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FOREWORD

This work comprises the following papers published previously:

I Laajoki, K. and Saikkonen, R., 1977 . On the geology and geochemistry

of the Precambrian iron formations in Väyrytänkylä, south Puolanka area, Finland.

Part Geochemistry. Geological Survey of Finland, Bulletin 292,78-723.

11 Danielsson, R. and Saikkonen, R., 1985. Chemical analysis of USGS-

W-2, USGS-DNC-I and USGS-BIR-I standard rocks. Geological Survey of Finland,

Report of Investigation 70. 13 p.

UI Lahti, S. and Saikkonen, R., 1985. Bityite 2Ml from Eräjärvi compared

with related LiBe brittle micas. Bulletin of the Geological Society of Finland 57, Part

r-2. 207-215.

W Lahti, S. and Saikkonen, R., 1986. Kunzite from the Haapaluoma

pegmatite quarry, western Finland. Bulletin of the Geological Society of Finland 58,

Part2,47-52.

V Kinnunen, K. A. and Saikkonen, R., 1983. Kivesvaara C2 chondrite:

silicate petrography and chemical composition. Bulletin of the Geological Society of

Finland 55, Part t,35-49.

VI Saikkonen, Risto J., 1990. Determination of water in silicate rock

samples by combustion and infrared absorption. Bulletin of the Geological Society of

Finland 62, Pat l,7l-77.

VII Saikkonen, Risto J. and Rautiainen, Irja A., 1993. Determination of

ferrous iron in rock and mineral samples by three volumetric methods. Bulletin of the

Geological Society of Finland 65, Part I, 59-63.

4 

FOREWORD 

This work comprises the following papers published previously: 

I Laajoki, K. and Saikkonen, R., 1977. On the geology and geochemistry 

of the Precambrian iron formations in Väyrylänkylä, south Puolanka area , Finland. 

Part Geochemistry . Geological Survey of Finland, Bulletin 292, 78-123. 

11 Danielsson, R. and Saikkonen, R., 1985. Chemical analysis of USGS­

W-2, USGS-DNC-1 and USGS-BIR-1 standard rocks . Geological Survey of Finland, 

Report of Investigation 70. 13 p. 

111 Lahti, S. and Saikkonen, R., 1985. Bityite 2M1 from Eräjärvi compared 

with related Li-Be brittle micas. Bulletin of the Geological Society of Finland 57, Part 

1-2, 207-215 . 

IV Lahti, S. and Saikkonen, R., 1986. Kunzite from the Haapaluoma 

pegmatite quarry , western Finland. Bulletin of the Geological Society of Finland 58, 

Part 2, 47-52. 

V Kinnunen, K. A. and Saikkonen, R., 1983. Kivesvaara C2 chondrite: 

silicate petrography and chemical composition. Bulletin of the Geological Society of 

Finland 55 , Part 1, 35-49. 

VI Saikkonen, Risto J., 1990. Determination of water in silicate rock 

sampies by combustion and infrared absorption. Bulletin of the Geological Society of 

Finland 62, Part 1, 71-77 . 

VII Saikkonen, Risto J. and Rautiainen, Irja A., 1993. Determination of 

ferrous iron in rock and mineral sampies by three volumetrie methods. Bulletin of the 

Geological Society of Finland 65 , Part 1, 59-63 . 



)

VIII Saikkonen, Risto J. and Rautiainen, Irja A., 1990. Determination of
total carbon and non-carbonate carbon in rock samples by an infrared absorption

method. Bulletin of the Geological Society of Finland 62, Part 2, L49-156.

These publications are referred to in the Summary with Roman numerals I-VIII.

Publication I deals with the geochemistry of the Precambrian sedimentary iron

formations at Väyrylänkylä, Puolanka, with the aid of total rock, partial rock and

mineral analyses.

Publication II presents new, previously unpublished analytical data on three reference

rock samples of the USGS, i.e., W-2 diabase, DNC-I diabase and BIR-I basalt. The

analytical data obtained are compared with those reported by geolaboratories abroad.

Publication III examines in detail the bityite mineral, Cä,.sr lq.o: Nao.oz (Lir.re Als.os

M9o.rs Feq.13) (Alr53 Bez.z, Si4.26) ors.ro (oH)4.s4 F€0.,u, which occurs in a

pegmatite vein at Eräjärvi. The mineral had not previously been described from

Finland.

Publication IV describes a purple, transparent spodumene from Peräseinäjoki, Finland,

which turned out to be a gem-quality kunzite.

Publication V is a study on the Kivesvaara meteorite found in Paltamo, northern

Finland, in 1968. In chemical and mineralogical composition and in structure the

meteorite is a rare C2-class carbon-bearing chondrite.

Publication VI describes a new method for determining water in rock and mineral

samples based on infra-red absorption.
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VIII Saikkonen, Risto J. and Rautiainen, Irja A., 1990. Determination of 

total carbon and non-carbonate carbon in rock sampies by an infra red absorption 

method. Bulletin of the Geological Society of Finland 62, Part 2, 149-156. 

These publications are referred to in the Summary with Roman numerals I-VIII. 
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Publication VII examines three methods for determining ferrous iron and discusses

their accuracy and precision, and possible sources of error-

hrblication VIII reports the determination of total carbon with infra-red absorption

spectrometry and that of non-carbonate carbon in a chemically pretreated sample using

the same method.
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INTRODUCTION

The chemical analysis of rocks and minerals determines the concentrations of elements

and certain components. Geological investigations, which are often an integral part of

exploration for resources of raw materials in bedrock, require increasingly detailed

information on the chemical composition of rocks and minerals. Although often

covered, bedrock occurs everywhere on the globe. It is composed of different

lithologies (rocks), which in turn are composed of minerals. Most minerals, of which

over 2000 species are known, are crystalline compounds. The majority are rare and

thus unimportant as rock-forming constituents. The major minerals of rock types

number only a few tens and these are mainly silicates.

The established practice in classical rock analysis is to determine the composition of

13-18 elements. This type of analysis is called total analysis. Chemical analyses of

rocks are usually expressed as weight percents of oxides for the major elements. It is

assumed, in the absence of oxygen determinations, that the major cations are

accompanied by a stoichiometrically equivalent amount of oxygen. Most rocks are

silicate rocks composed of silicate minerals; total analysis is then called silicate analysis

and includes the following major and minor components: silica, titanium dioxide,

aluminium oxide, manganese oxide, iron(III) oxide, iron(Il) oxide, calcium oxide,

magnesium oxide, sodium oxide, potassium oxide, phosphorus pentoxide, carbon

dioxide, constitutional water and moisnrre water. These components are analysed

because they are the ones used in petrochemical calculations of the rocks and because

it is easier to compare rock analyses with each other if the same components are

determined and if they are reported in the same order (Lightfoot 1983, Mueller &

Saxena 1977). Sulphur, fluorine and chlorine concentrations and loss on ignition are

also often determined. The concentrations of major components usually exceed l%,

and those of minor components are in the range 1-0.01 Vo. The consentrations of trace

components are less than 0.01% and are frequently reported in parts per million, PPD,

or nglg. All the components included in the total analysis of rocks or minerals may be

called major components. Today, an ever increasing number of trace elements can be

determined (Table 1). For silicate minerals, the concentrations of components are

reported in the same way as they are for silicate rocks. The components of non-silicate

minerals and rocks may differ and these are often reported in order of importance.
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Mineral analyses are used to calculate the formula for the mineral being investigated,

to check the "purity" of the mineral, e.g. to establish the extent to which two minerals

are mixed with each other in solid solution, and to gauge large compositional variations

in minerals. The above also applies to special geological samples such as meteorites.

The elements determined at any one time depend on the purpose for which their

concentrations are used or needed (see Johnson & Maxwell 1981, Potts 1987).

Table I gives the total composition and several trace element concentrations of a

silicate rock, granite G-I, which was the first international reference rock sample

(Fairbairn 1951). The components of the total analysis are summed. The sum is one of

the criteria of the success of total analysis. It does not, however, guarantee that the

data on the single components are correct. Opinions differ about the magnitude of the

sum of a good analysis but 100% + 0.5% is universally considered acceptable. The

analysis sum should be corrected by subtracting the amount of oxygen corresponding

to sulphide sulphur and fluorine and chlorine, because the elements that occur as

sulphides, fluorides or chlorides are reported as oxides. The sulphide correction can be

done only if the mineral composition of the sample is known (Jeffery & Hutchison

1983).

The analytical method used here includes chemical pretreatment of the sample and the

method of determination plus the output of data. Sample preparation with its various

stages takes place between the analytical procedure and sampling. The method of

determination includes the pretreatrnent technique of a portion of the sample, the

instrumental or other determination and the output of data. The quality of the

analytical methods depends on the quality of all the contributing factors. The quality of

the methods can be assessed with various parameters deduced from the analytical data

obtained (see Johnson 1993, Potts 1993). Thanks to the rapid progress made in

instrumentation, automatics and data processing, well-equipped laboratories can now

produce more and more rock analyses with an increasing number of trace elements.

Assuring the quality of analytical data has thus become increasingly important, and

laboratories are required to report on and interpret the quality and applicability of their

analytical data. Correct use and interpretation of analytical data help guarantee the

success of geological investigations and interpretations.
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Table 1. Compositions of USGS granite sample, G-1, which was the
int,ernational geological reference sample in the world (Fairbairn
L951) Numerical values for the concentrations of major, minor and
constituents are from the paper of Govindaraju (1989) .

firsts
^! ^1gL AI.

Erace

Major and mj-nor
constituents ?

Trace elements nglg

sio2
Ti02
A12O3

Fe2O3

FeO
MnO
Mgo
CaO
NarO
Kzo
Pzos
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Hzo'
UU2

!

ö
Others

Sum
-olF, s, c1

Sufl\con.)

