Sotkamo and in Eastern Lapland. Thirty-one of the examined lakes were formed immediately when the
edge of the ice sheet receded from the area or they became isolated from a local ice lake.

When the edge of the ice sheet had receded, most of present-day Finland was submerged. When the weight of the glacier was removed, the earth’s crust rose faster than the water level and the isolation of lakes began. The isolation of a lake took place either as a single event or it happened in more than one stage. In this context, the term ‘isolation’ is taken to mean the loss of the connection to the ancient Baltic Sea or Arctic Sea. Subsequent isolations separate the different phases of development of a lake from one another.

The forming of lakes by isolation began in areas first released by the glacier as it receded from the what is the south-eastern corner present-day Finland and it has continued right up to the modern times along the coast of the Gulf of Bothnia in central-western Finland. Lakes were formed in quick succession by isolation for a couple of thousand years following the deglaciation. The oldest lakes became isolated about 11 500 years ago when the level of water in the Baltic Ice Lake rapidly dropped almost 30 m. Lake Höytäsäinen, and Lake Pyhäjärvi in the district of Eurajoki became isolated about 11 000 years ago. Lakes Saimaa, Pihlajavesi, Orivesi, Puola and Suontee became isolated within next 500 years. As the level of water dropped, more lakes were isolated, among them Lake Vesijärvi and Lake Juojärvi about 10 200 years ago, Lake Suontienselkä about 9800 years ago, Lake Kemijärvi about 9 700 years ago and Lake Kivijärvi about 9 600 years ago. The last lakes in inland Finland became isolated about 9500 years ago, after which isolation occurred only in coastal areas. As regards the great lakes along the western coast of Finland, Lake Sääksjärvi became isolated about 6 400 years ago, Lake Pyhäjärvi in the district of Utsjoki in northernmost Finland, became isolated about 5000 years ago and it is the youngest of the examined lakes.

As regards the submerged lakes, Lake Inarijärvi and Lake Pulmankijärvi isolated from the Arctic Sea, while all the rest became isolated from the Baltic Sea. As the isolation of lakes took place over a long period of time, the Baltic Sea underwent many phases of development. Nine of the examined lakes became isolated during the Baltic Ice Lake stage, 11 during the Yoldia Sea stage, 80 during the Ancylus Lake stage and 7 during the Litorina Sea stage.

Lake sediment beds

The proportion of the lake sediment bottom varies according to the sedimentation conditions. In large lakes, the bottom zones are well developed and lake sediments are found only in part of the basin. As the size of the lake becomes smaller, the proportion of the lake sediment bottom increases and in the smallest lakes almost the entire bottom can consist of lake sediments. In a drainage system, the proportion of the lake sediment bottom increases upstream.

Usually, the thickness of the lake sediment bed increases as the size of the lake decreases. However, the smallest lakes are the exceptions in this regard as a considerable number of them are shallow ponds. The average thicknesses of the lake sediment beds, weighted by area and expressed by size class are as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Average thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 100+ km²</td>
<td>0.82 m</td>
</tr>
<tr>
<td>Size 100–10 km²</td>
<td>1.2 m</td>
</tr>
<tr>
<td>Size 10–1.0 km²</td>
<td>1.5 m</td>
</tr>
<tr>
<td>Size 1.0–0.1 km²</td>
<td>1.9 m</td>
</tr>
<tr>
<td>Size less than 0.1 km²</td>
<td>1.1 m</td>
</tr>
</tbody>
</table>

When the average thicknesses computed by size class are weighted by the lake area of each size class (Raatikainen & Kuusisto 1990), the average thickness for Finland’s lake sediment beds gets the value 1.2 m.

The volume of Finland’s lake sediments can be estimated by multiplying above the average thicknesses (computed by size class) by the lake area covered by each size class. The volumes of the lake sediment beds thus obtained are as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Volume (million m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 100+ km²</td>
<td>12 000</td>
</tr>
<tr>
<td>Size 100–10 km²</td>
<td>8 700</td>
</tr>
<tr>
<td>Size 10–1.0 km²</td>
<td>8 600</td>
</tr>
<tr>
<td>Size 1.0–0.1 km²</td>
<td>7 500</td>
</tr>
<tr>
<td>Size less than 0.1 km²</td>
<td>1 800</td>
</tr>
</tbody>
</table>

The total volume of Finland’s lake sediment beds is approx. 39 000 million m³, and half of this total amount is in lakes belonging to the two biggest size classes.

In a typical lake sediment bed, the proportion of organic matter increases towards the surface and it can be divided into the following overlying layers: gyttja clay, clay gyttja and gyttja. However, lake sediments do not always form a complete soil type series. In big lakes, the lower part of the lake sediment bed is often formed of gyttja clay and the top part of clay gyttja. In small lakes, the gyttja clay layer may be lacking.
and in some cases the lake sediment bed is composed entirely of gyttja.

Rapid changes in sedimentation conditions can lead to abnormal stratigraphy. For example, a drop in the water level causes the erosion bottom to move deeper and leads to increasing sedimentation of mineral matter in deep parts of the lake; this is reflected in the sediment as an increase in its clay content. Examples of intermediate clayey layers as part of the natural development of lakes are to be seen in lakes such as Lake Keitele, Lake Haukivesi and Lake Åtäskö. Anthropogenic drops in water level cause changes in the soil type forming the surface part of the sediment bed. The increased erosion within the drainage basin is another factor in changing the soil type of the surface part.

The peat layers found at the bottom of lakes were formed on dry land but have ended up at the bottom of the lake because of the rise in water level. We know that the water level in the northern part of the country rose after the middle of the Holocene and this caused many mires to turn into ponds. In the southern part of the country, the burying of peat layers under lake sediments is generally connected to the rise in water level caused by the tilting of the earth’s crust. Under suitable circumstances, the shoreline forces can wear out peat layers and this can increase the proportion of organic matter to exceptionally high levels in nearby sediment layers. This can be even manifested as changing of the soil type of the sediment.

Sediment containing an abundance of organic matter is also formed in a peaceful sedimentation environment. In the course of thousands of years, many small forest ponds became disconnected from the mineral soil as stream gullies and shores were paludified. Pond waters became acidic and rich in humus. Mud began to deposit over the gyttja in the changed circumstances.

Properties of lake sediments

Water content

The water content of lake sediments varies both within a layer and from basin to basin. The water content of layers rich in clay and silt is lower than that of layers containing plenty of organic matter. It can, therefore, be concluded that the water content will increase towards the surface as the proportion of mineral matter decreases. Another factor causing the increase in water content is the compacting of the lowermost layers. The differences between basins are caused mainly by the availability of the mineral matter. In lakes in clay areas, the water content is usually considerably lower than in ponds with peaty shorelines and located in till areas.

Water content usually increases towards the surface of the sediment (Fig. 381) The water content in lakes located at relatively low altitude is lower than in lakes located at relatively high altitude; this reflects the abundance of fine mineral matter in the drainage basin. The decline in the water content in the youngest sediment layers is due to the feature that the transportation of mineral matter to the sedimentation areas has increased because of changes in land use within the drainage basin or a fall in lake water level.

The average water content values, weighted by volume and expressed by size class, are as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Water Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 100+ km²</td>
<td>78%</td>
</tr>
<tr>
<td>Size 100–10 km²</td>
<td>77%</td>
</tr>
<tr>
<td>Size 10–1.0 km²</td>
<td>80%</td>
</tr>
<tr>
<td>Size 1.0–0.1 km²</td>
<td>79%</td>
</tr>
<tr>
<td>Size less than 0.1 km²</td>
<td>90%</td>
</tr>
</tbody>
</table>

An estimate of the average water content of the lake sediments in Finland can be obtained by weighting the contents computed by size class with the each size class’ sediment volume. This results in the value of 79% as the average water content.

A total of 3260 water-content analyses were made of the long cores. The mean of these analyses was 79%, the median was 82%, the standard deviation was 11, and the range was 32%–98%.

