Northern Finland Unit M42/2010/67 Rovaniemi

22.2.2011

REE-mineralogy of Suhuvaara appinite, Inari, Northern Finland

Thair Al-Ani and Olli Sarapää

PL / PB / P.O. Box 96

Tel. +358 20 550 11

FI-02151 Espoo, Finland

GEOLOGIAN TUTKIMUSKESKUS • GEOLOGISKA FORSKNINGSCENTRALEN • GEOLOGICAL SURVEY OF FINLAND

FI-70211 Kuopio, Finland FI-67101 Kokkola, Finland

PL / PB / P.O. Box 97

Tel. +358 20 550 11

PL / PB / P.O. Box 77

Tel. +358 20 550 11

Fax +358 20 550 14

FI-96101 Rovaniemi, Finland

 Fax +358 20 550 12
 Fax +358 20 550 13
 Fax +358 20 550 5209

 Y-tunnus / FO-nummer / Business ID: 0244680-7
 • www.gtk.fi

PL / PB / P.O. Box 1237

Tel. +358 20 550 11

GEOLOGICAL SURVEY OF FINLAND DOCUMENTATION PAGE

Date / Rec. no.
22.2.2011

Authors Thair Al Ani and Olli Sarapää	Type of report M42
	Commissioned by GTK
Title of report	

REE-mineralogy of Suhuvaara appinite, Inari, Northern Finland

Abstract

Suhuvaara appinite dike is 4.7 km long and ca. 100 m wide in the Lapland granulite complex. The dyke contains 4-9 % apatite. Four drill core samples were studied in detail to investigate their petrography and concentration of REE in different mineral phases. Apatite is fluorapatite. Multigrain analyses show that apatite contains in an average 54 wt% CaO, 42 wt% P₂O₅, 2.5 wt% F and 1.5 wt% Cl. The mineralogy of the studied samples comprises also many minerals such as plagioclase, pyroxene, biotite, phlogopite, chlorite, titanite, ilmenite, hematite, and magnetite. The main REE-minerals are monazite and allanite. Monazite occurs as inclusions in phlogopite, apatite and in chlorite and in addition often in contact with apatite. Multigrain analyses show that the monazite-(Ce) is rich in LREE as Ce (~36 %), La (~20 %), Nd (~9 %), CaO (<1 %), P₂O₅ (28%) and F (<1 %). Allanite, after monazite, the most important LREE in studied samples. The grain size of allanite varies between 50 x 100 - 80 x 400 micrometers and occurs in association with phogopite, iron oxide, ilmenite, apatite and plagioclase. Allanite contains ~10 % Ce₂O₃, ~5 % La₂O₃ and ~2 % Nd₂O₃ (Table 1). In addition, it contains total iron (12 %) and the highest aluminum (>18 %) and silica (33 %).

Keywords

Appinite dike, REE-bearing minerals, fluorapatite, allanite, monazite, SEM, EPMA, XRF-analyses

Geographical area									
Finland, Lapland, Inari, Su	huvaara								
Map sheet									
384102									
Other information									
Report serial		Archive code	Archive code						
M42		M42/2010/67	M42/2010/67						
Total pages	Language	Price	Confidentiality						
7 p., 3 apps.	English		Confidential until 31.12.2011						
Unit and section		Project code							
Northern Finland Unit		2141007							
Signature/name		Signature/name							
Thair Al-Ani		Olli Sarapää	Olli Sarapää						

Contents

Documentation page

1	INT	RODUC	1	
2	ANA	LYTICA	AL METHODS	1
3	MIK	ROPRO	DBE RESULTS	1
	3.1	Apatite	chemistry	1
	3.2	REE-m	inerals chemistry	3
		3.2.1	Sample R1 (47,80)	3
		3.2.2	Sample R1 (109,80)	3
		3.2.3	Sample R2 (94,40)	3
		3.2.4	Sample R2(100,20)	5
4	REF	ERENC	ES	7
5	APP	ENDICE	ES	7

1 INTRODUCTION

Suhuvaara appinite dike is located 9 km north from the Inari village, in the area of the proterozoic Lappland granulite complex. The appinite dike is vertical, running northeast, and is some 400 m long and 100 m wide. The composition of the appinite is dioritic and it contains 1.5 % - $3.5 \text{ wt\% } P_2O_5$ corresponding to 3.6-8.5 % apatite content (Appendix 2). The highest apatite contents correlate positively with Mg-content (Mutanen 2010).