FerO, ,oo,

72 .5L
v . zo

L4.23
n cÄ

0.03
0.35
1.37
3.33
5.5L
0.08
0 .34
0.05
0.07
0.07
0.0r-
o -29

r.öö:-3"
0.03

1oo. 31

a. vf

0 -044
o.7
0.0032
1.5

1080
3
0. 05
0. l-4

200
0. 059

]-.73
40
2.3

20
1.6

L2
2.4
l-. 3
t -22

680
1q q

4.8
L.t2
5.4
0. 085
0.39
0. 035
0 .0252
0. 002

105
2L.3

0.155

Ag
AS

B
Ba
Be
Bi
Br
c
cd
Ce
c1

Cr

Dy
Er
Eu
F
9d

Gd
Ge
Hf
Hg
Ho
I
In
Ir
T.t

Li
Lu

Mo 5.8
N59
Nb 22.6
Nd 57
Ni 3.4
Os 0.00011-
Pb 46
Pd 0.0019
Pr L7
Pt 0.08
Rb 2L4
Re 0.00063
s 130
sb 0.3
Sc 2.8
se 0.007
Sm 8.3
Sn 3.2
Sr 248
Ta 1.5
Tb 0.58
Th 5r-
T1 L.23
Ttn 0. 15
u 3.4
v18
Yb1
Zn 45
ZT 2OL

From the early years of this century, the chemical analysis of rocks and minerals has

been made with classical wet-analytical methods. In classical analysis, elements are

precipitated from the solution as successive group precipitates and then determined

mainly with gravimetric methods. In the 1950s, rapid methods based largely on optical

spectroscopy, complexometric titration and flame emission were developed alongside

those of classical analysis. Modified classical methods and some rapid methods are still
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From the early years of this century, the chemical analysis of rocks and minerals has 

been made with classical wet-analytical methods. In classical analysis, elements are 

precipitated from the solution as successive group precipitates and then determined 

mainly with gravimetric methods . In the 1950s, rapid methods based largely on optical 

spectroscopy, complexometric titration and flame emission were developed alongside 

those of classical analysis. Modified classical methods and some rapid methods are still 
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used for the total analyses of reference rock and mineral samples required by

instruments and other non-routine samples and for determining the concentrations of

some elements and components. Since the 1960s, X-ray fluorescence spectrometry

(wavelength dispersive and energy dispersive), instrumental neutron activation analysis

and flame atomic absorption and emission spectrometry and graphite furnace AA

spectrometry, since the 1970s, plasma atomic emission spectrometry and since the

1980s, plasma mass spectrometry, have replaced many of the classical and rapid

methods. Today, chemical analyses of rocks and minerals are made on instruments

capable of determining up to 30-40 elements simultaneously or in rapid succession.

Among the techniques now in common use are the X-ray fluorescence analysis (XRF,

in this study WD-XRF), flame atomic absorption spectrometry (AAS) and inductively

coupled plasma atomic emission spectrometry GCP-AES).

However, not all the components of total rock and mineral analyses can be determined

with these instruments. The determinations of elements or components that cannot be

made with the above instruments, or which for some other reason are made separately,

are here called individual determinations. Water, ferrous iron and carbon are the most

common components analysed in this way. For rocks and minerals, halogen and

sulphur concentrations and loss on ignition are also often measured as individual

determinations.

The water in rocks and minerals occurs as moisture and constitutional or essential

water. There are several methods for determining water, the most cornmon of which

are those based on gravimetry, titrimetry and infra-red (IR) spectrometry (Section 3.1,

vD.

In rock and mineral samples, iron mostly occurs in oxidation states +II and +III.
After the concentration of ferrous iron has been determined, the concentration of ferric

iron can be calculated as a difference: Fe(total) - Fe (ferrous) : Fe (fenic). Iron(II)

is usually determined by titrimetry or spectrophotometry. There are very few methods

for determining iron(III) (Section 3.2, VII).

Carbon occurs in rocks and minerals as carbonate carbon and non-carbonate carbon,

both of which are measured as individual determinations. The methods used for
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coupled plasma atomic emission spectrometry (ICP-AES). 

However, not all the components of total rock and mineral analyses can be determined 

with these instruments. The determinations of elements or components that cannot be 

made with the above instruments, or which for some other reason are made separately , 

are here called individual determinations. Water, ferrous iron and carbon are the most 

common components analysed in this way. For rocks and minerals , halogen and 

sulphur concentrations and loss on ignition are also often measured as individual 
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both of which are measured as individual determinations. The methods used for 
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determining the total carbon concentration are based on combustion of the sample, in

the course of which the elemental carbon converts into carbon dioxide and the total

carbon can be measured as carbon dioxide. The carbon concentration in carbonate is

obtained by liberating and measuring the carbon dioxide from carbonates. Non-

carbonate carbon can be obtained from the difference between total and carbonate

carbons but can also be determined individually. Non-carbonate carbon is composed of

graphite and organic carbon (Section 3.3, VIII).

Halogens can be analysed by XRF although individual determinations are also

frequently made with an ion-selective electrode, ion-chromatography and spectro-

photometry. Neutron activation is also used (Section 3.4). The total sulphur in a sample

can also be analysed by XRF, but it is most commonly measured as an individual

determi- nation by combusting sulphur into oxide and measuring the amount of sulphur

dioxide thus formed. The sulphide and sulphate sulphurs in a sample can be analysed

individually with wet-chemical methods, too (Section 3.4). Loss on ignition (LOI) is

determined gravimetrically by igniting the sample at a high temperature (1000-120OC)

and measuring the loss in weight. LOI indicates the amount of volatile components in

the sample. These components include e.g. water (both moisture, HrO-, and essential

water, HrO*), carbon dioxide (COr, sulphur (S) and organic matter (Section 3.4).

CHEMICAL ANALYSES OF ROCK, MINERAL AND CERTAIN

SPECIAL SAMPLES

This section deals with the preparation and chemical analysis of rock and mineral

samples and certain special samples such as meteorites. An analytical package

containing modified classical methods and new methods is described, and a brief look

is taken at AAS, XRF and ICP-AES.
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2.1 Sample preparation

Variations in the analytical results of rock, mineral and special samples such as

meteorites, are controlled by variations in the geology, mode of taking and transporting

the sample, preparation of the sample and analytical factors. Laboratories see to the

preparation and analysis of samples. Sample preparation is the procedure between

sampling and chemical analysis. Sampling has attracted considerable attention recently,

partly due to the intensification of exploration for gold. The "nugget" (or single

particle) phenomenon is a reminder of the importance of correct sample selection and

preparation. The result of a chemical analysis and the geological inferences drawn from

it are no better than the sample from which the data derive. The total error or

analytical variation in results is the sum of all sub-errors. (Richardson 1993).

In preparation, a field rock sample, the size of which depends on the grain size and

homogeneity of the material, is reduced to a size, shape and weight appropriate for

analysis. The field sample is usually cut in two with a rock cutter (or "guillotine"),

then crushed in a jaw crusher and/or roll mill and pulverized in a disc mill. At

intervals, the size of the sample is reduced by splitting it into portions of equal size and

taking only one of these for further treaftnent. The sample should, however, retain its

homogeneity throughout the milling. The sample thus obtained, with a weight of 30-

200 g and a grain size of 100-200 mesh (0.147-0.074 mm), should represent the parent

sample as closely as possible. Contamination due to machinery, the environment or

other samples is difficult to eliminate completely and should be kept as low as possible.

In trace element determinations in particular, error due to contamination may dominate

the preparation error. Other preparation errors include loss of sample and volatile

components and the oxidation of ferrous iron in crushing, milling and homogenization.

The finer a sample is ground the longer it is in contact with air, the more moisture it

gets from air and the larger the part of ferrous iron that is oxidized into ferric iron.

Heating a sample during milling also enhances the oxidation of ferric iron and may

result in loss of water of crystallization. Small samples such as minerals and meteorites

are usually crushed in steel or diamond mortars and ground manually in an agate

mortar (Saheurs et al. 1993).
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The separation of mineral grains from a rock sample begins with the crushing and

grinding of the sample to a particle size smaller than that of the smallest grain of the

mineral to be studied. The most common grain size is 100-200 mesh. The separation

of minerals is based on the difference between their magnetic properties and specific

gravities. Picking minerals under a microscope is a very useful technique. Tiny mineral

grains, e.g. zircon grains in micas or chlorite grains in feldspars, may occur as

inclusions in the mineral being studied. In such cases it is impossible to obtain pure

mineral maffer, and the mineral analysis has an error component (Hutchison L974,

Papers III and IV).

Meteorites are divided into three main groups: stony, iron-stony and iron meteorites.

Preparation of meteorite samples depends to a great extent on the concentration of

native iron in the meteorite, and thus it is often very difficult to obtain a representative

sample. Stony meteorites without native iron are crushed and milled like silicate rocks

(III). The fusion crust formed when a meteorite falls must first be removed. Stony

meteorites with metallic iron, and stony iron meteorites are often divided magnetically

and/or by picking under a microscope into metallic and stony portions that can be

analysed separately. Samples are taken from iron meteorites by drilling or crushing,

and their purity is checked under the microscope. Metallic portions and inclusions are

sometimes analysed separately. The total analysis is obtained by combining the

subanalyses once the proportion of inclusions in the meteorite has been calculated from

their surface areas (Easton 1972). The metallic portions of meteorites can be milled

together with the stony portions by grinding the sample at the temperature of liquid air

(Berrl' & Rudowski 1965). The metallic portions can be evaporated as chlorides with

a dry chlorine gas, in which case stony matter is obtained as a residue (Moss et al.

1961).
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t, Rock analysis

For decades, the chemical analysis of rocks and minerals has been made with classical

wet methods in which the powdered sample is dissolved with the aid of fusion or acids.

In the classical analysis, elements are precipitated from the solute as successive groups

and their concentrations determined, commonly with gravimetric methods. Over the

years there have been many changes and refinements to the classical silicate analysis

(Dittler 1933, Hillebrand & al. 1953, Maxwell 1968, Jeffery & Hutchison 1983). In

the 1950s, rapid methods seeking to determine as many components as possible from

the same solute without separations and precipitations were developed parallel to the

classical analysis. These methods were largely based on optical spectroscopy,

complexometric titration and flame emission (Shapiro & Brannock 1956). Both classical

and rapid methods are still used for certain elements. Modified classical methods are

also used for the accurate total analyses of reference rock and mineral samples required

by analytical instruments. The first international reference rock samples were G-1,

granite and W-1, diabase (Fairbairn 1951). Today there ares over three hundred

international geological reference samples (rocks, minerals, soils, ores etc.)

(Govindaraju 1994). The Geological Survey of Finland (GSF) has participated in the

elaboration of many reference samples, with the author as a member the team of

chemists involved.

Figure 1 presents the modified classical methods employed in the chemical laboratory

of GSF and a scheme for the main component analysis of silicate rocks and minerals.

This scheme, which includes newer methods, has also been applied to other geological

samples, e.g. meteorites (I-V). Main component analysis consists of a main portion and

individual determinations. The procedure of the main portion is briefly as follows.