Density

Because the specific weight of the mineral matter is considerably higher than that of the organic material, the density of sediments is mainly determined by the proportion of mineral matter. Usually the density of sediments is so much the greater the more mineral matter they contain. Dense layers are also heavy, which further compacts the layers beneath them. The compacting of layers requires that the water in the layers can exit.

The density of lake sediment beds usually decreases towards the surface of the sediment (Fig. 382). This is partly due to the compacting of the lowermost layers, and partly it is a consequence of the natural development of the lake and its drainage basin. The decrease in density is at its fastest in the part formed immediately after the lake initiation. During this stabilisation stage, the erosion of the lake bottom diminished in shallow parts and due to the development of vegetation and due to paludification the entry of mineral matter into the lake from the drainage basin became more restricted. After the stabilisation stage,
the rate of decrease in density slowed down or (in the case of layers rich in organic matter) ceased altogether. However, at the youngest end of the sediment layers, density begins to increase. The reason for this is in increased accumulation of mineral matter, which in turn is caused by anthropogenic drainage of lakes and disturbance of conditions in the drainage basin. A disturbance in sedimentation conditions can temporarily increase density. Examples of this are a fall in the lake’s water level related to the natural development of the lake and changes in the drainage basin. The density of the sediments of lakes located at relatively high altitude is considerably lower than average and recent anthropogenic actions have not impacted on such lakes as much as they have on lakes at lower altitude.

The average density values of lake sediment beds, weighted with volume, are as follows:

<table>
<thead>
<tr>
<th>Size (km²)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100+</td>
<td>0.26</td>
</tr>
<tr>
<td>100–10</td>
<td>0.28</td>
</tr>
<tr>
<td>10–1.0</td>
<td>0.23</td>
</tr>
<tr>
<td>1.0–0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>< 0.1</td>
<td>0.11</td>
</tr>
</tbody>
</table>

An estimate of the average density of the lake sediments in Finland can be obtained by weighting the density computed by size class with the each size class’ sediment volume. The density was 0.25 g/cm³ as the average density.

Density computations were conducted using 3260 sub-samples obtained from the long cores. The mean value for density was 0.25 g/cm³, the median was 0.20 g/cm³, the standard deviation was 0.16, and the range was 0.019 – 1.1 g/cm³.

Loss on ignition

The loss on ignition of lake sediments is an indication of the proportion of organic matter. When computed for the entire data, loss on ignition was shown to increase towards the surface of the sediment (Fig. 383). This increase is at its fastest in the oldest part of the sediment bed. After the stabilisation stage, the increase in loss on ignition slowed down and in the youngest part it has a downward trend. Loss on ignition in the sediment beds of lakes at relatively high altitude is significantly above average.

The average loss on ignition values of lake sediment beds, weighted with volume, are as follows:

<table>
<thead>
<tr>
<th>Size (km²)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>100+</td>
<td>14%</td>
</tr>
<tr>
<td>100–10</td>
<td>15%</td>
</tr>
<tr>
<td>10–1.0</td>
<td>21%</td>
</tr>
<tr>
<td>1.0–0.1</td>
<td>25%</td>
</tr>
<tr>
<td>< 0.1</td>
<td>51%</td>
</tr>
</tbody>
</table>

An estimate of the average loss on ignition of the lake sediments in Finland can be obtained by weighting the loss on ignition computed by size class with the each size class’ sediment volume. This results in the value of 20% as the average loss on ignition.

A total of 3260 ignition-loss analyses were made of the long cores. The mean of these analyses was 22%, the median was 16%, the standard deviation was 14, and the range was 1.5%–94%.

Carbon content

The carbon content of lake sediments indicates the proportion of organic matter and it varies according to the properties of the drainage basin and the prevailing sedimentation conditions. The differences between lake basins are at their biggest between big lakes located in the lower reaches of water courses and the ponds located in the higher reaches. The differences between layers can be reflections of gradual changes in the sedimentation environment or they may be connected the development of ancient major lakes, for example.

The graphs demonstrating the carbon content of the long cores show that the carbon content usually increases from the level of lake initiation towards the surface of the sediment. Often the sediment bed can be divided into two parts on the basis of its carbon content graph: the stabilisation stage following initiation, during which time the carbon content increases rapidly, and the subsequent stage of steady development, during which time the carbon content increases slowly or stays at about the same level (Fig. 384 A and B).

The increase in carbon content during the stabilisation stage is mainly due to less mineral matter being carried to the sedimentation area. If the shallow parts of a lake contain an abundance of fine mineral matter susceptible to erosion, the stabilisation stage can take a long time. On the other hand, if there are no clay layers, the lake will quickly stabilise. Therefore, lakes of clay areas located at relatively low altitude become established relatively more slowly than lakes at relatively high altitude. The stabilisation stage usually lasts a few hundred to a few thousand years.

The carbon content of the sediment bed has risen to exceptionally high levels in many of the large lakes of the Vuoksi River drainage basin (Fig. 384 C). The layer rich in carbon was created during the period of rise of the Suur-Saimaa flood when shoreline forces caused wearing of shoreline mires. The force of the wave action was assisted by the push of ice, which broke up the structure of the peat layers. The joint effect of ice and waves was further promoted by the flood peak coinciding with the period of time following the breaking loose of ice at which time the peat, which
had pushed over, came to be within the reach of the waves. The organic matter dislodged off peat banks was carried into deep parts of the lake and caused the carbon content of the sediment to rise to an exceptionally high level considering the size of the lake. The carbon content began to return to its usual level after the water level began to drop. The area of Lake Päijänne experienced a similar flood, but carbon-rich layers formed during the period when the flood rose were not encountered. The reason for this lies in the more pronounced topography of the surroundings of Lake Päijänne. In hilly topography, mires are often small and protected behind islands.

In addition to the rising of the water level, the fall of the water level produces carbon content graphs with exceptional shape. When the water level falls, more mineral matter is carried to the sedimentation area; this is reflected in declining carbon content of the sediment (Fig. 384 D). Among the most extensive cases of water level falling in terms of the area affected were those of the ancient Lake Päijänne some 7 000 years ago and of the ancient Lake Suur-Saimaa some 5 700 years ago. The fall in carbon content can be seen in all of the lakes within the sphere of influence these major lakes.

A similar decline in carbon content can be observed in the surface part of many sediment beds. This was partly caused by the intentional lowering of the water level of lakes. These operations are typically such recent events that the sedimentation conditions in the affected lakes have not had time to become stabilised to correspond to the new water level. Part of the decrease in the carbon content at the surface of the sediment bed has been caused by increasing erosion within the drainage basin in turn caused by changes in land use. The artificial lowering of the water level of lakes and changes in land use are concurrent events and thus it is usually impossible to separate their effects.

When computed for the entire data, carbon content was shown to increase towards the surface of the sediment (Fig. 385). This increase has been at its fastest in the oldest parts (dating back about 10 000 – 7 500 years ago) of the sediment beds. After the stabilisation stage, the increase in carbon content slowed down and in the youngest part it has a downward trend. Carbon content in the sediment beds of lakes at relatively high altitude is significantly above average.

The average carbon content values of the lake sediment beds, computed by size class and weighted by volume, are as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Carbon Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 100+ km²</td>
<td>5.0 %</td>
</tr>
<tr>
<td>Size 100–10 km²</td>
<td>6.2%</td>
</tr>
<tr>
<td>Size 10–1.0 km²</td>
<td>9.5%</td>
</tr>
<tr>
<td>Size 1.0–0.1 km²</td>
<td>12%</td>
</tr>
<tr>
<td>Size less than 0.1 km²</td>
<td>26%</td>
</tr>
</tbody>
</table>

The average carbon content clearly increases on moving into smaller size classes. Lake-specific variation in carbon content increases as the size class decreases, and this has the effect of reducing the reliability of the obtained average value, especially in the case of the smallest size class.