This study focuses on REE concentrations in whole rock samples and different mineral phases of appinites, apatite and accessory phases of REE-minerals. We present chemical data obtained by electron microprobe from different types of primary and accessory minerals hosted in Suhuvaara appinite. Analyses include main, trace and REE elements such La, Ce, Nd, Th, U, Ba, P and Sr. The main minerals in studied rocks are pyroxene, biotite, amphibole, plagioclase, quartz and chlorite, and the accessory minerals are apatite, titanite, ilmenite and hematite (see Table 1, 2). The principal REE- minerals in studied rocks are mainly monazite-(Ce) with traces of allanite.

2 ANALYTICAL METHODS

The samples selected for mineralogical studies were first studied under a polarization microscope. All photographs were taken from polished sections, in reflected, plane polarized light. The mineral compositions were preliminarily analysed with a scanning electron microscope (SEM) JEOL JSM 5900 LV equipped with an energy dispersive spectrometer (EDS) at the Research laboratory of GTK (Espoo).

The mineral chemistry was investigated by electron microprobe (Cameca SX100) at the Research Laboratory of GTK (Espoo). The analysis conditions were as follows: accelerating voltage 15 kV, beam current 20nA. The electron beam diameter was 1 μ m in the analyses without fluorine and 5 μ m when fluorine was determined. For electron optical studies using SEM/EDS and electron microprobe (EPMA) the polished thin sections were carbon coated to gain conductivity.

3 MIKROPROBE RESULTS

3.1 Apatite chemistry

Apatite is a common accessory in Suhuvaara samples, most samples contain fluorapatite. More than forty analyses of apatite have been performed on 13 different crystals in the studied samples (Table 1). All analyzed apatites have F content between 2.1 and 4.7 wt%. Concentrations of Cl, varies from <1 wt.% to 2.5 wt%, in the some apatite grains the Cl content is relatively the same content of F to form chlorine-bearing fluorapatite (see Table 1 and Appendix 1, 2). Apatite occurs as euhedral-subhedral stubby to acicular prisms or elongated-shaped grains (Fig. 1). Apatite crystals in many samples contain numerous inclusions of monazite (Fig. 2). Apatites are associated carbonate - silicate minerals as calcite, biotite, plagioclase, phlogopite, chlorite, pyroxene, and ilmenite. Table (2) shows the microchemical analysis of these minerals.

Figure 1. Location of Suhuvaara appinite dike in Proterozoic Lapland granulite complex. Basemaps: © National Land Survey of Finland, licence no MML/VIR/TIPA/217/10 and.Bedrock Map Database DigiKP Finland, GTK.

3.2 **REE-minerals chemistry**

3.2.1 Sample R1 (47,80)

The heavy minerals include iron oxide, ilmenite, apatite, monazite and allanite. Lighter minerals include quartz, plagioclase, calcite, phlogopite and amphibole. Iron oxide and ilmenite often form mixed grains Table (1, 2).

Cerium is the dominant REE in monazite in all studied samples (Table 3). Analysis of monazite grains indicates that they contain Ce_2O_3 more 35 %. In addition, they contain larger amounts of La_2O_3 (~20 %) and less content of Nd_2O_3 (~9 %). Microprobe analysis show that the most monazite grains rich in Th and contain in some grain about 4 % ThO₂, see Table (1) sample R1 (109,80) grain 8. The grain size of monazite varies between 15 x 15 - 30 x 120 micrometers. Monazite occurs in association with phlogopite, calcite, quartz, amphibole, apatite, iron oxide, plagioclase and ilmenite (Fig. 1a, b).

The second REE-minerals in studied sample is allanite, the levels of REE in studied allanite of R1 (47.80) are low content. Ce is dominant over La in all cases and it contains ~10 % Ce₂O₃, ~5 % La₂O₃ and ~2 % Nd₂O₃ (Table 1). In addition, it contains total iron (12 %) and the highest aluminum (>18 %) and silica (33 %). The grain size of allanite varies between 50 x 100 - 80 x 400 micrometers (three allanite grains were found). Allanite occurs in association with phlogopite, iron oxide, ilmenite, apatite and plagioclase. In one case contains an apatite inclusion (Fig. 1c).