Powdered sample is dried at 110'C, and weighed to obtain the moisture (HzO-)

content. The sample is then fused with sodium carbonate in a platinum crucible at

1100"C. The fusion cake is dissolved in dilute hydrochloric acid, and silicon is

determined gravimetrically by separating it from the solute as silica hydrogel, which is

then ignited into silica for weighing. Mixed oxides, ammonia group or "R Or" are

precipitated from the filtrate with ammonia. The ignited and weighed oxide precipitate

(Al2O3, FeOr, TiO2, PrOr, etc.) is dissolved with pyrosulphate flux and the solution is
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made acidic with sulphuric acid. The residual silicon is determined from this solution

gravimetrically, and the total iron and titanium colorimetrically - iron as the yellow

ferric chloride complex and titanium with the Tiron reagent. The aluminium

concentration is obtained by subtracting from the total of the mixed oxides the

combined total of other elements present. Calcium is precipitated from the filtrate of

the hydroxide precipitate as oxalate, and magnesium is then precipitated as ammonium-

magnesium phosphate. Calcium is weighed as calcium carbonate or oxide, and

magnesium as magnesium pyrophosphate.

The second subsample is dissolved in hydrofluoric, nitric and perchloric acids.

Concentrations of sodium and potassium are determined from the solute thus obtained

by flame emission spectrophotometry GAES) (Asklund et al. 1966) or flame AAS

(Van Loon i980). Those of manganese and phosphorus are determined colorimetrically

as pennanganate (Langmyhr & Graff 1965) and molybdovanado phosphoric acid

complex (Shapiro & Brannock 1956).

The sample is analysed for water (Section 3.1, VD, ferrous iron (Section 3.2, VII),

carbon dioxide (Section 3.3, VIII), native carbon (Section 3.3, VIII), sulphur, fluorine

and chlorine as independent determinations. The water content of the sample is

measured by the IR method (VD. The constitutional water is obtained by subtracting

the moisture water from the total water (VD. The concentration of ferric iron is

calculated by subtracting the concentration of ferrous iron from that of total iron (VII).

This scheme for the complete chemical analysis of silicate rocks is an outcome of

continuous development. Several geoanalysts have published their rock analytical

methods and schemes (see e.g. Washington 1932,Hillebrand et al. 1953, Peck 1964,

Maxwell 1968, Kirschenbaum 1983).

Most routine chemical analyses of rocks and minerals are culrently made with

instruments permitting the simultaneous or rapid successive determination of several

elements. Instruments in common use include the X-ray fluorescence spectrometer, the

atomic absorption spectrometer and the inductively coupled plasma spectrometer.
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Figure 1. The scheme for the main componenE analysis of sj-licate rocks
anä minerals used at the Geological Survey of Fin1and. Conventional "main
portion" analysis and components requiring indj.vidual determination.
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Figure 1. The scheme for the main component analysis of silicate rocks 
and minerals used at the Geological Survey of Finland. Conventional "main 
portion" analysis and components requiring individual determination. 
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Samples can be analysed for several major, minor and trace elements by XRF.

Powdered sample is converted into a glass disk by fusion or is compressed with a

binder into a briquette. Geological samples can be analysed by XRF for Si, Ti, Al,

Fe,o,, Mn, Mg, Ca, Na, K, P, S, F, Cl and many other elements (Table 2) (Potts 1993,

Longerich 1995).

For flame AAS and ICP-AES analyses, the sample is brought into solution. The

resulting solution is usually made with lithium metaborate fusion or acids. Samples are

analysed successively for Si, Al, Mn, Mg, Ca, Na and K by AAS from the same

sample solution (Table 2) (Angino & Billings 1972, Slavin 1982).

In the 1970s and '80s the present author and his colleagues in GSF developed an

analytical scheme for rock and mineral samples based on flame AAS (Fig. 2). In this

scheme the bulk of silicon is removed from the solution with a single precipitation, and

the filtrate (0.5 g1250 ml made acidic with HCI) is analysed colorimetrically for

residual silicon and by flame AAS for aluminium and manganese. Total iron, calcium

and magnesium often require dilution. In the same years the flame AAS or flame AES

methods for several elements, e.g. Li, Rb, Cs, Be, Sr, Cr, Co, Ni, Cu, Znand Cd, in

a filtrate and in HF-HNO3-HCIO4 solution were developed by the present author and

his colleagues. The standard solutions are made taking into account the interference

caused by the matrix and ionization (Saikkonen 1967, 1968, t969, L970a, 1970b and

Papers II, III, IV and V).

In ICP-AES analyses lithium metaborate is commonly used as flux. The fusion cake is

dissolved in dilute nitric or hydrochloric acid. Perhaps the most widely used method of

dissolution is the acid digestion using mixtures of HF-HCIO* and/or HNO3, HCl,

H2SO4 acids in an open vessel from which silicon evaporates as SiFo. Decomposition

is more effective when done in a closed vessel at pressure. Silicon then remains in

solution and so can be determined. The solute is directed into a hot plasma and, with

the aid of standard solutions, the concentrations of up to 40 elements are determined

simultaneously from the emitting radiation with a spectrometer. For total analyses,

samples can be analysed for Si, Ti, Al, Fe,o,, Mn, Mg, Ca, Na, K and P by ICP-AES

(Table 2) (Thompson & Walsh 1989, Jarvis & Jarvis 1992).

17 

Sarnples can be analysed for several major, minor and trace elements by XRF. 

Powdered sampie is converted into a glass disk by fusion or is compressed with a 

binder into a briquette. Geological sampies can be analysed by XRF for Si , Ti , Al , 

Fe10l' Mn, Mg, Ca, Na, K, P, S, F , Cl and many other elements (Table 2) (Potts 1993 , 

Longerich 1995). 

For flame AAS and ICP-AES analyses, the sampIe is brought into solution. The 

resulting solution is usually made with lithium metaborate fusion or acids . Sampies are 

analysed successively for Si , Al , Mn, Mg, Ca, Na and K by AAS from the same 

sampie solution (Table 2) (Angino & Billings 1972, Slavin 1982). 

In the 1970s and ' 80s the present author and his colleagues in GSF developed an 

analytical scheme for rock and mineral sampies based on flame AAS (Fig. 2). In this 

scheme the bulk of silicon is removed from the solution with a single precipitation, and 

the filtrate (0.5 g/250 ml made acidic with HCI) is analysed colorimetrically for 

residual silicon and by flame AAS for aluminium and manganese . Total iron, calcium 

and magnesium often require dilution. In the same years the flame AAS or flame AES 

methods for several elements , e .g. Li , Rb, Cs, Be, Sr, Cr, Co, Ni, Cu, Zn and Cd, in 

a filtrate and in HF-HN03-HCI04 solution were developed by the present author and 

his colleagues. The standard solutions are made taking into account the interference 

caused by the matrix and ionization (Saikkonen 1967, 1968, 1969, 1970a, 1970b and 

Papers II, III , IV and V) . 

In ICP-AES analyses lithium metaborate is commonly used as flux . The fusion cake is 

dissolved in dilute nitric or hydrochloric acid. Perhaps the most widely used method of 

dissolution is the acid digestion using mixtures of HF-HCI04 and/or HN03 , HCI , 

H2S04 acids in an open vessel from which silicon evaporates as SiF4 . Decomposition 

is more effective when done in a closed vessel at pressure. Silicon then remains in 

solution and so can be determined. The solute is directed into a hot plasma and, with 

the aid of standard solutions, the concentrations of up to 40 elements are determined 

simultaneously from the emitting radiation with a spectrometer. For total analyses , 

sampies can be analysed for Si, Ti , Al , Fe101 ' Mn, Mg, Ca, Na, K and P by ICP-AES 

(Table 2) (Thompson & Walsh 1989, Jarvis & Jarvis 1992). 
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Figure 2. A scheme for main component analysis of silicate rocks and
minerals developed at the Geological Survey of Finland in the 1970s and-80s. ,'Main'r portion analysis with flame AAS from the solution after one
precipitatj-on of silicon. ComponenEs requiring individual determination.
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Table 2.
reference
modif i-ed
Standard

t9

Element oxide concentrations (?) of t.he international rock
sample !{-2 (diabase) ,' accordj.ng Eo tshe literature, with

classj-cal and some other methods, XRF, flame AAS and ICP-AES.
deviations calculated from six successive determinat,ions.
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sio2

A1,;,
Fe2O3,o.

Fe2O3
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MnO

Mgo

r\q2v
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Pzos
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Hzo-
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1 n4

L.52
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2 .1-4
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0. r_3

0.55
n ??

0.06
79 ppm

205 ppm

190 ppm

52.60+0.10
1.04+0.01

15 .5]-t0. 13

10.75+0.03
1 .41+0 . 04

8.39t0.02
0.15+0.00
5 .63+0. 06

LO.74t0.02
2 .11+0 . 01

0.63+0.01
0.l-1+0.00
0 . 58r0. 02

0.15+0.00

52.95!O.t7
1 . 0610. 01

l-5.3910.1-9

10.85+0.09

0.15t0.00
6.28t0.07

11 .3310.02
2 .1110.03
0 .5510. 0l-

0 .1410. 0l-

52.47+O.45
l-. 0610. 0l-

14 . 83+0. L4

10.60+0. 01

0.16+0.00
6.24+0.05

10. 98r0. 02

2 .18+0. 0l-

0 .6010. 0L

az -zz+u . zL

r-OStO.Or
1-5 .4010 . 13

l-0.98i0.32

0.15+0. 00

5.0310.04
1-0.8010.01
z.z1+u.u5
^...^^^v. of +u. uz

0 -24+0 . 02

a. Potts et al. Lg92 b. GSF, analysed by the presenE auEhor (Paper

rI), c. faboratory usGsR/xRF (Flanagan 1984), d. laboratory BIo/AAS
(Flanag:an 1984) , e. laboratory UIIID/ICP-AES (Flanagan ]-984) .

The compositions of and some information on rock and mineral samples analysed in the

chemical laboratory are stored in the database of GSF. The rock and mineral analysis

data base, KALTIE, contains 3274 chemical analyses of Finnish rocks and minerals,

which were obtained in L905-1992 with classical and instrumental methods. The

general information (number of sample and analysis, location, rock types, geologist,

analyst, publication) and the analysis information (main and trace constituents, method

of chemical analysis) on the rocks and minerals are stored in this relational database

(Gustafsson & Saikkonen 1994).
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Table 2. Element oxide concentrations (%) of the international rock 

reference sampIe W-2 (diabase); according to the literature, with 

modified classical and some other methods, XRF, flame AAS and ICP-AES . 

