Introduction

Amplitude variation with offset (AVO) is a technique that has been used often to identify seismic anomalies as hydrocarbon reservoirs. Although it has worked well in the past, it has some limitations; the attenuation is often neglected, it assumes frequency independent reflection coefficients and it is limited by the resolution of the medium. The attenuation is not considered a significant issue in conventional AVO studies as there are methods available that compensate for its effects. In the case of a frequency dependent reflection coefficient, attenuation plays a major role in its effects and cannot be neglected.

A compressive wave, travelling through a saturated, porous medium develops a pressure gradient between the peaks and trough of the wave. This pressure gradient – first introduced by Biot (1956a,b) – which, in turn, causes attenuation of the wave and the reflection coefficient to become frequency dependent.

D’Este et al., local normal-incidence frequency band

White’s stratified layered model (White et al., 1975) – arises due to the frequency dependance of the rock properties. This model has been shown to cause significant attenuation in the seismic frequency band (Pride et al., 2004).

Method

According to Carcione and Picotti (2006), the complex P-wave velocity, V_c, is acquired and used to calculate the phase velocity for each layer p.

$$V_c^P(V, \rho, \kappa, \phi)$$

and the quality factor: $Q = \frac{V_c^P(V, \rho, \kappa, \phi)}{V_c^P(V, \rho, \kappa, \phi)}$.

Using equations (1)-(4), the P-wave velocity (V_c^P), attenuation (γ), normal-incidence reflection coefficient (R) and phase angle (ϕ) are plotted with respect to frequency and oil saturation/reservoir porosity. Both cases show similar velocity gradiets with porosity obviously having a larger difference. The porosity case shows an order of magnitude difference from the oil saturation case in all models except for the attenuation.

<table>
<thead>
<tr>
<th>Fluid</th>
<th>K [GPa]</th>
<th>ρ [g/cm3]</th>
<th>ϕ [deg]</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>24.69</td>
<td>1.00</td>
<td>0.504</td>
<td>30</td>
</tr>
<tr>
<td>Oil</td>
<td>32.56</td>
<td>0.85</td>
<td>0.700</td>
<td>40</td>
</tr>
</tbody>
</table>

Application

The results indicate that the method is not promising for deeper oil exploration; it could be beneficial to look at shallow oil reservoirs as the difference in bulk modulus might be magnified by less overburden.

Acknowledgments

We are grateful to Svenska Petroleum-Explotation and Det Norske Oil (DNNOil) for the data. A special thank you is extended to Thomas Liljedahl from Svenska Petroleum-Explotation and Erling Rykkvold from Aker BP for their valuable help and discussion on the topic and results.

Conclusion

The porosity affects the reflection coefficient, velocity and phase significantly more than oil saturation does. The attenuation however is more affected by saturation than porosity at 63%.

White’s model relies on the difference in bulk modulus of the saturating fluid (oil) and the surrounding rock matrix. A fluid saturated rock has a phase shift that is approximately equal to the phase shift in the surrounding rock matrix, and the attenuation caused by the phase shift is zero.

References