3.2.2 Sample R1 (109,80)

Sample contains iron oxide, apatite, Fe-Mg-silicate (possible amphibole), K-mica (most probably phlogopite), pyrite, pyrrhotite, baryte, goethite, zircon and quite a lot of monazite. In many cases pyrite has a goethite rim. In places pyrite seems to contain some amounts of nickel and cobalt. Sometimes pyrite forms mixed grains with chalcopyrite. Monazite occurs as inclusions in quartz and K-mica and also on the grain boundaries of apatite and pyrite. In one case monazite contains zircon inclusion. The grain size of monazite varies between 10x10 - 70x70 micrometers. The grain size of apatite is often between 100 - 500 micrometers (Fig 1d).

3.2.3 Sample R2 (94,40)

The heavy minerals include iron oxide, apatite, pyrite, goethite, Ni-Fe-sulphide (associated with pyrite), baryte, zircon and monazite. Lighter minerals include quartz, plagioclase, chlorite, phlogopite, amphibole and unnamed Fe-Mg-silicate. Baryte and zircon grains are sometimes quite large (80×100 and 300×500 micrometers respectively). In some cases pyrite is rimmed by iron oxide (goethite). The grain size of monazite varies between $10 \times 10 - 60 \times 60 - 30 \times 80$ micrometers. Monazite occurs in association with apatite, amphibole, chlorite, plagioclase, iron oxide, quartz, phlogopite and pyrite (Fig 1e, f).

Sample						R0 30	4/17.12 (<i>A</i>	Apatite)				
spectrum	gr1	gr2	gr3	gr4	gr5	gr6	gr7	gr8	gr9	gr10	gr11	gr12
Na2O	0,09	0,06	0,08	0,05	0,05	0,06	0,08	0,05	0,10	0,10	0,14	0,07
P2O5	42,22	41,94	42,73	42,75	42,26	42,21	42,63	42,69	42,43	42,45	42,14	42,14
MgO	0,00	0,01	0,03	0,05	0,00	0,06	0,04	0,02	0,05	0,02	0,02	0,01
AI2O3	0,02	0,00	0,00	0,00	0,03	0,00	0,00	0,01	0,00	0,00	0,03	0,02
SiO2	0,14	0,21	0,13	0,16	0,09	0,11	0,21	0,16	0,22	0,19	0,24	0,14
SO2	0,07	0,11	0,06	0,05	0,05	0,08	0,08	0,08	0,07	0,10	0,10	0,09
CaO	55,41	54,00	54,22	54,26	54,49	54,08	54,57	54,24	55,90	53,83	53,30	54,25
TiO2	0,02	0,00	0,00	0,00	0,03	0,00	0,02	0,00	0,00	0,00	0,02	0,00
MnO	0,14	0,17	0,14	0,11	0,14	0,13	0,15	0,11	0,07	0,04	0,10	0,17
FeO	0,25	0,21	0,24	0,26	0,20	0,26	0,23	0,19	0,14	0,11	0,14	0,09
Y2O3	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,02	0,00	0,02	0,00	0,00
Nd2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
La2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00
Ce2O3	0,12	0,18	0,21	0,14	0,09	0,09	0,19	0,11	0,17	0,17	0,23	0,14
ThO2	0,05	0,00	0,04	0,00	0,08	0,02	0,05	0,01	0,00	0,00	0,00	0,03
SrO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZrO2	0,18	0,10	0,23	0,21	0,01	0,18	0,19	0,22	0,15	0,20	0,21	0,25
K2O	0,00	0,01	0,00	0,00	0,00	0,02	0,00	0,00	0,02	0,00	0,01	0,00
F	2,39	2,53	2,07	2,67	2,79	2,50	3,03	2,87	3,23	3,22	2,63	2,37
CI	1,23	1,48	1,04	1,11	1,52	1,52	1,07	0,89	0,81	0,75	1,37	1,56
Total	101,02	99,61	100,12	100,50	100,32	99,92	101,06	100,27	101,80	99,70	99,26	99,98

Table 1. Selected microprobe analyses (wt %) of apatite in the Suhuvaara drill core R0304/17.12

Table 2. Selected microprobe analyses (wt %) of minerals in the Suhuvaara drill core R0304/17.12.