Standard deviations calculated from six successive determinations. 

LIT . a CLASS b XRP< AASd ICP-AESe 

SiOz 52.44 52.60±0.10 52 . 95±0.17 52.47±0.45 52.22±0 . 21 

TiOz 1. 06 1. 04±0. 01 1.06±0.01 1 . 06±0 . 01 1.05±0.01 

Alz03 15.35 15 . 51±0 . 13 15.39±0.19 14.83±0.14 15.40±0.13 

FeZ03tot 10 . 74 10.75±0.03 10 . 85±0.09 10 . 60±0 . 01 10.98±0 . 32 

FeZ03 1. 52 1. 41±0. 04 

FeO 8.31 8.39±0 . 02 

MnO 0.16 0.16±0.00 0.16±0.00 0.16±0.00 0.15±0 . 00 

MgO 6 . 37 6.63±0.06 6 . 28±0.07 6.24±0.05 6 . 03±0 . 04 

CaO 10.87 10.74±0.02 1l.33±0.02 10.98±0.02 10.80±0.01 

NazO 2.14 2.11±0.01 2.11±0.03 2.18±0.01 2 . 24±0 . 05 

KzO 0.62 0.63±0.01 0.65±0 . 01 0.60±0.01 0.61±0.02 

P20S 0.13 0.11±0.00 0.14±0.01 0.24±0.02 

H2O+ 0.55 0.58±0.02 

H2O· 0 . 23 0 . 15±0.00 

CO2 0.06 

S 79 ppm 

F 205 ppm 

Cl 190 ppm 

a. Potts et al. 1992 b . GSF, analysed by the present author (Paper 

II), c . laboratory USGSR/XRF (Flanagan 1984), d. laboratory BIO/AAS 

(Flanagan 1984), e. laboratory UIND/ICP-AES (Flanagan 1984). 

The compositions of and some infonnation on rock and mineral sampies analysed in the 

chemical laboratory are stored in the database of GSF. The rock and mineral analysis 

data base, KALTIE, contains 3274 chemical analyses of Finnish rocks and minerals, 

which were obtained in 1905-1992 with classical and instrumental methods. The 

general infonnation (number of sampie and analysis, location, rock types, geologist, 

analyst, publication) and the analysis information (main and trace constituents, method 

of chemical analysis) on the rocks and minerals are stored in this relational database 

(Gustafsson & Saikkonen 1994). 
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The main-portion analysis and the analysis of the components requiring individual

determination (Fig. 1) were tested and investigated in publication II. Agreement

between the results of this study and the "best estimates" given by F.J. Flanagan was

good (Flanagan 1984). The coefficient of variation of the data for ten constituents was

O.l-l% and for two constituents over l%. (Table 2).The precision of the classical

silicate analysis has also been assessed by Flanagan and Kirschenbaum (1984), who

analysed reference rock samples for 15 elements or components using classical

chemical methods. According to them, the variation of the determinations (CV : 0.2-

L%) wtll be the same for sample portions analysed as a group or analysed over some

time interval.

The precision of a technique depends upon many factors e.g. sample preparation,

matrix and interference effects and their correction, and instrumental drift during an

operation. The precision for an element is generally related to the concentration.

Comparison of the precision of different techniques is therefore difficult. The

precisions of XRF, flame AAS and ICP-AES presented here were taken from the

literature and so are comparable only to some degree.

The precisions of XRF rock analyses are about the same as those of the classical

silicate analysis (CV : 0.2-I%) for Si, Ti, Al, Fe,o,, Mn, Mg, Ca, Na and K, when

samples are made into glass disks after fusion with a specified lithium

tetraborate/metaborate flux (Ramsey et al. 1995). It is well known that the lightest

elements (particularly Na, Mg, Al, and Si) do not usually yield highly accurate and

precise results when from pressed pellets because of mineralogical effects. The

precisions for the heavy major elements, K, Ca, Ti, Mn, and Fe, are very similar to

those obtained with a more accurate and precise sample preparation by fusion

(Longerich 1995). According to the data obtained at the chemical laboratory of the

GSF, the coefficients of variation of XRF determinations are < I% for Si, Ti, Al, Fe,

Mg, Ca and Na, and 1-3 % for Mn, K and P (method code 175X: multi-element, over

40 elements, determination from powder pellets of sample) (Maija Hagel-Brunnström

1995, unpublished results).

For the AAS determinations, the coefficients of variation are about O.I-3% for major

elements analysed after fusion decomposition or an acid attack (Potts L987, Table 2).
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In paper II the GSF's coefficients of variation are 0.7% for A1,0.2% for Mg,0.6%

for Ca, 0.3% for Na and 0.3% for K. The precision for the major elements is about

0.3-2% for ICP-AES with fusion and an acid attack (Jarvis & Jarvis 1992, Ramsey et

al. 1995). The GSF's coefficients of variation for ICP-AES with HF-HNO3-HCI-

HCIO4 attack (method code 311P) are < l% for Ti, Al, Fe, Mn, Mg and Ca, and >

t% for Na, K and P (Riitta Juvonen 1995, unpublished results).

As shown in Table 2, not all the components of the total analysis of rocks and minerals

can be analysed by XRF, flame AAS and ICP-AES. The analytical procedure of

individual determinations is dealt with in Section 3.

2.3 Mineral analysis

Mineral analyses are used to classify minerals and distinguish between them, to

calculate their formulae, identify them and compare separate analyses of the same

mineral. Several textbooks are available on the decomposition of minerals (e.g. Sulzek

& Povondra 1989, Bock 1979, Chao & Sandszolone 1992).

The chemical analysis of silicate minerals is similar to that of rocks although the

samples often have to be treated individually. The components analysed depend on the

number of elements the mineral contains, the purpose of the analysis and the amount

of material available. The components are reported in order of importance (Hey 1973,

Samchuk & Pilipenko 1987). A substantial proportion of mineral analyses are currently

made as microanalyses (electron probe microanalysis and ion microprobe analysis), in

which quantitative analysis on the surface of a polished thin section or the well-polished

surface of a sample yields data on the concentrations of major, minor and trace

elements, the accuracy of which depends on the reference and control samples available

(Potts 1993).

The present author has analysed over 100 mineral samples at the GSF, the data on

some of which have not been published before. The chemical analyses of 63 mineral
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samples are listed in tabular form in the Appendix. The determinations were made with

the modified classical methods described above, flame AAS and methods for individual

determination (I-VIII). Analyses of bityite and kunzite minerals are dealt with in Papers

III and IV.

Analysis of special samples

Meteorites are rather difficult to analyse chemically. Preparing a representative sample

tends to be a demanding task as meteorites are frequently very heterogeneous.

Powdered meteorites can be analysed for many major, minor and trace element

components with the classical and instrumental methods used for rock and mineral

samples (Jarosewich 1966, Saikkonen 1967, Fuchs et al. 1973, Hughes & Hannaker

1978, Adler 1986, Paper III). One of the developers of the analytical procedure for

chondrites (a group of stony meteorites) was the Finn, Birger Wiik (Wiik L956, L972).

Table 3 gives the chemical analysis of the Malampaka stony meteorite, an olivine-

bronzite chondrite in type, made by the present author (Graham et al. 1985). This

analysis has not been published before. The determination methods were very similar

to those used to analyse the Kivesvaara meteorite (Paper V).

The metallic iron of meteorites is analyed by dissolving the metal phase with

mercury(Il) chloride or copperfl) potassium chloride (Habashy 1961, Moss et aL. L967 ,

Fuchs et al. 7973). Iron, nickel, cobalt and copper can be determined from the

dissolved metal phase with various wet-chemical methods. In the analysis of the

Malanpaka meteorite, metallic nickel and cobolt were determined by flame AAS, and

metallic iron with colorimetric method.

Some chondrite meteorites contain metal, silicate, sulphide and phosphide phases and

other uncommon phases (Wedepohl 1978). These phases can be separated from each

other with successive dissolutions and analysed for their elements after ion exchange

separation (Shima 1974, Hughes & Hannaker 1978). Stony iron meteorites are often

divided magnetically into metal and stone phases before analysis.
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Table 3. Analysis of the Malampaka stony meteorit,e (olivine-bronzite
chondrite). Arralysed by the present autshor. Arralytical methods: modified
classical methods (gravimetric, titrimetsric, colorimetric), atomic
absorption spectrometry and other methods (see paper V and Graham et al.
198s) .

Species wE ?' EIemenLs wt*

sio2
Mgo

FeO

Af 2v3

CaO

Na20

Cr2O3

l,Ino

Hzo*

Pzos

vd

TiO2

Kzo

Total stsone

material

Fe

Ni
Co

Metallj-c grains
FeS

Sulphide Strains
Total

35.4
z5.o

LL.4
2.29
1. 55

1.00
o -47

0.30
0.20
0.18
0.L2
o.L2
0. r-0

76.7

F€-
si
Mg

s

Ni
A1

Ca

Na

Cr

Mn

c
K

Co

P

Ti
Cu

H.

Part total
or

Totsa1

35 .3

L6.6
L4.2
r..89
r_.88

L.20
I.Il-

0.74
0.32
0.23
o.L2
0-08
0 .08
0 .08
0. 07

0.01
0 .02

44.9
15.1

100 ?

16 .1
t.76
0. 08

17.9
5.19
5. 19

>>.ö

*

f

calculated from H2O'

calculated 100 - part, total

In the analysis of iron

separately (Moss et al.

meteorites

1961).

the metal phase and its inclusions can be treated
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Table 3. Analysis of the Malampaka stony meteorite (olivine-bronzite 

ehondrite) . Analysed b y the present author . Analytieal methods : modified 

elassieal methods (gravimetrie, titrimetrie, eolorimetrie), atomie 

absorption speetrometry and other methods (see paper V and Graham et al. 

1985) . 