An estimate of the average carbon content of the lake sediments in Finland can be obtained by weighting the carbon content values computed by size class with the each size class’ sediment volume. This procedure results in the average carbon content value of 8.6% for lake sediments.

A total of 3260 carbon-content analyses were made of the long cores. The mean of these analyses was 8.3%, the median was 6.2%, the standard deviation was 7.4, and the range was 0.37%–55%.
Dry matter stores

The size of the dry matter store is largely determined by the size of the lake. The biggest stores of dry matter are in Lake Oulujärvi (430 million tonnes), Lake Pielinen (310 million tonnes) and Lake Saimaa (210 million tonnes). The dry matter stores in Lake Inarijärvi, Lake Pihlajavesi, Lake Orivesi and Lake Keitele are known to be in excess of 100 million tonnes. Lake Vesijärvi (100 million tonnes) and Lake Päijänne (90 million tonnes) form an exceptional pair. Although Lake Päijänne is ten times larger than Lake Vesijärvi, its dry matter store is smaller.

The average dry matter store, computed by size class and weighted by lake area, are as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Average Dry Matter Store (kg/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100+ km²</td>
<td>220 kg/km²</td>
</tr>
<tr>
<td>100–10 km²</td>
<td>330 kg/km²</td>
</tr>
<tr>
<td>10–1.0 km²</td>
<td>350 kg/km²</td>
</tr>
<tr>
<td>1.0–0.1 km²</td>
<td>470 kg/m²</td>
</tr>
<tr>
<td>less than 0.1 km²</td>
<td>120 kg/m²</td>
</tr>
</tbody>
</table>

The dry matter stores computed by size class increase on moving into smaller classes. The basin-specific differences are large in the smallest class (Table 3).

An estimate of the average dry matter store of the lake sediments in Finland can be obtained by weighting the dry matter store values computed by size class with the area of the lakes belonging to the particular size class. This procedure results in the average dry matter store value of 290 kg/km² for lake sediments.

When the average dry matter stores presented above and computed by size class are multiplied by the area of the lakes forming each size class, the result obtained is the dry matter store of the lake sediments by size class:

<table>
<thead>
<tr>
<th>Size</th>
<th>Dry Matter Store (million tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100+ km²</td>
<td>3 100 million</td>
</tr>
<tr>
<td>100–10 km²</td>
<td>2 400 million</td>
</tr>
<tr>
<td>10–1.0 km²</td>
<td>2 000 million</td>
</tr>
<tr>
<td>1.0–0.1 km²</td>
<td>1 800 million</td>
</tr>
<tr>
<td>less than 0.1 km²</td>
<td>200 million</td>
</tr>
</tbody>
</table>

The dry matter stores computed by size class become smaller as the size class becomes smaller. The smallest size class stands out from among the others because of its small area, small layer thickness and low density. The combined dry matter store of lake sediments in Finland is about 9 500 million tonnes.

The size of the dry matter stores varies by lake as does the time elapsed in the accumulation of the store. In the oldest lake, the said accumulation has continued already for some 12 000 years, but in the youngest lake only 5 000 years.

The average accumulation rates, computed by size class and weighted by lake area, are as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Accumulation Rate (g/m²/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100+ km²</td>
<td>22 g/m²/a</td>
</tr>
<tr>
<td>100–10 km²</td>
<td>39 g/m²/a</td>
</tr>
<tr>
<td>10–1.0 km²</td>
<td>35 g/m²/a</td>
</tr>
<tr>
<td>1.0–0.1 km²</td>
<td>50 g/m²/a</td>
</tr>
<tr>
<td>less than 0.1 km²</td>
<td>12 g/m²/a</td>
</tr>
</tbody>
</table>

The highest dry matter accumulation rates were observed to apply to size class 1.0–0.1 km² and the lowest to size class <0.1 km². The fact that the highest and the lowest accumulation rates occurred in adjacent size classes is explained by the change in basin type. The drainage basins of the smallest ponds are usually without open streams, which hinders the entry of mineral matter into the ponds. Moreover, the shorelines of ponds are often peaty, which further isolates them from mineral soils.

The combined dry matter accumulation rate for a specific size class because the differences in accumulation rates can be multiples of several tens within a size class (Table 3). The sedimentation environment has a greater impact on accumulation rate than the size of the lake. The lowest accumulation rates generally apply to lakes, which have peaty shorelines, are located at relatively high altitude or are oligotrophic drainage lakes. The highest accumulation rates occur in lakes, which are located alongside eskers or in contact with clay-rich soils.

An estimate of the average accumulation rate for the country as a whole can be obtained by weighting the rates computed by size class with the area of the lakes belonging to the particular size class. The average accumulation rate thus obtained is 31 g/m²/a. Annually some 1.0 million tonnes of dry matter accumulate in Finnish lakes.

However, the accumulation of dry matter has not continued at a steady rate; instead, the accumulation speeds have varied depending on changes in the sedimentation conditions. The accumulation of dry matter is usually at its fastest immediately after lake initiation. During the stabilisation stage, the accumulation rate slows down and settles to a level corresponding to stable conditions. Changes in sedimentation conditions can alter this natural development trend.
Carbon stores

The biggest carbon stores in the form of lake sediments are in Lake Oulujärvi (15 million tonnes) and Lake Saimaa (16 million tonnes). The next biggest, and clearly distinguishable from the two biggest lakes in this respect, are Lake Pihlajavesi (9.4 million tonnes), Lake Orivesi (8.5 million tonnes) and Lake Pielinen (5.9 million tonnes). Of the lakes included in this study, the second biggest, Lake Päijänne, was in 18th place in terms of the size of its carbon store and Lake Inarijärvi, the third biggest lake, was in 10th place. On the other hand, many other lakes rose to be among the biggest in this respect. The differences between the lakes become more apparent when one compares them in terms of their average carbon store taking into account lake area.

The average carbon store, weighted with the area of the examined lakes, is 10 kg/m². When looking at the biggest drainage basins, the corresponding average carbon stores are as follows: Vuoksi River 10 kg/m², Kymijoki River 8.2 kg/m², Kokemäenjoki River 8.4 kg/m², Oulujoki River 16 kg/m² and Kemijoki River 17 kg/m². The carbon stores of the drainage basins of Oulujoki River and Kemijoki River are nearly double those of southern Finland’s large drainage basins. This difference is explained, at least in part, by the difference in the proportion of peatlands. The drainage basins of Oulujoki River and Kemijoki River are characterised by the proportion of peatlands being 24% whereas in southern Finland’s large drainage basins the corresponding figure is 10% or so.

The average carbon store in Vuoksi River’s drainage basin is about 20% bigger than that in Kemijoki River’s drainage basin. The relative distribution of soil types is very similar in both drainage basins and thus the present soil underlying the drainage basin does not explain the carbon store difference. Yet the difference is actually explained by the soil; not by the present soil, but by the one submerged in the flood of the ancient Lake Suur-Saimaa. When the floodwaters rose, peat was eroded from the shoreline mires and carried to deep parts of the lakes and there it caused the carbon content of the forming sediments to increase. Relatively big carbon stores of lakes such as Lake Saimaa, Lake Pihlajavesi and Lake Orivesi are the result of the higher carbon content of the lake sediment bed. Being large lakes, they have a powerful impact on the average obtained by weighting computations with area. Erosion of shoreline mires did not occur with such intensity within the drainage basin of Kemijoki River.