Minerals	Ill	menite		Biotite		Chlor	rite		Plagioclas	e		Pyrox	ene	
spectrum	grain1	grain2	grain1	grain2	grain3	grain1	grain2	grain1	grain2	grain3	grain1	grain2	grain3	grain4
Na2O	0,0	0,0	0,3	0,3	0,3	0,0	0,0	4,0	4,2	3,9	0,0	0,0	0,0	0,0
P2O5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
MgO	0,2	0,3	15,2	15,3	14,8	2,9	3,1	0,0	0,1	0,5	23,0	23,2	23,5	23,5
AI2O3	0,0	0,0	15,5	15,7	15,7	18,0	18,3	30,6	30,1	29,7	1,2	0,9	1,4	1,5
SiO2	0,0	0,0	37,3	37,3	36,8	24,7	25,1	50,2	50,3	50,3	51,9	52,5	52,3	52,2
SO2	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
CaO	0,0	0,0	0,0	0,0	0,0	0,1	0,1	13,5	13,2	13,1	0,5	0,5	0,5	0,5
TiO2	44,1	45,1	2,7	2,8	2,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1
MnO	1,5	1,4	0,1	0,1	0,1	0,2	0,1	0,0	0,0	0,0	0,4	0,5	0,4	0,4
FeO	48,3	47,6	13,8	14,1	13,5	41,1	40,6	0,2	0,3	0,7	19,9	20,5	19,9	19,8
Y2O3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Nd2O3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
La2O3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Ce2O3	0,0	0,0	0,3	0,3	0,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ThO2	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SrO	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ZrO2	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0
K2O	0,0	0,0	7,4	8,5	7,6	0,0	0,0	0,1	0,1	0,1	0,0	0,0	0,0	0,0
F	0,2	0,1	0,7	0,7	0,7	0,1	0,1	0,0	0,0	0,0	0,1	0,1	0,1	0,0
CI	0,0	0,0	0,3	0,3	0,2	0,4	0,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0
F=O	-0,1	0,0	-0,3	-0,3	-0,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
CI=O	0,0	0,0	-0,1	-0,1	0,0	-0,1	-0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Total	94,3	94,6	93,4	95,2	92,7	87,5	87,7	98,8	98,3	98,4	97,1	98,3	98,3	98,1

3.2.4 Sample R2(100,20)

The heavy minerals include apatite, iron oxide, zircon, chalcopyrite, goethite and monazite. The grain size of monazite varies between $10 \times 10 - 10 \times 20$ micrometers. This sample contains fewer monazite grains than the sample R1-109,80. Monazite occurs as inclusions in phlogopite, apatite and in chlorite. In addition they are often in contact with apatite and quartz (Fig. 1g, h) and (Fig 2).