Species wt % Elements wt % 

Si02 35.4 Fe tOl 36.3 

MgO 23 . 6 Si 16.6 

FeO 11. 4 Mg 14 . 2 

A1203 2 . 29 S 1. 89 

CaO 1. 55 Ni 1. 88 

Na20 1. 00 Al 1. 20 

Cr203 0 . 47 Ca 1.11 

MnO 0 . 30 Na 0 . 74 

HP+ 0 . 20 Cr 0.32 

pps 0.18 Mn 0.23 

Ctot 
0.12 C 0 . 12 

Ti02 0.12 K 0 . 08 

Kp ~ Co 0.08 

P 0 . 08 

Total stone 7 6 . 7 Ti 0.07 

material Cu 0.01 

H· 0 . 02 

Fe 16 . 1 

Ni 1. 76 Part total 84 . 9 

Co ~ 0# 15 . 1 

Metallic grains 17.9 Total 100 % 

FeS 2.:..ll 
Sulphide grains 5.19 * ealeulated from HP+ 

Total 99 . 8 # caleulated 100 - part total 

In the analysis of iron meteorites the metal phase and its inclusions can be treated 

separately (Moss et al. 1961). 
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Before 1969, meteorites were the only extraterrestrial material available for scientific

study. After the successful Apollo flights, samples from the Moon became available to

research teams. Among them was that of Birger Wiik, of which the present author was

a member (Wiik L975, 1986). The flrst flight, Apollo 11, was in 1969, and Finland

was the first country outside the USA to obtain lunar samples for chemical analysis

(Wiik & Ojanperä 1970).

3 ELEMENTS AND COMPONENTS REQTIIRING INDIVIDUAL

DETERMINATION

3.1 Determination of water

According to the constiütional classification, the water in rocks and minerals is bound

chemically and physically. The chemically bound water is constitutional water, or

water of crystallizltion. The water of crystallization occurs in minerals as bound water

or zeolite water. The physically bound water is adsorbed on mineral surfaces or

constitutionally absorbed, or it occurs in fluid inclusions within the mineral (Pyper

1985). In conventional rock and mineral analyses, a distinction is made between bound

water, here called water of crystallization, HzO*, and free water or moisture water,

HrO-. The temperature reported in the determination is usually 105-110"C. The water

liberated at this temperature is referred to as moisture water, HrO-; the remainder is

water of crystallization, HtO*. Note that the water of crystallization that may be

liberated at the above temperature is calculated as moisture water. Correspondingly, the

water liberated at high temperatures from fluid inclusions is calculated as water of
crystallization. Total water is the sum of moisture and crystallization waters (HzO., :
H2O- + HrO*).
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Metamorphic and sedimentary rocks usually contain small amounts of elemental

hydrogen that, under oxidizing analytical conditions, are converted into water and

included in the water of crystallization. The hydroxide group (OH), which occurs in

several minerals such as amphiboles and micas, evaporates from the minerals on

heating as water (Baur 1978).

In most of the classical and more recent methods for determining concentrations of

total and crystallization waters, the sample is heated at high temperature with or

without a flux. As a rule, the water is liberated from rocks without a flux if the

temperature is sufficiently high, 1100oC, and the time of heating sufficiently long

(Skinner et al. 1981). Some minerals, e.g. talc, topaz, staurolite, chondrodite, epidote

and cordierite, need a flux and high temperature for water to evaporate (Riley 1958).

Flux must also be used for the analvsis of many micas and rocks rich in micas

(Kuzuhisa 1991).

Concentrations of total and crystallization waters are usually determined with

gravimetric, titrimetric or IRS methods. The gravimetric methods, including the

classical Penfield method still in common use (see publication VI), are based on

weighing the water expelled and collected from the sample on heating (Volborth 1969,

Delong 1981). Analytical methods based on Karl-Fisher titration are also frequently

used (Troll & Farzaneh 1980, Westrich 1987). A number of instruments and methods

based on IR detection of the water expelled from the sample on heating have been

developed (Din & Jones 1978, Skinner et al. 1981).

A new infrared absorption method for rock and mineral samples is described in

publication VI. To determine the total water, an air-dry powdered sample is ignited at

1100"C in a nitrogen aünosphere without a flux or with PrOr-flux. The water liberated

is directed through an IR cell for measurement. The water of crystallization is

determined in the same way but the sample is heated at 110"C before the measurement.

The moisture water is determined at 110"C. The results have been compared with

those of the Penfield method and found compatible. Similar results have been obtained

from international geological reference samples. The new method has several

advantages: operation is simple and unvarying; it is also faster than the old Penfield-

method; the carbon dioxide liberated from samples does not interfere with the
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determination; nor does fluorine cause error in the water results when the sample in the

combustion boat is covered with quartz powder (Paper VI, Saikkonen 1990).

3.2 Determination of ferrous iron

Iron occurs in rocks and minerals in oxidation states of +II and +III and in very small

amounts as native iron. Knowledge of ferrous and ferric iron concentrations is

important for geochemical and petrological studies, for instance, when calculating rock

nonns and investigating magmatic processes. Meteorites usually contain native iron; in

iron meteorites it is the main component (Mueller 1978).

For the determination of ferrous iron, the rock, mineral or special sample is usually

dissolved. With the Mössbauer spectrometer the ratio of ferrous to ferric iron can be

determined on a solid sample direct. However, the method needs refining, particularly

for rock samples (Bancroft et aI. t977). There are far fewer methods for determining

ferric than ferrous iron, and the ferric iron concentration is usually calculated as the

difference between total and ferrous irons. Several methods are available for

determining total iron, and the procedure is generally fatly easy. Detailed descriptions

of the analytical methods for ferrous, ferric and total iron and their history have been

published by Maxwell (1968) and Sulzec & Povondra (1989).

As a technical procedure, the determination of ferrous iron may be straightforward but

it may still pose an awkward analytical problem. Most analytical errors arise during the

preparation and decomposition of samples. Ferrous iron may be oxidized into ferric

iron in the course of grinding. To prevent oxidation, the grinding should be done in an

inert liquid, e.g. acetone, as this prevents air from reaching the sample and also

reduces heat generation. The metallic iron in grinding vessels causes an error by

reducing some of the ferric iron into ferrous iron. Such contamination can be avoided

by grinding the sample in an agate mortar. Tungsten carbide, which is often used in

grinders, also acts as a reductant, making the concentration of ferrous iron higher than

it is in reality. If the sample is ground mechanically, the grinding time should be as
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short as possible to minimize oxidation. The grain size of the sample should be about

80 mesh, i.e. less than 0.175 mm, for the sample to dissolve in acids. A good grinding

vessel is one that prevents excessive heating (Rice 1982, Whipple et al. 1984, Paper

ur).

Ferrous iron is easily oxidized when a sample is dissolved in acids. To prevent this,

the sample should be dissolved in an inert atmosphere, e.g. oxygen-free nitrogen or

carbon dioxide gas. The effect of atmospheric oxygen can be minimized by painstaking

and careful work at all stages of decomposition. If a known amount of oxidant is used

in decomposition to oxidize the dissolving ferrous iron into ferric iron, no inert

affnosphere is needed. The oxidizing or reducing components in the sample alter the

true ferrous iron/ferric iron ratio during the decomposition. These oxidizing elements

include manganese (III), chromium (VI) and vanadium (V). Native iron, sulphur (II)

and organic matter are reducing agents (Fritz & Popp 1985, Kane & Skeen t993).

The weak point in acid decomposition is that some iron-bearing minerals dissolve

poorly in acids; not even prolonged leach in the much-used hydrofluoric-sulphuric acid

mixture can guarantee complete decomposition of the sample. Tourmaline, staurolite,

ilmenite, magnetite, chromite and a number of other less common minerals do not

dissolve at all, or only partially, during acid treatment. Prolonged boiling in acid easily

results in the oxidation of ferrous iron, as concentrated sulphuric acid is a very

effective oxidant. It might be advisable to repeat the acid decomposition and to try and

dissolve the residue once again. When the author used a decomposition bomb for rock

samples, a portion of ferrous iron oxidized, probably because the dissolution vessel was

not tight enough. A sample can also be brought into solution with a flux such as

sodium fluoroborate, lithium metaborate or lithium tetraborate. According to Kiss

(1984), the constitutional oxygen in the flux may act as an oxidizer for ferrous iron.

The concentration of ferrous iron in rock and mineral samples is usually determined

from dissolved sample. Exceptions to this rule are Mössbauer spectrometric

measurements, which use powdered sample (Dryar et al. 1987, Fudali 1988). The

concentration of ferrous iron in sample solute can be determined titrimetrically

(Whipple Ig74, Kiss 1977, Graff 1983), spectrometrically (Kiss 1984, Bruce & Bower

19g7, Endo etal. 1992, Flock & Koch 1993) or polarographically (Beyer etal. L975,
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Moore L979). Great care must be taken to ensure that the oxidation state of ferrous

iron remains unchanged while the measuring solution is prepared and also during the

measurement.

Titration of ferrous iron is undertaken as a visual or potentiometric oxidation/reduction

procedure, most commonly using potassium dichromate solution as the titrant. If the

sample is dissolved in the presence of an excess oxidant, the residual oxidant can be

titrated with a ferrous iron solution of known strength. This solution is often titrated

with a potassium dichromate solution. The concentration of ferrous iron in the sample

can then be calculated from the data thus obtained.

It is still difficult to determine concentrations of ferrous iron in minerals that do nor go

readily into solution and in rocks containing these minerals, as there is no entirely

satisfactory analytical method for that purpose. One of the most useful available for

determining ferrous iron in small mineral samples is probably the micromethod

introduced by Kiss. In it a mineral sample weighing a few milligrams is placed in a
quartz vessel and dissolved in cerium(IV)/phosphoric acid at 325"C. The concentration

of ferrous iron is then measured indirectly by potentiometric titration of the excess

cerium (IV) with ferrous iron solution (Kiss L9S7).

In contrast, several methods are available for the satisfactory determination of ferrous

iron in readily soluble rocks and minerals. All have high enough accuracy and

precision but their rapidity for the routine analysis of large series of samples could be

better.

Publication VII compares three titrimetric methods making use of 13 GSF and 3l
international geological reference samples. These are the method of Amonette & Scott

(1991), the modified method of Wilson (Wilson 1955, Whipple 1974) and the modified

method of Pratt (Jackson et al. 1987). All the methods are useful for samples that can

be dissolved in acids and do not contain oxidizing or reducing components. The

sulphur in acid-soluble sulphides in particular causes large errors in the method of
Amonette & Scott and also in that of Wilson. In Pratt-s procedure, soluble S(II) as

hydrogen sulphide gas does not interfere. The modified method of Pratt is the mosr

useful of the three for determining ferrous iron in unknown rock samples (Paper VII).
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Determination of carbon

Carbon, which is present in rocks and minerals in concentrations ranging from several

percent to a few ppm, most often occurs as a carbonate such as calcite, dolomite or

siderite. The amount of other carbon-bearing material, i.e. graphite and organic

carbon, is usually low, but in graphite schists the concentration of graphite carbon is

commonly several percent or even tens of percent (toukola-Ruskeeniemi 1992). Some

minerals have constitutional elemental carbon or CO or CN groups (Zemann 1978).