Lake-specific carbon stores vary within the large drainage basins of southern Finland more than they do in the north of the country (Table 5). The biggest carbon stores in the drainage basins of Vuoksi River and Kymijoki River are 30-fold when compared to the smallest; in the drainage basin of Kokemäenjoki River the differences are 24-fold; in the drainage basin of Oulujoki River they are 7-fold; and in the drainage basin of Kemijoki 3-fold. The variation in store size from lake to lake is very illustrative of the variation in sedimentation conditions. Some of the lakes in southern Finland are located at relatively low altitude, their drainage basin includes fine-grained mineral soil, and many of them have experienced marked variations in water level, while other lakes are located at relatively high altitude and in stable sedimentation conditions. Northern lakes, however, are located at relatively high altitude, their drainage basins are mostly on till and peat soils, and the level of water in these lakes has usually remained at the level corresponding to the level at their time of initiation.

The average carbon store, computed by size class and weighted by lake area, are as follows:

<table>
<thead>
<tr>
<th>Size class</th>
<th>Carbon store (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100+ km²</td>
<td>9.6</td>
</tr>
<tr>
<td>100–10 km²</td>
<td>17</td>
</tr>
<tr>
<td>10–1.0 km²</td>
<td>31</td>
</tr>
<tr>
<td>1.0–0.1 km²</td>
<td>40</td>
</tr>
<tr>
<td>less than 0.1 km²</td>
<td>25</td>
</tr>
</tbody>
</table>

The carbon stores computed by size class increase on moving into smaller classes; the exception in this respect is the smallest size class. The smallest carbon stores of lakes belonging to the biggest size class are in Lake Päijänne and Lake Viinijärvi, and the biggest in Lake Kyyvesi and Lake Vesijärvi. There is no common reason for the smallest and biggest store. For example, the different sedimentation environments of Lake Kyyvesi and Lake Vesijärvi have produced relatively large carbon stores.

The smallest carbon stores in the second size class (100–10 km²) are in Lake Vuohijärvi and in Lake Kukkia, which are both oligotrophic drainage lakes. The biggest stores in this size class are in Lake Kangasjärvi and Lake Pyhäjärvi in the district of Lapinjärvi. The sedimentation environments of these lakes are very different. Lake Kangasjärvi is a dystrophic lake in a relatively elevated location and Lake Pyhäjärvi is eutrophic lake located in a clay area. The large carbon store in Lake Kangasjärvi is mainly the result of the high carbon content of the sediment while in Lake Pyhäjärvi it is the results of the large dry matter store. Similar pairs of lakes are to be found also in the smaller size classes. The diminishing of the carbon store in the smallest size class is caused by the thinning of the sediment bed. The lake sediment bed
The difference in accumulation rates is explained by the difference in peatland proportions, which in the northern drainage basins is over double that in the south. The depressions in the topography are covered by mires in the north and by lakes in the south.

Lake-specific accumulation rates vary according to the properties of the drainage basin and the sedimentation conditions in the lake. The slowest carbon accumulation rates are in those lakes in which there is little sediments and in which the carbon content in the sediment is low. Examples of such lakes are Lake Vuohijärvi, Lake Päijänne, Lake Viinijärvi, Lake Kukkia and Lake Inarijärvi. On the other hand, if a lot of dry matter has accumulated, the accumulation rates of carbon are, despite the low carbon content, at least on average level (e.g. Lake Nerkoonjärvi and Lake Vesijärvi). Rapid rate of accumulation of dry matter generally also leads to a high accumulation rate of carbon. This has happened in lakes such as Lake Räimäjärvi, Lake Sääksjärvi and Lake Pyhäjärvi in the district of Lapinjärvi. If, in addition to rapid accumulation of dry matter, the share of organic matter is large, the end result will be the highest accumulation rates (e.g. Lake Havanganjärvi, Lake Ruuhilampi and Lake Alainen Mustalampi). Depending on the sedimentation environment, the highest carbon accumulation rates occur either in lakes in clay areas where sedimentation is very rapid, or in lakes at relatively high altitude surrounded by paludified till soils and where the high carbon content of the sediment compensates for the slower sedimentation.

Most of the organic matter contained in lake sediments originates from the drainage basin and it has been carried into the lake in either solid or dissolved form. Although organic matter is moved by water more readily than solid mineral matter, it also tends to deposit into the first possible basin. This being so, when water routes are examined, the accumulation rate of the carbon should slow down the further downstream one examines the situation. However, this does not always happen, because the sedimentation conditions also change downstream. The highest accumulation rates are achieved only when the drainage basin is sufficiently large and when open water courses have formed in the drainage basin as these promote the carrying of mineral and organic matter into the lakes.

The carbon content in the lake sediment of the upper reaches of Kokemäenjoki River declines steadily in the downstream direction, but the carbon accumulation rate is at its highest in Lake Ekojärvi and Lake Alinen Rautjärvi, both less than 1 km² in size (Fig. 390). The Valkea-Kotinen drainage basin is small when compared to the size of the lake, and this restricts the amount of material carried into the lake and (despite the high carbon content) results in
a slower accumulation rate. Downstream from Lake Ekojärvi the accumulation rates become slower very quickly because Lake Ekojärvi acts like an efficient sedimentation basin for the waters flowing into Lake Kuohijärvi.

The average carbon accumulation rates, computed by size class and weighted by lake area, are as follows:

<table>
<thead>
<tr>
<th>Size Class</th>
<th>Accumulation Rate (g/m²/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 100+ km²</td>
<td>0.96</td>
</tr>
<tr>
<td>Size 100–10 km²</td>
<td>1.8</td>
</tr>
<tr>
<td>Size 10–1.0 km²</td>
<td>3.0</td>
</tr>
<tr>
<td>Size 1.0–0.1 km²</td>
<td>4.0</td>
</tr>
<tr>
<td>Size less than 0.1 km²</td>
<td>2.4</td>
</tr>
</tbody>
</table>

The accumulation rates computed by size class increase on moving into smaller classes; the exception in this respect is the smallest size class. The accumulation rate of carbon in the smallest size class is reduced mainly because of the thinning of the sediment layer.

An estimate of the average carbon accumulation rate for the country as a whole can be obtained by weighting the rates computed by size class with the area of the lakes belonging to the particular size class. The long-term average accumulation rate of carbon thus obtained is 2.0 g/m²/yr, which is double compared to the accumulation rate in the examined lakes. The carbon stored in Finland’s lake sediments annually averages 64 000 tonnes.

The sedimentation conditions in Finland’s lakes have changed significantly in the course of the past millennia, and thus one can suppose that the accumulation rate of carbon has also changed. Changes in accumulation rate can be examined only in cores containing several dated levels. Thus conclusions regarding changes in accumulation rate have to be made on the basis of considerably smaller material than conclusions on the long-term accumulation rates presented above.

The accumulation rate of carbon in cores dated using the paleomagnetic method vary strongly by layer, but at the background of this variation there is a trend to be perceived, either a slowly increasing one or a slowly decreasing one (Fig. 391). However, one can conclude on the basis of these samples that the accumulation of carbon has continued from one millennium to the next.

The differences between the layers in the cores dated using the radiocarbon method are large. The period of fastest accumulation is either in the cores lower part or in the middle, or then the core contains two periods of rapid accumulation. The periods of rapid accumulation are of different ages, which indicate to variation in basin-specific sedimentation conditions or to the possibility of an error. Cores dated using the radiocarbon method cannot be used to draw conclusions on the changes in carbon accumulation rates.

Anthropogenic impacts affecting water systems and drainage basins have accelerated the accumulation of dry matter, but what the effect has been on the accumulation rate of carbon is more difficult to estimate. The sedimentation rate has increased at the same time as the carbon content in the stratifying sediments has diminished. The increase in sedimentation rate and the decline in carbon content have partly cancelled out one another. The estimation of recent accumulation rates of carbon is made more difficult by fact that the decomposition of organic matter is still in progress in the surface of the sediment. This being so, lasting changes cannot be distinguished from apparent changes.