Allanite Minerals Monazite R1(47.80) R1(109.80) Monazite grain2 grain6 grain9 grain7 grain1 grain4 grain7 grain1 grain2 grain3 grain4 grain6 grain8 grain3 grain5 spectrum grain5 SiO2 0,8 0,5 1,0 0,8 0,7 0,7 0,4 0.4 1,2 0,8 0,6 0,8 0.633.3 33,1 33,2 0,0 0,0 TiO2 0,1 0,1 0,0 0,0 0,3 0,5 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,1 AI2O3 0.0 18.2 0.0 0.0 0.0 0.0 0.1 15.3 18.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 FeO 0,2 0,3 0,5 0,3 0,0 12,3 11,1 12,2 0,5 0,6 0,1 0,1 0,4 1,2 0,7 0,5 MgO 0,0 0,0 0,0 0,0 0,0 0,9 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,6 CaO 0,8 0,6 0,6 1,0 0,8 14,7 13,3 14,1 1,9 1,1 1,1 0,7 0,6 1,2 1,2 0,7 Y2O3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,2 0,0 0,0 0,1 0,0 0,1 0,0 0,0 Nd2O3 7,4 7,7 7,9 7,0 7,1 1,9 2,2 1.6 7,9 8,2 8,1 8,2 9,5 8,2 8,3 8,7 ThO2 1,2 2,2 1.0 0.4 0.1 0.3 2,5 1.3 0.7 0.2 4.1 2.1 0.1 0.0 2.1 1.4 UO2 0.0 0,0 0,0 0.1 0,1 0,0 0,0 0,0 0.1 0,1 0.0 0,0 0,0 0.0 0,3 0,1 La2O3 21,9 22,7 19,3 19,5 19,4 21,8 21,6 21.5 4,2 4.9 5,9 19.9 19,8 19.8 17,9 19,5 Ce2O3 35,8 35,9 37,1 37,3 9,4 10,6 33,9 36,2 34.6 9.0 35.7 35.2 36.7 37.2 34.4 35.2 P205 27.1 27.0 27.3 27.1 27.1 27.6 0.2 0.2 0.3 26.8 27.1 27.4 28.2 28.0 27.3 28.3 SO2 0,9 0,6 0,5 0.9 0,5 0.0 0.0 0,0 1,5 0.8 0,9 0,7 0,5 0.7 0.9 0,5 0,6 0,7 0,6 0,6 0,8 0,1 0,4 0,2 0,7 0,6 0,7 0,6 0,7 0,9 0,6 0,6 0,2 0,0 CI 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 97,0 97,0 97,1 96,5 97,9 94,2 97,0 95,6 99,2 97,6 97,4 Total 96.7 97.3 96.3 96.3 96.6 R2(94.40)Monazite R2(100.20) Monazite Minerals R1(109.80) Monazite grain9 grain13 grain4 grain6 grain1 grain4 grain5 spectrum grain1 arain5 grain10 grain11 grain12 grain2 grain3 grain2 grain3 SiO2 0,3 0,4 0,5 0,6 0,8 0,5 0,6 0,5 0.3 0,5 0,3 0,3 0,3 1,0 0,4 0,4 TiO2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,2 0,0 0,1 0,0 AI2O3 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 FeO 0,2 0,3 0,1 0,1 0,2 0,0 0,2 0,8 0,2 0,2 0,8 0,4 0,5 0,4 0,6 0,5 MgO 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,1 0,0 0,1 0,0 1.0 CaO 0.5 0.9 2.6 1.1 1.4 0.5 1.2 0.8 0.8 0.7 0.6 0.4 0.6 0.6 0.4 Y2O3 0,1 0,10.1 0.0 0,0 0,2 0,1 0,0 0,2 0,2 0,0 0.0 0.1 0.1 0.1 0,1 Nd2O3 8,5 8,7 10,6 10,2 9,4 8,8 8,8 7,6 8,1 8,0 8,1 8,1 8,9 9,8 9,8 9,7 0,3 1,2 0.9 ThO2 1.0 0.2 17 1.8 1.8 1,6 0.2 0.5 0.3 0.2 0.6 0.3 0.4 UO2 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,2 La2O3 18,2 19,1 18,8 20,4 20,3 20,3 20,3 20,0 19,0 20,2 18,6 17,6 18,7 17,5 17,8 18,3 Ce2O3 37,5 36,7 35,4 35,9 35,2 36,3 35,1 35,2 37,3 35,6 36,8 36,3 37,5 35,8 37,1 36,8 28,4 28,0 27,0 27,5 27,3 27,6 28,3 27,8 28.8 28,8 28,2 28,8 P205 27.6 27.8 28.3 28.2 SO2 1,8 0.4 0,7 0.8 0,8 0,3 0.7 0,8 0.7 0,6 0,6 0,2 0,2 0,4 0,2 0,2 0,6 0,7 0,7 0,5 0,7 0,6 0,6 0,7 0,7 0,5 0,8 0,8 0,8 0,7 0,7 0,7 CI 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,1 0,0 Total 96,2 96,9 96,0 96,5 96,9 96,1 96,4 96,9 96,9 96,2 96,4 95,6 97,8 96,0 97,1 97,3

Table 3. Selected microprobe analyses (wt %) of REE- minerals in the Suhuvaara samples.

Figure 2. Back-scattered electron imaging showing representative textures of monazite and allinite in Suhuvaara samples.

Figure 3. Back-scattered electron imaging showing Sub-parallel idiomorphic crystals of apatite with hexagonal cross sections with monazite inclusions, the apatite grains enclosed by primary silicate minerals, in Suhuvaara samples.

4 **REFERENCES**

Mutanen, Tapani 2011. Alkalikiviä ja appiniitteja. Raportti hankkeen "Magmatismi ja malminmuodostus II" toiminnasta 2002-2005. 627 s. Geologian tutkimuskeskus, arkistoraportti 9/2011.