Fluid inclusions of metamorphic rocks often contain carbon dioxide and hydrocarbons

as gas or liquid (Roedder 1984).

In rock and mineral analyses, carbon is most often determined as carbonate carbon

(COt and total carbon. The concentration of non-carbonate carbon is obtained by

subtracting the concentration of carbonate carbon from that of total carbon. The non-

carbonate carbon is either graphite or other forms of element carbon derived from

organic matter (kventhal & Shaw 1980).

Most of the analytical methods are based on the decomposition of carbonates with acid,

ignition of the sample at high temperature or wet-oxidation of carbon, and the

gravimetric, titrimetric, colorimetric or IR spectrometric determination of the carbon

dioxide thus generated @aper WII, Saikkonen 1994). The carbonate and non-carbonate

carbons can be separated from each other by removing the carbonate carbon with acid

decomposition. Attempts have been made to separate the carbon phases with thermal

decomposition but the procedure is difficutt (Charles & Simmons 1986, Saikkonen

1993).

In the study discussed in Paper VIII, total and non-carbonate carbon were determined

with the IR carbon analyser, CR-12 (LECO Corporation). Before the non-carbonate

carbon was measured, the carbonate carbon was removed from the sample by acid

treatrnent. Twenty international geological reference samples and 13 GSF rock

reference samples were analysed for this study. The results were highly satisfactory,

particularly when compared with those reported for the 20 international reference

samples. The concentrations of carbonate and non-carbonate carbons obtained for the
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GSF reference samples were compatible with the gravimetric data. The precision of the

results, which was about L%,5% or l0% with a carbon concentration of about 10%,

I% or 0.1%, respectively, was good and consistent with the trend towards a relatively

low standard deviation at high concentrations but high deviation at low concentrations.

Once the CR-12 instrument is set up and has stabilized, the operation is easy. It is also

rapid: about 70 determinations of total carbon and 40 determinations of the non-

carbonate carbon can be made by one analyst daily, compared with 10 determinations

with the gravimetric method. The method is suitable for determining the carbon content

of ancient sediments and of igneous and metamorphic rock samples containing more

than 0.01 % C. A sample size of 0.5-1.0 g is recommended.

Determination of halogens, sulphur and loss on ignition

Determination of halogens

The mean concentrations of fluorine, chlorine, bromine and iodine in silicate rocks are

shown in Table 4. The most common fluorine-bearing minerals are biotite, apatite and

fluorite. Scapolite and sodalite are chlorine-bearing silicate minerals. Bromine is a

relatively rare element, but in marine sediments with organic component and in

sedimentary rocks its concentrations may exceed 100 ppm (Koljonen 1992).Iodine, the

rarest of the halogens, has the highest concentrations in marine sediments and

sedimentary rocks. It occurs in various minerals, most cornmonly as silver, copper

iodides, lead iodides and calcium iodate, or lauüarite, one of the most important iodine

minerals in sediments (Wedepohl 1978).

The detection limits of different methods for halogens in rocks and minerals are listed

in Table 5.
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Table 4. Mean halogen concentratsions (ppm) in
Hutchison l-983) and halogen concentrations in
sample, l4Ac-1 (marine mud) (Govindaraju 1989)
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Table 5. Detection timits of different methods for halogens (PPm in
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neutron activaEion, NAA,' spectrophotometry, CK; and "otshers", oTI{-

Samples were decomposed with fusion and trhe elements separated by

pyrohydrolyse or ion-exchange chromatography. XRF determinations were

made on briguetted samPles.
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Rocks and minerals can be analysed for fluorine and chlorine with a number of

methods. Normal silicate rock samples can easily be analysed with an ion-specific

electrode (Fabbri & Donati 1981, Stecher 1983, Yuchi et al. 1988, Rice 1988), by ion

chromatography (Conrad & Brownlee 1988, Hall et al. 1986, Kennedy et al. 1983,

Wilson & Kent L982, Ewarns et al. 1981, Gent & Wilson 1985), XRF (koni et al.

1982, Langenauer et al. 1992) or spectrophotometry (Fuge & Andrews 1985,

Adelantado et al. 1985, Hoffstetter et al. 1991). Low concentrations (<20 ppm) are

more difficult to determine; the sample must be bigger, and fluorine and chlorine must

be separated from the sample matrix and concentrated. Bromine and iodine can be

determined by spectrophotometry @yen et al. 1980, Fuge et al. 1978), XRF (Ullman

& Tisue 1983, Croscove 1970) or activation analysis (Langenauer et al. 1992).

In Chemical Laboratory of the GSF, fluorine concentrations of rocks and minerals are

determined with an ion-specific electrode from a solute produced with sodium

hydroxide fusion. The corresponding chlorine determinations are made by

spectrophotometry. The sample is dissolved with sodium carbonate fusion. Both

methods gave satisfactory results when compared with those reported for several GSF

and international reference samples (Rautiainen & Saikkonen, unpublished results).

Determination of sulphur

Sulphur occurs in rocks as sulphides, sulpho-salts, sulphates, native sulphur or organic

sulphur. Sulphide minerals such as pyrrhotite (Fe,-"S) and pyrite (FeSr) are presenr in

low abundances (0.01-0.1%) in almost all rocks. Many sulphide minerals form ores as

a result of various geological processes. Sulphate minerals, the most coürmon of which

are gypsum (CaSOo * 2H2O), alum (KAlSOo * 12 }lz0) and barite (BaSOo), are

abundant in marine sediments and sedimentary rocks. Soluble sulphates and gaseous
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the bacterial reduction of sulphates or the oxidation of volcanic hydrogen sulphide gas.

Organic sulphur compounds (e.g. S-aminoacids) are formed through sulphate reduction

(Wuesch 1978).

The sulphur in rocks and minerals is determined from pulverized samples. Excessive

grinding may oxidize part of the sulphides into sulphur dioxide, which is then expelled

from the sample. Sulphide may oxidize into sulphate, causing an error in the

concentration of sulphide zulphur in the sample.

Selective leaches are used for quantitative determinations of different sulphur forms

(Rice et al. 1993). The success of the determination depends on the mineral

composition and grain size of the sample, the degree of crystallization of the sulphide

minerals, the concentration of ferric iron in the sample, and the degree of diagenesis

or metamorphism of sediments and sedimentary rocks. The sample must, therefore, be

thoroughly examined before analysis. Information on the mineral and elemental

composition of the sample also facilitates performance of the analysis (Canfield et al.

1986, Tuttle et al. 1986, Jackson et al. 1987). In rock and mineral analysis, it is often

sufficient to determine totat sulphur (S.) when the sulphur concentration is low,

<0.L%. If sulphate and sulphide sulphurs are measured independently, their

concentrations are given as sulphur trioxide and native sulphur. In general, total

sulphur is reported as native sulphur. Sulphide correction must then be made for the

oxides of the analysis by subtracting the amount of oxygen corresponding to the

amount of sulphur from the sum of the oxides if other elements occurring as sulphides,

e.g. iron, have been reported as oxides. The correction is unnecessary if the sulphate

sulphur is reported as SOr. The sulphide correction is feasible only if information is

available on the mineral composition and analytical conditions. Pyrite does not go into

solution in the conventional determination of ferrous iron with the Pratt method.

Therefore, the ferrous iron of pyrite is often erroneously reported in the analysis as

Fe3*. In the classical methods of sulphur determination, the sample is usually dissolved

by fusion with sodium carbonate, and the total sulphur is oxidized into sulphate and

precipitated as barium sulphate. This method is not suitable for low concentrations, as

the BaSOa precipitate may include impurities. Sample can also be heated at a high

temperature in oxygen or air flux, often in the presence of an oxidant. Sulphur is then

oxidized into sulphur dioxide and trioxide. The gases are absorbed into a suitable
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solution and the sulphur oxides determined spectrophotometrically, gravimetrically or

titrimetricalty (Johnson & Maxwell l98l).

The sulphur concentration of rocks and minerals is usually measured with more or less

automated analysers. An X-ray fluorescence spectrometer is useful for the rapid

determination of several elements simultaneously. The powdered sample to be analysed

is compressed into a briquette or converted into a glassJike fusion preparate. For the

briquette, the detection limit of sulphur in routine determinations is about 20 ppm

(Potts L993). The disadvantage of this preparate is that correct sulphur data cannot be

obtained unless the sample and standard sample are of similar sulphide mineral

composition (koni et al. 1982). When measured on the fusion preparate, the detection

limit of sulphur is about 120 ppm (Potts 1993).

In many analytical methods, sulphur is first separated by heating the sample under

oxidizing conditions. Sulphur oxidized into sulphur dioxide in pyrolysis can be

determined by IR spectrometry (Terashima 1988), ion chromatography (Hall et al.

1986) and iodometric (Bouvier et al. L972) or colorimetric titration (Atkin &
Somerfield L994). Hall and Vaive (1989) have compared the zulphur determination

methods used by the Geological Survey of Canada, that is, pyrohydrolyse-ion

chromatography, pyrolyse-infra-red spectrometry and pyrolyse-titration.

Determination of loss on ignition

The reduction in the mass of the sample on ignition is reported as loss on ignition

(LOD. On ignition (usually for i h at 1000"C), water together with carbon in its
various forms is expelled from the weighed sample as are, either totally or partially,

sulphur, fluorine, chlorine and such rare elements as mercury and selenium. However,

the mass also increases during ignition, as ferrous oxide is oxidized into ferric oxide.

The mass increment can be calculated if the concentration of ferrous iron is known. If
it is not, then total iron must be reported as FqOr; the plus error due to the expression
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of ferrous iron as ferric iron is then of the same magnitude as the minus error in the

weighed LOI. Thus the errors compensate for each other and do not affect the sum of

the oxides in total analysis. The determination of LOI complements the total rock

analysis. Measurement of the concentrations of volatile components expelled from the

sample on ignition can be used to test the accuracy of rock analyses by XRF and

plasma spectrometry if it is neither possible nor necessary to determine these

concentrations independently (kchler & Desilets 1987, King & Vivit 1988, Huka &

Rubeska 1993, Kane & Skeen 1993).