The flood layers caused by disasters known from history were used in estimating change in accumulation rate in six basins. The draining of Lake Höytäijärvi and Lake Valvatus happened approx. 140 years ago and that of Lake Hiisijärvi approx. 240 years ago (Table 6). The recent accumulation rates of carbon are higher than the long-term rates in all of the basins. The increase in the accumulation rate has been the lowest in Basins Savonselkä and Paasikkälä of Lake Orivesi and in Lake Pieni-Pyhäntä, which are located far from the site of outburst. When considering that part of the organic matter in the surface layer has yet to decompose, one can suppose that the accumulation of carbon has continued in these places at nearly the former rate. The accumulation rate of carbon has increased most of all in Basin Joroisselkä of Lake Huuskivi and in Lake Perilampi, which both are located near the site of outburst. The recent sedimentation conditions in these basins are not comparable with the situation preceding the disaster.

Following the draining of the lake, plenty of organic matter was carried into lower basins along with mineral matter, and the organic matter became deposited across the entire basin. The matter, which settled on the erosion and transportation bottom, has been gradually transferred to areas of constant sedimentation. The stabilisation subsequent to the drainage event is still incomplete in many cases. The effect of outburst on the sedimentation conditions becomes less and less the further downstream one examines the situation. Concurrently with this, the usability of the burst layers also improves when examining changes in the accumulation rates of carbon.

Examination of changes in accumulation rates requires dating of several levels from the same core. The radiocarbon method proved to be the most problematic of the methods used in dating the levels. Some of the dating results focussing on the level corresponding to
the forming of the lake fit in well with the development history of the lake. Others, however, are clearly too old. The reliability of datings done from the middle of the lake sediment bed can only be guessed, but it is probable that some of them, too, are correct while others are too old.

The usual reason for results that are too old is that carbon older than the sedimentation time of the sample has been introduced into the sub-sample being dated. Thus, the dating result can be entirely correct, but the sample is not suitable for determining the sedimentation time. Old carbon can originate from the bedrock, mineral soils or from peat layers of the drainage basin.

Old carbon has affected the dating results of Lake Loukkojärvi, for example. The age of the dated sample determined at isolation level is over 1000 years too old with respect to the age estimated on the basis of the development history (Fig. 317). A sample from the middle part of the core, when dated, also gave a clearly excessive age. There are black schists in the drainage basin of Lake Loukkojärvi and it is very probable that the old carbon originating from these black schists adds to the age obtained in dating (Fig. 392). Black schist areas also occur on the side of approach of the glacier. Thus, matter from black schists can occur in the till layers of the drainage basin and from there it is gradually carried into the lake. The old carbon originating from the mineral soils of the drainage basin can be supposed to make all the samples older by the same measure.

Another possible reason for the excessive age obtained when dating the sub-sample taken from the middle of the core from Lake Loukkojärvi is in the erosion of shoreline mires. Shoreline forces can loosen mire peat, which is then carried to the sedimentation area to settle there among younger matter. Peat can also be eroded from the banks of streams running into the lake. This also applies to many other lakes; erosion acting on shoreline mires and paludified banks of streams can be considered to be the main reason for exceptionally old ages obtained for samples. The effect of shoreline mires should be taken into account especially when one sample in a sample series appears to be clearly too old.

Such material leading to excessive age results has most probably had its effect on the shape of the graphs depicting changes in the accumulation rates of carbon. Cores O and Q (Fig. 391) may contain this ‘aging matter’ in all except in the lowermost sample. In other cores (K, L, M, P) the excessive age of an individual sample can have affected the shape of the graph. However, all the turns in the graphs are not caused by errors. It is simply not possible to distinguish real changes in the accumulation rate from changes caused by errors. Major changes in the accumulation rate usually require changed sedimentation conditions, which in turn should be reflected in the properties of the sediment. If the accumulation rate changes significantly, but without accompanying changes in the properties of the sediment, there is good reason to suspect distortion of the dating results.
KIITOKSET

Järvestä osoitettavat selvittävä hanke käynnistettiin Matti Saarniston aloitteesta sekä sen suunnitteluna osallistui GTK:n henkilökunnan lisäksi useiden yhteistyötohanojen edustajia. Suomen ympäristökeskuksen osallistuminen hankkeeseen valtavalle osuudelle lisäsi järven valintaan ja tulosten julkaisemiseen. Kolme järveä (Kuohijärvi, Ekojärvi ja Alinen Rautjärvi) tutkittiin yhteisrahoitteisesti Suomen Akatemian CARBO-hankkeen (nro 471100) kanssa ja yksi (Valkiinen) yhteistyössä Suonenjoen kaupungin kanssa.

Aineiston käsitteelyn osallistuivat Alpo Eronen, Kalle Husso, Kari Mäntykenttä, Ari Parviainen, Ritva Jokisaari ja Riitta Turunen, jotka päättivät raportin kuvat.

Raportin käskirjoituksen lukuvat ja sitä kommentoivat Jukka Häikö, Esa Kukkonen ja Matti Saarnisto.

Esitän parhaat kiitokset kaikille edellä mainituille ja monille muille, jotka toiminnallaan edistivät hankkeen toteutumista.

KIRJALLISUUS–REFERENCES

Glückert, G. 1973. Two large drumlin fields in central Finland. Fennia 120. 37 s.

Kukkonen, E. & Tynni, R. 1972. Sediment core from Lake Lovojärvi, a former meromictic lake (Lammi, south Finland) and the development of Lovojärvi on the basis of its diatoms. Aqua Fennica 70–82.

Hannu Pajunen

Palmén, E. G. 1903. Äldre och nyare sjöfallningar och sjöfallningsförboks i Finland. Fennia 20 (7), 108 s.

Saarinen, T. 1999. Palaeomagnetic dating of Late Holocene...
sediments in Fennoscandia. Quaternary Science Reviews 18, 889–897.

Appendix 1. Co-ordinates (kkj) of the survey points discussed in the text.