5 APPENDICES

- 1. Selected microprobe analyses (wt %) of apatite from Suhuvaara appinite
- 2. Selected microprobe analyses (wt %) of apatite from Suhuvaara appinite
- 3. Whole rock analyses from Suhuvaara appinite dike, XRF (Labtium Oy, method 175x)

Sample	F	R2(100.2	20) apat	ite			R2	2(94.40) a	apatite			
Spectrum	Gr1	Gr2	Gr3	Gr4	Gr5	Gr6	Gr1	Gr2	Gr3	Gr4	Gr5	Gr6
SiO2	0,27	0,16	0,18	0,22	0,36	0,19	0,23	0,24	0,23	0,24	0,28	0,33
TiO2	0,02	0,02	0,02	0,00	0,00	0,01	0,00	0,02	0,00	0,01	0,02	0,01
Al2O3	0,00	0,00	0,00	0,00	0,00	0,01	0,02	0,00	0,00	0,00	0,00	0,04
Cr2O3	0,01	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,03	0,01
V2O3	0,00	0,00	0,04	0,02	0,00	0,01	0,00	0,00	0,01	0,00	0,03	0,00
FeO	0,20	0,16	0,12	0,12	0,23	0,17	0,05	0,09	0,03	0,05	0,06	0,05
MnO	0,14	0,13	0,12	0,14	0,15	0,16	0,01	0,03	0,03	0,02	0,01	0,01
MgO	0,04	0,00	0,01	0,04	0,02	0,04	0,03	0,04	0,03	0,02	0,07	0,04
CaO	53,99	53,12	54,45	53,67	53,40	53,39	55,14	54,04	54,97	54,86	54,47	54,44
Na2O	0,10	0,12	0,07	0,09	0,09	0,08	0,08	0,09	0,09	0,08	0,14	0,09
K2O	0,00	0,00	0,02	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SrO	0,36	0,41	0,39	0,38	0,39	0,37	0,21	0,22	0,25	0,24	0,22	0,19
BaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
NiO	0,00	0,00	0,01	0,00	0,03	0,00	0,01	0,02	0,01	0,00	0,00	0,00
ZnO	0,04	0,04	0,03	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,01
SO2	0,07	0,08	0,10	0,07	0,07	0,04	0,08	0,10	0,11	0,11	0,14	0,16
P2O5	41,13	41,33	41,67	41,81	41,35	41,89	41,93	42,31	41,90	42,18	41,37	41,13
F	2,47	2,04	3,42	2,71	2,46	2,23	3,94	3,62	3,82	3,38	3,22	3,30
$\mathbf{F} = \mathbf{O}$	-1,04	-0,86	-1,44	-1,14	-1,04	-0,94	-1,66	-1,52	-1,61	-1,42	-1,36	-1,39
Cl	2,4	2,5	1,3	1,7	2,2	2,3	0,2	0,2	0,2	0,2	0,2	0,2
Cl = O	-0,5	-0,6	-0,3	-0,4	-0,5	-0,5	0,0	-0,1	0,0	0,0	-0,1	-0,1
Total	99,7	98,7	100,2	99,5	99,3	99,4	100,3	99,5	100,0	99,9	98,9	98,6
Cl-pit (ppm)	24212	25147	13263	17178	22450	22684	2107	2257	2087	2045	2260	2288

Selected microprobe analyses (wt %) of apatite from Suhuvaara appinite.

Sample	R1(109	9.80) ap	atite		R1(4	47.80) ap	oatite	
Spectrum	Gr1	Gr2	Gr3	Gr4	Gr1	Gr2	Gr3	Gr4
SiO2	0,31	0,31	0,33	0,35	0,41	0,37	0,39	0,41
TiO2	0,00	0,00	0,00	0,00	0,01	0,02	0,00	0,00
Al2O3	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,02
Cr2O3	0,00	0,02	0,00	0,01	0,00	0,00	0,04	0,01
V2O3	0,03	0,03	0,00	0,00	0,00	0,06	0,00	0,02
FeO	0,14	0,13	0,09	0,14	0,07	0,09	0,09	0,11
MnO	0,03	0,05	0,02	0,02	0,06	0,07	0,04	0,07
MgO	0,05	0,03	0,00	0,03	0,00	0,03	0,00	0,00
CaO	55,20	54,36	54,49	54,47	54,48	54,35	54,42	53,87
Na2O	0,10	0,12	0,06	0,08	0,07	0,06	0,07	0,09
K2O	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SrO	0,28	0,20	0,24	0,21	0,35	0,30	0,24	0,31
BaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
NiO	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,00
ZnO	0,04	0,01	0,00	0,00	0,02	0,00	0,00	0,00
SO2	0,19	0,15	0,11	0,12	0,11	0,12	0,12	0,14
P2O5	41,10	41,82	41,64	41,88	41,09	41,44	41,57	41,20
F	4,46	3,86	3,27	3,22	4,60	4,16	4,69	4,13
Cl	0,25	0,21	0,23	0,24	0,08	0,07	0,08	0,07
Total	100,25	99,66	99,04	99,38	99,40	99,37	99,77	98,71
Cl-pit (ppm)	2532	2149	2274	2403	810	701	798	733