SI,]MMARY

This study investigated and developed chemical analytical methods for rocks, minerals

and other geological samples such as meteorites. With the aid of Finnish and

international geological reference samples the methods were compared with other

methods in use. Numerous rock, mineral, meteorite and other geological samples were

analysed with modified and classical wet-chemical and instrumental methods. The

results are presented in papers I-VIII.

The analytical method comprising modified old and new determination methods used

for this work is one of the most accurate available for the total analysis of many

geological samples. Normally the following major and minor components are

determined in total analysis: silica, titanium oxide, aluminium oxide, manganese oxide,

ferric iron oxide, ferrous iron oxide, calcium oxide, magnesium oxide, constitutional

water (HrO.) and moisture water (HrO) and often also fluorine, chlorine, sulphur and

native carbon. In the main-portion analysis of the method, silica, calcium oxide and

magnesium oxide as well as the oxide-group precipitate of all the elements that

precipitate with ammonia are determined gravimetrically. Titanium oxide and total

iron(Ill)oxide are measured from the oxide group precipitate spectro- photometrically'

Aluminium oxide is obtained by subtracting the weight of the other oxides from the

total weight of the oxide group precipitate. The main-portion analysis was tested and

investigated in Publication II.
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The second subsample in the total analysis method is dissolved with hydrofluoric, nitric

and perchloric acids. Sodium and potassium are determined from the solute thus

obtained by flame photometry or flame AAs. Manganese and phosphorus

concentrations are measured colorimetrically as pennanganate and molybdo-vanado

phosphoric acid complex (Fig..1). Water, ferrous iron and carbon dioxide, and often

also native carbon, fluorine, chlorine and sulphur, are analysed as individual

determinations. The concentrations of total and constitutional waters in the sample are

determined with IR spectrometry. The water of crystallization in the sample can also

be obtained by subtracting the concentration of moisture water from that of total water.

The concentration of ferric iron is calculated by subtracting that of ferrous iron from

total iron (Fig. 1).

The above package of methods is suitable for analysing single samples requiring an

individual approach and analysis, e.g. rock and mineral reference samples, certain

mineral samples and meteorite samples. It cannot be used for analysing samples en

masse. Instruments suitable for this purpose are the X-ray fluorescence spectrometer,

atomic absorption spectrophotometer and plasma spectrometer. The precision and

accuracy of the analyses of many of the elements determined with XRF, that is, Si, Ti,
Al, Fe,o,, Mn, Mg, ca, Na, K and P, are of the same order of magnitude as those

determined in total analysis as described above. The accuracies of flame AAS and ICp-
AES analyses are equal to those of XRF for some elements. Many trace elements can

also be determined with XRF, AAS and ICP-AES instruments. But, as pointed out

above, in the total analysis of rocks and minerals by these instruments cannot analyse

all of the components (Table 2). For individual determinations a new subsample must

be taken from the sample powder, which then requires separate chemical pretreatment

(dissolution, separation, etc.) and measurement of concentration.

The objectives of the present work were to develop new and more rapid individual

determination methods that would be appropriate in other respects, too (e.g. accuracy,

precision and detection limit) for analysing rocks, minerals and other related geological

samples, and to improve existing methods for individual determination.

The method for determining water with IR absorption was investigated and refined in
the course of the work. It has several advantages. Operation with the RMC-100
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instrument is simple and unvarying. The total and crystallization waters of rocks and

minerals can clearly be determined more rapidly with this method than with the

gravimetric Penfield method and with equally good accuracy. This method is in use at

the chemical laboratory of GSF (Paper VI, Saikkonen 1990).

The analytical methods for ferrous iron were assessed by comparing ttree titrimetric

methods: the Pratt method, the Wilson method and the Amonette & Scott method. It

was concluded that the modified Pratt method is the most useful for determining of

ferrous iron in unknown samples. The Wilson method and the Amonette & Scott

method can be applied to samples of known mineral composition. The modified Pratt

method is in use at the chemical laboratory of GSF (Paper VII).

The method based on IR absorption and used for determining total carbon in geological

samples was studied and an IR method was developed for determining the

concentration of non-carbonate carbon, which is either graphite or other forms of

element carbon deriving from organic matter. The concentration of carbonate carbon

is obtained by subtracting the concentration of non-carbonate carbon from that of total

carbon. The methods described above are in use at the chemical laboratory of GSF

(Paper VItr).

Methods for determining halogens, sulphur and LOI were reviewed on the basis of the

literature and in the light of practical experience.
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Appendix. Chemieal eomposition of 63 mineral sam pies analysed by Risto Saikkonen. Analytieal methods: modified c1assical methods (gravimetrie, titrimetrie, colorimetrie), atOll1ie absorption and emission speetrometrie methods and other mcthods . 

Silicates 

I. Beryl 
2. Beryl 
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4 . Beryl 
5. Biotite 
6. Biolite 
7. Biotite 
8. Bityite 
9. Cordierite 
10. Cordierite 
11. Cordierite 
12. Cordierite 
13 . Grossularitc 
14 . Hornblende 
15. Kaolinite 
16. Kaolinite 
17. Kaoli nite 
18. Kaolinite 
19. Kunzite 
20. Kyanite 
21. Kyanite 
22 . Kyanite 
23. Kyanite 
24 . Margarite 
25. Muskovite 
26 . Phengite 
27. Pyrope 
28. Tale 
29. Tale 
30. Tale 
31. Tale 
32. Tale 
33 . Tale 
34. Tale 
35. Tale 
36. Tale 
37 . Tale 
38 . Tale 
39 . Tale 

510, TiO, AI,O, Fe,O, FeO MnO MgO CaO Na,O K,O P,O, CO, ",0' ",0- F 
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46.40 0.91 26.73 1.26 
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60.02 0.64 1.38, 
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0.20 
0.43 

0.01 0 .16 
0.01 0.30 

0.18 0.00 0.65 
0.01 3.07 

5.63 0.16 2.70 
6.81 0.32 20.55 
2.26 0.01 30.97 
2.26 0.01 31.52 
2.62 0.01 31.39 
2.41 0 .01 31.40 

30.39 
30.88 
31.33 
31.63 
31.63 
31.70 
31.83 
31.33 

0 .68 
0 .68 
0 .76 
0 .71 

0. 13 0 . 19 
0 .19 0 .16 
0.07 0 .71 

14 .07 0 .10 
0.10 0 .34 
0 .11 0 .96 
0.04 1.10 
0 .10 0 .92 

36.18 0.04 
11.02 1.70 
0.03 0 .04 
0.07 0 .10 
0.18 0.06 
0.13 0.04 
0 .07 0 .59 
0.19 0.38 
0 .54 
0 .06 
0 .05 
11.28 1.25 
0.00 0.45 
0 .16 0.29 
4.35 
0.64 0.01 
0 .10 0 .02 
0.10 0 .03 
0.09 0.01 

0.12 
0.14 
0. 12 
0.23 
9.42 0 .00 
8.44 0.07 
9.66 0.03 
0 .16 0.00 
0 .21 0.01 
0 .18 0.00 
0.06 0.03 
0.23 0.03 
0.05 0.05 
1.25 0.00 
0 .05 0 .00 
2.52 0.07 
1.63 0.14 
1.46 0.13 
0 .13 0 .00 
0 .26 

0.03 0.00 
10.64 0.03 
8.97 0.00 

0.01 0.01 
0 .02 0.00 
0.01 0.13 
0.02 0.02 

0.00 
0.00 

0 .00 
0 .00 
0.00 
0 .00 
0.00 
0.00 

0.00 
0.00 
0.00 
0 .00 

0.00 

0.00 

1.57 
1.90 
3.13 
3.27 
0.87 
1.48 
1.83 
0.99 
0.88 
0.51 
0.77 
0 .54 

2.04, 
1.58, 
1.48, 
1.38, 
1.65 
3.28 
3.64 
5.33 
1.27 
1.59 
2.06 
2.12 
0.16 
1.26 

11.55 
12.30 
12.44 
0 .08 

4.06 
3.91 
2.50 

5.27 
4 .82 
4 .89 
4.80 
4.88 
4.91 
5.04 
5.15 
5. 16 
4.94 
5.20 
5.20 

0. 11 
0. 16 
0. 10 
0.41 
0.33 
0.33 
0 .15 
0 .10 
0 .00 
0.08 

0.00 
0.00 
0.02 

0.00 
0.29 
0 .13 

0 .03 

4 .36 
1.29 
2.00 
0 .39 

0.00 

0.44 
3.62 

Cl S Li,O Rb,O Cs,O BeO SrO BaO Cr,O, NiO B,O, LOI Total 

0.06 
0.04 
0.06 
0 .07 
1.19 
0.31 
0.03 
2.32 

0 .30 
0 .15 

7.49 

0.01 
0.08 
1.33 

0 .00 0.02 
0.00 0.02 
0.00 0.03 
0.00 0 .02 
0.90 
0 .31 
0 .02 

0.00 0.02 
0 .01 0.00 

0.00 0.00 

0.00 0.00 
0.07 
0.28 0.11 

12.79 
13.18 
12.79 
12.79 

7.21 

0.33 
0 .72 

0.00 

0.00 0.0 
0 .00 0 .0 

0.01 

0 .20 0.0 

0.00 0 .18 

0.00 

0.05 

1.39 

0 .15 
0.26 
0.23 

0.03 

0 .00 

0 .18 
0.20 
0.19 

99.85 
99.68 
100.24 
100.86 
101.31 
100.39 
99.59 
100.51 
100. 14 
100.29 

13 .72 99.80 
99.65 
99.68 
99.73 

100.34 

98.29 
98.42 
99.49 
100.38 
99 .79 
100.70 
99.64 
99.68 
100.05 

(8.09) 99.57 
5.70 
6.36 
6.81 



Appendix

Silicates
40. Turmalin
41. Turmalin
42. Turmalirt
43. Turnralin
44. Turmalin
45. Turmalin
46. Turrnalin
47. Vermiculite
48. Zoisite

(Tanzanite)

Oxides
49. Brokite
50. Rutile

Phosphates

51. Antplygonile
52. Apatite

53. Apatite
54. Apatite

55. Apatite
56. Apatile
57. Apatite
58. Apathe

59. Eosphorite

60. Herderile

61. Trifylite-
litiofilite

62. Triplile

Sulfat€s
63. Selestine

Nui|h.r sr{ in tü. drd* or OSF (GltritlM & S.ldom lta) (h Fioiitn):