<table>
<thead>
<tr>
<th>Järvi</th>
<th>Tutkimuspiste</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmasjärvi</td>
<td>1</td>
<td>7172500</td>
<td>3473700</td>
</tr>
<tr>
<td>Alainen Mustalampi</td>
<td>5</td>
<td>6942740</td>
<td>2497460</td>
</tr>
<tr>
<td>Alinen Rautjärvi</td>
<td>1</td>
<td>6787880</td>
<td>2559280</td>
</tr>
<tr>
<td>Ekojärvi</td>
<td>1</td>
<td>6787980</td>
<td>2551590</td>
</tr>
<tr>
<td>Hanhijärvi</td>
<td>1</td>
<td>6886789</td>
<td>2551648</td>
</tr>
<tr>
<td>Haralampi</td>
<td>7</td>
<td>7125594</td>
<td>2560904</td>
</tr>
<tr>
<td>Haukijärvi</td>
<td>1</td>
<td>6993768</td>
<td>3503765</td>
</tr>
<tr>
<td>Haukilampi</td>
<td>1</td>
<td>6830320</td>
<td>3507750</td>
</tr>
<tr>
<td>Haukivesi</td>
<td>1</td>
<td>6890700</td>
<td>3575010</td>
</tr>
<tr>
<td>Haukivesi</td>
<td>2</td>
<td>6877040</td>
<td>4425000</td>
</tr>
<tr>
<td>Haukivesi</td>
<td>3</td>
<td>6894660</td>
<td>3546580</td>
</tr>
<tr>
<td>Haukivesi</td>
<td>5</td>
<td>6894090</td>
<td>3547090</td>
</tr>
<tr>
<td>Havanganjärvi</td>
<td>11</td>
<td>6892680</td>
<td>2481340</td>
</tr>
<tr>
<td>Hossanjärvi</td>
<td>1</td>
<td>7262530</td>
<td>4476880</td>
</tr>
<tr>
<td>Höytäinen</td>
<td>1</td>
<td>6972450</td>
<td>4484910</td>
</tr>
<tr>
<td>Höytäinen</td>
<td>2</td>
<td>6957460</td>
<td>4484020</td>
</tr>
<tr>
<td>Höytäinen</td>
<td>8</td>
<td>6998920</td>
<td>4475820</td>
</tr>
<tr>
<td>Ihalanjärvi</td>
<td>1</td>
<td>6821630</td>
<td>4440690</td>
</tr>
<tr>
<td>Inarijärvi</td>
<td>1</td>
<td>7635000</td>
<td>3524680</td>
</tr>
<tr>
<td>Inarijärvi</td>
<td>2</td>
<td>7651130</td>
<td>3513960</td>
</tr>
<tr>
<td>Inarijärvi</td>
<td>3</td>
<td>7657660</td>
<td>3540180</td>
</tr>
<tr>
<td>Inarijärvi</td>
<td>4</td>
<td>7664660</td>
<td>3529630</td>
</tr>
<tr>
<td>Iso Leppäljärvi</td>
<td>5</td>
<td>6879560</td>
<td>2481630</td>
</tr>
<tr>
<td>Iso-Lyly</td>
<td>1</td>
<td>6988600</td>
<td>4425420</td>
</tr>
<tr>
<td>Javarusjärvi</td>
<td>1</td>
<td>7422680</td>
<td>3499160</td>
</tr>
<tr>
<td>Johdasjärvi</td>
<td>1</td>
<td>6777810</td>
<td>3478930</td>
</tr>
<tr>
<td>Joukkaisjärvi</td>
<td>1</td>
<td>7666910</td>
<td>3512828</td>
</tr>
<tr>
<td>Juojärvi</td>
<td>1</td>
<td>6959650</td>
<td>4428440</td>
</tr>
<tr>
<td>Juojärvi</td>
<td>2</td>
<td>6949890</td>
<td>4430970</td>
</tr>
<tr>
<td>Juojärvi</td>
<td>5</td>
<td>6949280</td>
<td>4441480</td>
</tr>
<tr>
<td>Juurusvesi</td>
<td>1</td>
<td>6990020</td>
<td>3542050</td>
</tr>
<tr>
<td>Kalijärvi</td>
<td>6</td>
<td>7031960</td>
<td>2457100</td>
</tr>
<tr>
<td>Kallavesi</td>
<td>1</td>
<td>6982347</td>
<td>3525453</td>
</tr>
<tr>
<td>Kallavesi</td>
<td>2</td>
<td>6954382</td>
<td>3535602</td>
</tr>
<tr>
<td>Kallavesi</td>
<td>14</td>
<td>6972210</td>
<td>3541560</td>
</tr>
<tr>
<td>Kalliojärvi</td>
<td>3</td>
<td>7008550</td>
<td>4448162</td>
</tr>
<tr>
<td>Kangasjärvi</td>
<td>1</td>
<td>6878621</td>
<td>3519036</td>
</tr>
<tr>
<td>Kanjärvi</td>
<td>1</td>
<td>6782860</td>
<td>3469270</td>
</tr>
</tbody>
</table>
Järvi ▪ Lake