Specific detection limits (ppm) in the above analysis

Si	Ti	Al	Cr	V	Fe	Mn	Mg	Ca	Na	K	Sr	Ba
344	570	344	470	563	687	400	429	898	353	188	726	0

Ni	Zn	S	Р	F	Cl
411	882	318	1122	1405	106

Sample					R/	0301/82	.95			
Spectrum	gr1	gr2	gr3	gr4	gr5	gr6	gr7	gr8	gr9	gr10
Na2O	0,19	0,10	0,11	0,11	0,16	0,10	0,10	0,10	0,10	0,11
P2O5	40,82	40,30	40,70	40,82	40,04	40,77	40,84	41,46	41,23	40,95
MgO	0,00	0,00	0,00	0,03	0,12	0,02	0,03	0,03	0,02	0,02
A12O3	3,65	0,00	0,05	0,06	0,12	0,01	0,03	0,01	0,00	0,00
SiO2	0,14	0,31	0,00	0,00	0,00	0,00	0,00	0,30	0,27	0,22
CaO	54,09	54,01	54,35	54,15	53,94	54,42	53,98	54,09	53,68	53,64
TiO2	0,00	0,02	0,00	0,00	0,01	0,04	0,02	0,00	0,00	0,00
MnO	0,06	0,02	0,01	0,01	0,06	0,05	0,00	0,00	0,02	0,00
FeO	0,09	0,11	0,03	0,08	0,18	0,06	0,05	0,04	0,05	0,06
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nd2O3	0,09	0,10	0,07	0,11	0,08	0,00	0,13	0,17	0,07	0,00
La2O3	0,01	0,08	0,08	0,05	0,06	0,03	0,05	0,06	0,03	0,09
Ce2O3	0,36	0,39	0,38	0,34	0,37	0,35	0,32	0,35	0,30	0,26
ThO2	0,05	0,05	0,03	0,09	0,01	0,02	0,09	0,00	0,00	0,00
SrO	0,14	0,12	0,16	0,17	0,15	0,22	0,15	0,18	0,18	0,18
ZrO2	0,00	0,00	0,03	0,05	0,00	0,00	0,03	0,02	0,00	0,00
F	3,60	3,68	3,49	4,10	4,01	3,76	3,95	4,21	4,09	4,31
Cl	0,14	0,12	0,17	0,15	0,18	0,12	0,17	0,16	0,14	0,14
Total	101,89	97,84	98,14	98,56	97,75	98,36	98,23	99,37	98,45	98,15

Selected microprobe analyses (wt %) of apatite from Suhuvaara appinite.

Sample					R03	01/43.45				
Spectrum	gr1	gr2	gr3	gr4	gr5	gr6	gr7	gr8	gr9	gr10
Na2O	0,05	0,05	0,01	0,04	0,09	0,07	0,04	0,05	0,04	0,03
P2O5	41,59	41,01	40,85	40,71	40,86	41,09	40,83	40,71	41,51	41,52
MgO	0,00	0,00	0,02	0,00	0,02	0,00	0,00	0,00	0,01	0,00
A12O3	0,80	0,02	0,02	0,05	0,44	0,03	0,00	0,00	0,16	0,03
SiO2	0,00	0,10	0,12	0,02	0,00	0,10	0,12	0,00	0,00	0,00
CaO	55,11	55,27	54,59	54,70	53,85	53,78	54,90	54,04	54,23	54,49
TiO2	0,02	0,01	0,01	0,04	0,00	0,00	0,12	0,06	0,00	0,01
MnO	0,01	0,02	0,04	0,00	0,20	0,22	0,00	0,19	0,22	0,18
FeO	0,19	0,23	0,17	0,13	0,20	0,17	0,34	0,32	0,16	0,10
Y2O3	0,00	0,00	0,02	0,03	0,00	0,05	0,04	0,04	0,00	0,35
Nd2O3	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00
La2O3	0,03	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
Ce2O3	0,04	0,13	0,06	0,07	0,10	0,16	0,05	0,08	0,08	0,10
ThO2	0,00	0,06	0,00	0,00	0,02	0,00	0,00	0,00	0,01	0,00
SrO	0,20	0,11	0,10	0,06	0,21	0,18	0,07	0,16	0,19	0,14
ZrO2	0,04	0,08	0,00	0,00	0,00	0,03	0,09	0,00	0,00	0,02
F	4,80	4,48	5,28	4,98	2,08	2,31	3,96	2,25	2,68	3,31
Cl	0,31	0,31	0,17	0,19	2,79	2,52	0,40	2,42	2,30	1,66
Total	101,10	99,93	<u>99,1</u> 8	98,88	<u>99,3</u> 9	<u>99,1</u> 7	<u>99,</u> 19	98,82	99,96	100,16