Ahd|lmmimlg.Dl6'iIshi.h|.5dfd3o.@liMhrwb6le|'cdb,th.pE'aü.r'e,|bit6''l|Iit6''dlrpiB'a!{ik'bhtl6'b'ü'gkjB,dii6'
itMiEr, trolinitd. l.oilolit6. merlta, miceliG, pkg@ldd, pyriB, queÄ, .idcd6, $.d'i|l1ß, Elc!, t !.u {d 6liB

sior Tio,

36.19 0.27

35.25 0.27

35.26 0.22
35.13 0.10
36.E2 0.m
36.85 0.02
38.38 0.03

38. 14 l.s3

39.99 0.05

Alro, Fero,

36.7't 8.96,
35.28 13.26.
37.99 10.94,

38.83 7.15,

f2.27 2.59,
41.21 0.23,
41.91 0.40,

16.59 0.30

34.24 0.06,

0.32 0.63,
0.32 r.52,

34.70 0.00
1.11,

0.43,
0.53,

0.36,
0.66,

1.56,

0.23 1.05,

24.s0 0.22
0.19 0.17,

0.22 t.u
0.09 1.66

0.10 L96
0.19 2.26
l.5l t.74
0.38 |.74
0.14 | .76

1.41 0.33

24.40 0.09

K,o &q

0.06 0.00
0.06 0.00
0.06 0.00
0.06 0.00
0.06 0.m
0.18 0.00
0.45 0.00
0.15 0.03

0.06 0.07

FeO MnO MgO CaO NerO

0.14 4.69
0.20 2s2
0.25 0.62
1.08 0.37

0. 14 I 1.03

r.26 0.12

0.41 0.43

0.11 0.01 23.09

0.04 0.04

0.01 0. t0
0.03 0.07

0.00 0.00 0.00
0.04 0.77

0.02 0.50
0.03 0.57
0.01 0.03

0.02 0.34
0.07 0.19
0.69

1.98 24.30 0.00
o.29

29.37 t3.39 0.68
t5.47 44.55 0.10

cq Hro'

0.00 2.59
0.00 2.6r
0.00 2.84
0.00 2.74
0.00 z.ffi
0.00 3.06
0.00 3.22

0.00 10.41

0.00 l.l5

HrO F Cl

0.03 0.15
0.l I 0.35

0.04 0.97

0.04 l.l8
0.04 0.53

0.08 1.04

0.09 0.93

7 .56 1.60

0.01 0.02

LitO RbrO CsrO BeO SrO BaO

0.01

0.05

0.59
I .18

0.05

t.82
L86 0.03 0.04
0.14 0.00

0.00

9.70

0.4E
o.4z
0.55
0.72
0.70
0.55
0.32

t4.81

CrrO, NiO BrQ LOI

8.78

9. 16

8.m
9.03

8.22

10. l2
9.77

0.00 0.00

0.11

0.01

0.00
0.00
0.00
0.00
0.00
0.00

Y2Ot:9.24n 1*.0,

2t2.

Total

100.44

lw.72
100.33

99.54

98.30
99.67

99.39
100.65

9E.83

99.26

99.29

0,14 0.00

1.43

0.16 0.00
0.40

0.01 0.29 0.02 48.5 2.80 0.00 7.24

54.0 0.17 0.03 42.9 0.68

53.8 0.13 0.02 42.3 0.41

s3.t o.22 0.07 42.7 0.73

55.2 0.t4 0.03 42.9 1.00

s4.3 0. t6 0.03 42.3 0.76

53.7 0.17 0.01 41.2 0.79
51.96 0.76 0.06 3E.71 0.19 l.& 0.18 2.43

0.06 0.t5 0.02 32.95 14.26 0.02 0.41

36.24 0.77 0.08 43.21 3.28 0.00 4.21

0.06 0.07 0.03 45.99 0.00 0.02 0.02

o.37 0.00 0.02 32.39 0.00 0.88 0.00 8.00

0.83

0.00

0.30

100.32

100.2

98.6
99.1

100.4

99.3
98.2

Tl,O = 0.53% 98.5

99.82

t00.85

0.12 0.01 0.08 0.48

0.00 0.12 0.t6 0.43

0.00 0.02
0.96
0.05

9.08

SO, = 43'55 54.69 0.22

t-

Appendix 
SiO, TiO, Alp, Fe,O, FeO MnO MgO CaO Na,O K,o pp, CO, 

Silicates 
40. Turmalin 
41. Turmalin 
42. Turmalin 
43 . Turmalin 
44 . Turmalin 
45 . Turm31in 
46. Turmalin 
47. Vermiculite 
48 . Zoisite 

(Tan7.anite) 

Oxides 
49. Brokite 
50. Rutile 

Phosphates 
51. Amplygonite 
52. Apatite 
53. Apatite 
54. Apat ite 
55 . Apatite 
56. Apatite 
57 . Apatite 
58. Apatite 
59. Eosphorite 
60. Herderite 
61 . Trifylitc­

litiofilite 
62. Triplite 

Sulfates 
63 . Selestine 

1 = lotal 

36.19 0.27 36.77 8.96, 
35 .25 0.27 35 .28 13 .26, 
35 .26 0.22 37 .99 10.94, 
35 .73 0.10 38.83 7.15, 
36.82 0.92 32.27 2.59, 
36.85 0.02 43 .21 0.23, 
38.38 0.03 41.91 0.40, 
38.14 1.53 16.59 0.30 

39.99 0.05 34.24 0.06, 

0.32 0.63, 
0.32 1.52, 

0.14 0.00 34 .70 0.00 
1.11, 
0.43, 
0.53, 
0.36, 
0.66, 
1.56, 

1.43 0.23 1.05, 
0.16 0.00 24.50 0.22 
0.40 0.19 0.17, 

0.12 0.01 0.08 0.48 
0.00 0.12 0.16 0.43 

0.11 

0 .14 4.69 
0.20 2.52 
0.25 0.62 
1.08 0.37 
0.14 11.03 
1.26 0.12 
0.41 0.43 
0.01 23.09 

0.04 0.04 

0.01 0.10 
0.03 0.07 

0.00 0.00 0.00 
0.04 0.77 
0.02 0.50 
0.03 0.57 
0.01 0.03 
0.02 0.34 
0.07 0.19 
0.69 

1.98 24.30 0.00 
0.29 

29.37 13.39 0.68 
15.47 44 .55 0.10 

0.22 1.64 
0.09 1.66 
0.10 1.96 
0.19 2.26 
1.51 1.74 
0.38 1.74 
0.14 1.76 
1.47 0.33 

24.40 0.09 

0.01 0.29 
54.0 0.17 
53.8 0.13 
53.7 0.22 
55.2 0.14 
54 .3 0.16 
53 .7 0.17 
51.96 0.76 
0.06 0.15 

36.24 0.77 

0.06 0.07 
0.37 0.00 

0.83 

Numbers stored in the dalabase of GSF (Gustafsson & Saikkonen 1994) (in Finnish): 

0.06 
0.06 
0.06 
0.06 
0.06 
0.18 
0.45 
0.15 

0.06 

0.00 
0.00 
0.00 
0.00 
0.00 
0 .00 
0.00 
0.03 

0.07 

0.02 48 .5 
0.03 42.9 
0.02 42.3 
0.07 42.7 
0.03 42.9 
0.03 42 .3 
0.01 41.2 
0.06 38.71 
0.02 32.95 
0.08 43 .21 

0.03 45.99 
0.02 32 .39 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.19 

0.00 
0.00 

H,O· Hp' F 

2.59 
2.61 
2 .84 
2.74 
2.60 
3.06 
3.22 
10.41 

1.15 

2.80 

1.04 
14 .26 
3.28 

0.02 
0.88 

0.03 
0.11 
0.04 
0.04 
0.04 
0.08 
0.09 
7.56 

0.01 

0.15 
0.35 
0.97 
1.18 
0.53 
1.04 
0.93 
1.60 

0.02 

0.00 7.24 
0.68 
0.41 
0.73 
1.00 
0.76 
0.79 

0.18 2.43 
0.02 0.41 
0.00 4.21 

0.02 
0.00 8.00 

2/2. 
CI S Li,O Rb,o Cs,O DeO SrO BaO Cr,o, NiO D,O, 1-01 Total 

0.00 0.02 

0.01 
0.05 
0.59 
1.18 
0.05 
1.82 
1.86 
0.14 

9.70 

0.96 
0.05 

9.08 

so, = 43 .55 

0.03 
0.00 

0.00 

0.04 

0.48 
0.42 
0.55 
0.72 
0.70 
0.55 
0.32 0.00 

14.81 0.30 

54.69 0.22 

0.00 

0.11 
0 .01 

8.78 100.44 
9.16 100.72 
8.90 100.33 
9.03 99.54 
8.22 98.30 

10. 12 99.67 
9.77 99.39 

100.65 

0.00 V,O, = 0.24 % 100.49 

100.32 
0.00 100.2 
0.00 98.6 
0.00 99.1 
0.00 100.4 
0 .00 99.3 
0.00 98 .2 

TI,o = 0.53 % 98 .5 
99.82 

100.85 

98 .83 
99.26 

99.29 

1. 71001,2. 71002, 3. 71003.4.71004.5.72101.6. 72102 . 7.840003.8.79030. 9. 72089.10. 72090.11.74126.12.74127. 13 . 840005.14. 67039. 19.81021.20.71022. 21. 71023 . 22 . 71076. 23.71077. 24. 77383.25.840004.26. 78187. 27 . 72088. 
40. 73005.41. 73006. 42. 73007. 43 . 73008.44. 73009.45 . 73010.46. 73011.47 . 840001 . 48.840002. 49.71051.50. 71050,51 . 76152.52. 80025, 53.80026,54 . 80027 . 55 . 80028,56. 80029, 57 . 80030, 58. 81020, 59. 76112, 60.81022,61. 75124, 
62 . 76098, 63 . 69132 . 

About 100 mineral sampies, in which 1-5 elements or constituents have been analysed by the present author, are albites, allanites, antigorites, apatites, biotites, britolites, calsites, chromites , chrysotiles, cordierites. cryolites, hematites, hornblendes , kornerubines , kyanites , 
ilmenites, kaolinites, lepidolites, margarites, microclines , plagioclases, pyrites, quartzes , siderites, spodumenes, tales, topases, and zeoliles . 
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