<table>
<thead>
<tr>
<th>Järvi</th>
<th>Tutkimuspiste Survey point</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kätkänjärvi</td>
<td>9</td>
<td>6972690</td>
<td>2492000</td>
</tr>
<tr>
<td>Keitele</td>
<td>1</td>
<td>6991500</td>
<td>3447200</td>
</tr>
<tr>
<td>Keitele</td>
<td>2</td>
<td>6970500</td>
<td>3463090</td>
</tr>
<tr>
<td>Keitele</td>
<td>3</td>
<td>6969350</td>
<td>3449410</td>
</tr>
<tr>
<td>Keitele</td>
<td>4</td>
<td>6953240</td>
<td>3441300</td>
</tr>
<tr>
<td>Kemijärvi</td>
<td>1</td>
<td>7389410</td>
<td>3517490</td>
</tr>
<tr>
<td>Kemijärvi</td>
<td>2</td>
<td>7389320</td>
<td>3527740</td>
</tr>
<tr>
<td>Keski järvi</td>
<td>1</td>
<td>6860030</td>
<td>3436410</td>
</tr>
<tr>
<td>Keurusselkä</td>
<td>1</td>
<td>6896840</td>
<td>2534046</td>
</tr>
<tr>
<td>Kevätön</td>
<td>1</td>
<td>7000050</td>
<td>3530710</td>
</tr>
<tr>
<td>Keyirty</td>
<td>1</td>
<td>7040596</td>
<td>3563684</td>
</tr>
<tr>
<td>Kiantajärvi</td>
<td>1</td>
<td>7199660</td>
<td>4449640</td>
</tr>
<tr>
<td>Kiantajärvi</td>
<td>2</td>
<td>7223820</td>
<td>4459340</td>
</tr>
<tr>
<td>Kinnasjärvi</td>
<td>1</td>
<td>6932869</td>
<td>4538563</td>
</tr>
<tr>
<td>Kivijärvi</td>
<td>1</td>
<td>7009629</td>
<td>2558752</td>
</tr>
<tr>
<td>Koijärvi</td>
<td>10</td>
<td>6865280</td>
<td>4457940</td>
</tr>
<tr>
<td>Koiterie</td>
<td>1</td>
<td>6991251</td>
<td>4540031</td>
</tr>
<tr>
<td>Kolima</td>
<td>1</td>
<td>7022662</td>
<td>3436506</td>
</tr>
<tr>
<td>Kolonjärvi</td>
<td>6</td>
<td>6874670</td>
<td>3564970</td>
</tr>
<tr>
<td>Konnevesi</td>
<td>1</td>
<td>6944640</td>
<td>3480120</td>
</tr>
<tr>
<td>Kostonjärvi</td>
<td>1</td>
<td>7301780</td>
<td>3567540</td>
</tr>
<tr>
<td>Kotajärvi</td>
<td>1</td>
<td>6774680</td>
<td>3549460</td>
</tr>
<tr>
<td>Kukka</td>
<td>7</td>
<td>6802420</td>
<td>2541303</td>
</tr>
<tr>
<td>Kuohjärvi</td>
<td>1</td>
<td>6792500</td>
<td>2547050</td>
</tr>
<tr>
<td>Kuonanjärvi</td>
<td>16</td>
<td>6874620</td>
<td>4460500</td>
</tr>
<tr>
<td>Kylmäjärvi</td>
<td>1</td>
<td>7171200</td>
<td>4479050</td>
</tr>
<tr>
<td>Kypäräjärvi</td>
<td>1</td>
<td>6686330</td>
<td>2519220</td>
</tr>
<tr>
<td>Kyvyvesi</td>
<td>1</td>
<td>6879190</td>
<td>3501860</td>
</tr>
<tr>
<td>Lampi 130201</td>
<td>1</td>
<td>7603577</td>
<td>1547470</td>
</tr>
<tr>
<td>Lampi 130602</td>
<td>1</td>
<td>7587160</td>
<td>2515030</td>
</tr>
<tr>
<td>Lampi 140151</td>
<td>1</td>
<td>7694505</td>
<td>3485973</td>
</tr>
<tr>
<td>Längelmävesi</td>
<td>1</td>
<td>6826680</td>
<td>2522560</td>
</tr>
<tr>
<td>Lappajärvi</td>
<td>9</td>
<td>7005300</td>
<td>2480330</td>
</tr>
<tr>
<td>Lehtojärvi</td>
<td>1</td>
<td>7362370</td>
<td>3564860</td>
</tr>
<tr>
<td>Leppäläompola</td>
<td>1</td>
<td>7674780</td>
<td>3516990</td>
</tr>
<tr>
<td>Leppäläompola</td>
<td>3</td>
<td>7674465</td>
<td>3517027</td>
</tr>
<tr>
<td>Lestijärvi</td>
<td>1</td>
<td>7048210</td>
<td>2535100</td>
</tr>
<tr>
<td>Loukkojärvi</td>
<td>3</td>
<td>7233750</td>
<td>3449790</td>
</tr>
<tr>
<td>Järvi</td>
<td>Survey point</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Luonteri</td>
<td>1</td>
<td>6840820</td>
<td>3547560</td>
</tr>
<tr>
<td>Lyhyenjärvi</td>
<td>1</td>
<td>6995840</td>
<td>3525560</td>
</tr>
<tr>
<td>Mäki järvi</td>
<td>1</td>
<td>6986880</td>
<td>3590940</td>
</tr>
<tr>
<td>Mallasvesi-Roine</td>
<td>1</td>
<td>6800960</td>
<td>2511150</td>
</tr>
<tr>
<td>Mallasvesi-Roine</td>
<td>2</td>
<td>6810790</td>
<td>2504580</td>
</tr>
<tr>
<td>Muntsurinjärvi</td>
<td>1</td>
<td>7046850</td>
<td>4499280</td>
</tr>
<tr>
<td>Musti</td>
<td>1</td>
<td>6978130</td>
<td>3570260</td>
</tr>
<tr>
<td>Muuratjärvi</td>
<td>1</td>
<td>6893010</td>
<td>3424300</td>
</tr>
<tr>
<td>Nässijärvi</td>
<td>1</td>
<td>6842060</td>
<td>2487100</td>
</tr>
<tr>
<td>Nässjärvi</td>
<td>2</td>
<td>6829360</td>
<td>2487010</td>
</tr>
<tr>
<td>Nerkoonjärvi</td>
<td>1</td>
<td>7036478</td>
<td>3515191</td>
</tr>
<tr>
<td>Nerkoonjärvi</td>
<td>2</td>
<td>7033840</td>
<td>3516270</td>
</tr>
<tr>
<td>Nerkoonjärvi</td>
<td>4</td>
<td>7038680</td>
<td>351462</td>
</tr>
<tr>
<td>Nilakka</td>
<td>1</td>
<td>6997170</td>
<td>3476960</td>
</tr>
<tr>
<td>Nurmijärvi</td>
<td>1</td>
<td>6807070</td>
<td>4454300</td>
</tr>
<tr>
<td>Onkivesi</td>
<td>16</td>
<td>7018830</td>
<td>3515210</td>
</tr>
<tr>
<td>Onnajojärvi</td>
<td>11</td>
<td>7116361</td>
<td>4460439</td>
</tr>
<tr>
<td>Orivesi</td>
<td>1</td>
<td>6923400</td>
<td>4465160</td>
</tr>
<tr>
<td>Orivesi</td>
<td>2</td>
<td>6893490</td>
<td>4492170</td>
</tr>
<tr>
<td>Orivesi</td>
<td>3</td>
<td>6892890</td>
<td>4468150</td>
</tr>
<tr>
<td>Oulu järvi</td>
<td>1</td>
<td>7151670</td>
<td>3495947</td>
</tr>
<tr>
<td>Oulu järvi</td>
<td>2</td>
<td>7136293</td>
<td>3514538</td>
</tr>
<tr>
<td>Oulu järvi</td>
<td>3</td>
<td>7141300</td>
<td>3535380</td>
</tr>
<tr>
<td>Päijänne</td>
<td>1</td>
<td>6859620</td>
<td>3423660</td>
</tr>
<tr>
<td>Päijänne</td>
<td>2</td>
<td>6850450</td>
<td>2571970</td>
</tr>
<tr>
<td>Päijänne</td>
<td>4</td>
<td>6821330</td>
<td>2575850</td>
</tr>
<tr>
<td>Päijänne</td>
<td>5</td>
<td>6809220</td>
<td>3420210</td>
</tr>
<tr>
<td>Paukajärvi</td>
<td>9</td>
<td>6914660</td>
<td>2473360</td>
</tr>
<tr>
<td>Perilampi</td>
<td>6</td>
<td>7146563</td>
<td>3571074</td>
</tr>
<tr>
<td>Pieksänjärvi</td>
<td>1</td>
<td>6912722</td>
<td>3507282</td>
</tr>
<tr>
<td>Pielavesi</td>
<td>1</td>
<td>7025660</td>
<td>3474760</td>
</tr>
<tr>
<td>Pielinen</td>
<td>1</td>
<td>7028650</td>
<td>4470302</td>
</tr>
<tr>
<td>Pielinen</td>
<td>2</td>
<td>7009420</td>
<td>4494160</td>
</tr>
<tr>
<td>Pielinen</td>
<td>3</td>
<td>6992039</td>
<td>4501402</td>
</tr>
<tr>
<td>Pieni Hetelampi</td>
<td>7</td>
<td>7149570</td>
<td>2536960</td>
</tr>
<tr>
<td>Pieni-Montonen</td>
<td>1</td>
<td>6848500</td>
<td>3497330</td>
</tr>
<tr>
<td>Pieni-Pyhäntä</td>
<td>2</td>
<td>7161460</td>
<td>3563590</td>
</tr>
<tr>
<td>Pihlajavesi, Keuruu</td>
<td>1</td>
<td>6918247</td>
<td>2515506</td>
</tr>
<tr>
<td>Järvi</td>
<td>Tutkimuspiste</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Pihlajavesi, Puumala</td>
<td>2</td>
<td>6836000</td>
<td>4457000</td>
</tr>
<tr>
<td>Pihlajavesi, Puumala</td>
<td>3</td>
<td>6857240</td>
<td>4434490</td>
</tr>
<tr>
<td>Pihlajavesi, Puumala</td>
<td>4</td>
<td>6846610</td>
<td>4465720</td>
</tr>
<tr>
<td>Pihlajavesi, Puumala</td>
<td>5</td>
<td>6846360</td>
<td>4461680</td>
</tr>
<tr>
<td>Pihlajavesi, Puumala</td>
<td>6</td>
<td>6831500</td>
<td>4450170</td>
</tr>
<tr>
<td>Pihlajavesi, Puumala</td>
<td>7</td>
<td>6852880</td>
<td>4426270</td>
</tr>
<tr>
<td>Piilampi</td>
<td>1</td>
<td>6827587</td>
<td>4459767</td>
</tr>
<tr>
<td>Pikku Ahvenjärvi</td>
<td>1</td>
<td>7250800</td>
<td>3480400</td>
</tr>
<tr>
<td>Pintamojärvj</td>
<td>1</td>
<td>7262600</td>
<td>3531650</td>
</tr>
<tr>
<td>Pintamojärvi</td>
<td>2</td>
<td>7261920</td>
<td>3531990</td>
</tr>
<tr>
<td>Pitkäjärvi</td>
<td>1</td>
<td>6993480</td>
<td>3527420</td>
</tr>
<tr>
<td>Postilampi</td>
<td>1</td>
<td>6993660</td>
<td>3547780</td>
</tr>
<tr>
<td>Pulmankijärvi</td>
<td>1</td>
<td>7766000</td>
<td>3538770</td>
</tr>
<tr>
<td>Puntasjärvi</td>
<td>1</td>
<td>6884622</td>
<td>2477106</td>
</tr>
<tr>
<td>Puruvesi</td>
<td>1</td>
<td>6870500</td>
<td>4483780</td>
</tr>
<tr>
<td>Puruvesi</td>
<td>2</td>
<td>6863180</td>
<td>4467590</td>
</tr>
<tr>
<td>Puula</td>
<td>1</td>
<td>6868390</td>
<td>3491130</td>
</tr>
<tr>
<td>Puula</td>
<td>2</td>
<td>6857250</td>
<td>3483680</td>
</tr>
<tr>
<td>Pyhäjärvi, Eura</td>
<td>1</td>
<td>6769740</td>
<td>1565370</td>
</tr>
<tr>
<td>Pyhäjärvi, Kitee</td>
<td>1</td>
<td>6855650</td>
<td>4493030</td>
</tr>
<tr>
<td>Pyhäjärvi, Kitee</td>
<td>2</td>
<td>6867020</td>
<td>4502430</td>
</tr>
<tr>
<td>Pyhäjärvi, Lapinjärvi</td>
<td>1</td>
<td>6733900</td>
<td>3445447</td>
</tr>
<tr>
<td>Pyhäjärvi, Nokia</td>
<td>1</td>
<td>6819770</td>
<td>2480950</td>
</tr>
<tr>
<td>Pyhäjärvi, Pyhäsalmi</td>
<td>1</td>
<td>7051275</td>
<td>3446961</td>
</tr>
<tr>
<td>Pyhälouoma</td>
<td>3</td>
<td>6898799</td>
<td>3497295</td>
</tr>
<tr>
<td>Pyhäselkä</td>
<td>1</td>
<td>6930230</td>
<td>4487570</td>
</tr>
<tr>
<td>Pyhäselkä</td>
<td>2</td>
<td>6920140</td>
<td>4483930</td>
</tr>
<tr>
<td>Räimäjärvi</td>
<td>1</td>
<td>6992000</td>
<td>3531020</td>
</tr>
<tr>
<td>Rimpijärvi</td>
<td>1</td>
<td>7504580</td>
<td>3440620</td>
</tr>
<tr>
<td>Ristijärvi</td>
<td>1</td>
<td>7057060</td>
<td>4448400</td>
</tr>
<tr>
<td>Ruuhilampi</td>
<td>1</td>
<td>6893505</td>
<td>3528800</td>
</tr>
<tr>
<td>Rytijärvi</td>
<td>1</td>
<td>7385310</td>
<td>3476590</td>
</tr>
<tr>
<td>Sääjärvi</td>
<td>3</td>
<td>6764296</td>
<td>2537528</td>
</tr>
<tr>
<td>Sääksjärvi</td>
<td>5</td>
<td>6812591</td>
<td>1573704</td>
</tr>
<tr>
<td>Saarijärvi, Posio</td>
<td>1</td>
<td>7370360</td>
<td>3533600</td>
</tr>
<tr>
<td>Saarijärvi, Saarijärvi</td>
<td>9</td>
<td>6963990</td>
<td>2565770</td>
</tr>
<tr>
<td>Saimaa</td>
<td>1</td>
<td>6783880</td>
<td>3574000</td>
</tr>
<tr>
<td>Saimaa</td>
<td>2</td>
<td>6806810</td>
<td>3563350</td>
</tr>
</tbody>
</table>
Järvedimentit kuiva-aineen ja hiilen varastona