Specific detection limits (ppm) in the above analysis

Na	Р	Mg	Al	Si	Ca	Ti	Mn	Fe	Y	Nd
444	1268	515	410	592	532	405	562	532	741	2216
La	Ce	Th	Sr	Zr	F	Cl				
963	910	1259	708	1140	1680	261				
	Na 444 La 963	Na P 444 1268 La Ce 963 910	Na P Mg 444 1268 515 La Ce Th 963 910 1259	Na P Mg Al 444 1268 515 410 La Ce Th Sr 963 910 1259 708	Na P Mg Al Si 444 1268 515 410 592 La Ce Th Sr Zr 963 910 1259 708 1140	Na P Mg Al Si Ca 444 1268 515 410 592 532 La Ce Th Sr Zr F 963 910 1259 708 1140 1680	Na P Mg Al Si Ca Ti 444 1268 515 410 592 532 405 La Ce Th Sr Zr F Cl 963 910 1259 708 1140 1680 261	Na P Mg Al Si Ca Ti Mn 444 1268 515 410 592 532 405 562 La Ce Th Sr Zr F Cl 963 910 1259 708 1140 1680 261	Na P Mg Al Si Ca Ti Mn Fe 444 1268 515 410 592 532 405 562 532 La Ce Th Sr Zr F Cl 963 910 1259 708 1140 1680 261	Na P Mg Al Si Ca Ti Mn Fe Y 444 1268 515 410 592 532 405 562 532 741 La Ce Th Sr Zr F Cl V <thv< th=""> <thv< th=""> <thv< th=""></thv<></thv<></thv<>

Wt %	V512/10/R1 46.90-48.90	V512/10/R1 108.00-	V512/10/R2 93.25- 95.25	V512/10/R2 99.25-
Na2O	2.88	2.00	1.82	2.43
MgO	5.43	7.92	9.50	6.46
AI2O3	18.2	17.7	15.8	18.6
SiO2	44.9	46.5	46.3	44.0
P2O5	2.22	2.17	3.54	2.85
K2O	3.01	1.91	1.41	2.35
CaO	8.48	9.57	10.2	9.31
TiO2	1.57	0.75	0.497	1.53
MnO	0.090	0.111	0.135	0.076
Fe2O3	11.2	9.34	9.47	11.3
S	0.241	0.305	0.195	0.246
CI	0.041	0.033	0.053	0.057
Sc	0.002	0.002	<0.002	<0.002
V	0.026	0.016	0.011	0.036
Cr	<0.002	0.003	0.003	<0.002
Ni	0.004	0.006	0.007	0.004
Cu	<0.002	0.005	0.004	0.004
Zn	0.011	0.010	0.011	0.009
Ga	0.002	<0.002	<0.002	<0.002
As	<0.002	<0.002	<0.002	<0.002
Rb	0.009	0.006	0.005	0.008
Sr	0.314	0.245	0.223	0.233
Y	0.002	0.002	0.002	0.002
Zr	0.008	0.015	0.011	0.009
Nb	<0.0007	<0.0007	<0.0007	<0.0007
Мо	<0.001	<0.001	<0.001	<0.001
Sn	<0.002	<0.002	<0.002	<0.002
Sb	<0.01	<0.01	<0.01	<0.01
Ва	0.376	0.173	0.120	0.311
La	0.014	0.006	0.008	0.009
Ce	0.028	0.019	0.025	0.020
Pb	<0.002	<0.002	<0.002	<0.002
Bi	<0.003	<0.003	<0.003	<0.003
Th	0.002	<0.001	0.003	0.003

< 0.001

< 0.001

< 0.001

U

< 0.001

Whole rock analyses from Suhuvaara appinite dike, XRF (Labtium Oy, method 175x)