<table>
<thead>
<tr>
<th>Järvi</th>
<th>Tutkimuspiste</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saimaa</td>
<td>3</td>
<td>6794290</td>
<td>3565280</td>
</tr>
<tr>
<td>Saimaa</td>
<td>4</td>
<td>6804000</td>
<td>3548800</td>
</tr>
<tr>
<td>Saimaa</td>
<td>5</td>
<td>6782100</td>
<td>3553800</td>
</tr>
<tr>
<td>Saimaa</td>
<td>6</td>
<td>6786900</td>
<td>4420040</td>
</tr>
<tr>
<td>Saimaa</td>
<td>13</td>
<td>6802400</td>
<td>4432060</td>
</tr>
<tr>
<td>Saimaa</td>
<td>14</td>
<td>6838860</td>
<td>3515880</td>
</tr>
<tr>
<td>Saimaa</td>
<td>15</td>
<td>6788837</td>
<td>3553881</td>
</tr>
<tr>
<td>Sulkuejärvi</td>
<td>11</td>
<td>6900220</td>
<td>2456850</td>
</tr>
<tr>
<td>Suontee</td>
<td>1</td>
<td>6844930</td>
<td>3462080</td>
</tr>
<tr>
<td>Suontienselkä</td>
<td>13</td>
<td>6931700</td>
<td>3516300</td>
</tr>
<tr>
<td>Suontienselkä</td>
<td>14</td>
<td>6942955</td>
<td>3508554</td>
</tr>
<tr>
<td>Suvasvesi</td>
<td>1</td>
<td>6945978</td>
<td>3562820</td>
</tr>
<tr>
<td>Tahvijärvi</td>
<td>1</td>
<td>7342650</td>
<td>4461440</td>
</tr>
<tr>
<td>Tammalammit</td>
<td>1</td>
<td>6917700</td>
<td>4511850</td>
</tr>
<tr>
<td>Teerilampi</td>
<td>1</td>
<td>7110650</td>
<td>4497760</td>
</tr>
<tr>
<td>Tervajärvi</td>
<td>1</td>
<td>6758275</td>
<td>3513309</td>
</tr>
<tr>
<td>Tuomaslampi</td>
<td>1</td>
<td>6777980</td>
<td>3515570</td>
</tr>
<tr>
<td>Tutulampi</td>
<td>1</td>
<td>7266370</td>
<td>3539200</td>
</tr>
<tr>
<td>Tvärasjön</td>
<td>9</td>
<td>7043820</td>
<td>2480280</td>
</tr>
<tr>
<td>Unnukka</td>
<td>1</td>
<td>6926120</td>
<td>3546690</td>
</tr>
<tr>
<td>Unnukka</td>
<td>2</td>
<td>6930930</td>
<td>3540960</td>
</tr>
<tr>
<td>Uuranjärvi</td>
<td>1</td>
<td>6927605</td>
<td>2528850</td>
</tr>
<tr>
<td>Vaheranjärvi</td>
<td>1</td>
<td>6716755</td>
<td>2499040</td>
</tr>
<tr>
<td>Valkea-Kotinen</td>
<td>7</td>
<td>6793103</td>
<td>2557234</td>
</tr>
<tr>
<td>Valkeinen</td>
<td>1</td>
<td>6946565</td>
<td>3506025</td>
</tr>
<tr>
<td>Vanajavesi</td>
<td>1</td>
<td>6780710</td>
<td>2512640</td>
</tr>
<tr>
<td>Vehmasjärvi, Kuopio</td>
<td>1</td>
<td>6957760</td>
<td>3523300</td>
</tr>
<tr>
<td>Vehmasjärvi, Suonenjoki</td>
<td>1</td>
<td>6955780</td>
<td>3506940</td>
</tr>
<tr>
<td>Vesijärvi</td>
<td>1</td>
<td>6782770</td>
<td>2579950</td>
</tr>
<tr>
<td>Vesijärvi</td>
<td>10</td>
<td>6769601</td>
<td>3426870</td>
</tr>
<tr>
<td>Vesijärvi</td>
<td>18</td>
<td>6767420</td>
<td>3425200</td>
</tr>
<tr>
<td>Vihteljärvi</td>
<td>5</td>
<td>6850040</td>
<td>2422200</td>
</tr>
<tr>
<td>Viinijärvi</td>
<td>1</td>
<td>6963010</td>
<td>4464432</td>
</tr>
<tr>
<td>Viitatunturinlampi</td>
<td>1</td>
<td>7360600</td>
<td>3522460</td>
</tr>
<tr>
<td>Vittikkolampi</td>
<td>1</td>
<td>7350420</td>
<td>3468810</td>
</tr>
<tr>
<td>Vuohijärvi</td>
<td>6</td>
<td>6786358</td>
<td>3484826</td>
</tr>
<tr>
<td>Vuontisjärvi</td>
<td>1</td>
<td>7563250</td>
<td>2504096</td>
</tr>
<tr>
<td>Ylä-Silikajärvi</td>
<td>1</td>
<td>7017980</td>
<td>3566910</td>
</tr>
<tr>
<td>Järv</td>
<td>Tutkimuspiste</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Yli-Kitka</td>
<td>1</td>
<td>7329600</td>
<td>3557300</td>
</tr>
<tr>
<td>Ylimmäinen Sammallampi</td>
<td>1</td>
<td>6768764</td>
<td>3461631</td>
</tr>
<tr>
<td>Ätäskö</td>
<td>14</td>
<td>6881620</td>
<td>4499800</td>
</tr>
</tbody>
</table>