TUTKIMUSRAPORTTI 70 REPORT OF INVESTIGATION 70

Ringa Danielsson and Risto Saikkonen

Chemical analysis of USGS-W-2, USGS-DNC-1 and USGS-BIR-1 standard rocks

Espoo 1985

Ringa Danielsson and Risto Saikkonen

CHEMICAL ANALYSIS OF USGS-W-2, USGS-DNC-1 AND USGS-BIR-1 STANDARD ROCKS

Espoo 1985

Danielsson, R. & Saikkonen, R., 1985. Chemical analysis of USGS-W-2, USGS-DNC-1 and USGS-BIR-1 standard rocks. *Geological Survey of Finland, Report of Investigation 70.* 00 pages, one figure, 8 tables.

Three U.S. Geological Survey mafic rock standards were analysed using wet chemical methods for the main components and emission spectroscopy for minor and trace elements. Lead was determined by isotope dilution mass spectrometry. The results are presented together with the "best estimates" given by F. J. Flanagan.

Key words: standard rocks, basalts, diabase, chemical analysis, wet methods, spectroscopy, Iceland, United States.

Ringa Danielsson and Risto Saikkonen Geological Survey of Finland SF-02150 Espoo 15 Finland

ISBN 951-690-208-1 ISSN 0781-4240 Helsinki 1985. Valtion painatuskeskus

CONTENTS

Introduction	4
Analytical methods	5
Main components	5
Minor and trace elements	5
Results and discussion	7
Main components	7
Minor and trace elements	7
Acknowledgements	7
References 1	3

INTRODUCTION

Three new U.S. Geological Survey (USGS) mafic rock standards kindly provided by Dr. F. J. Flanagan were analysed at the Geochemistry Department, Geological Survey of Finland, during 1978—1979. The basalt BIR-1 was from near Reykjavik, Iceland, and the diabases DNC-1 and W-2 from the vicinity of Durham, North Carolina, and the Bull Run Quarry near Centreville, Virginia, respectively.

The experimental design was as described in USGS Professional Paper 840 aiming primarily to confirm the homogeneity of the rock standard samples. In this work each sample consisted of three bottles; two portions were taken from each bottle to make a set of six analytical portions for evaluating the precision and accuracy of the methods.

ANALYTICAL METHODS

Main components

The weight loss at 105°C was measured, after which six 1-g portions from each sample were fused with sodium carbonate. Silica was separated from the hydrochloric acid solution by double dehydration after which aliquots were taken and aluminium, calcium and magnesium were determined by atomic absorption spectrometry (AAS). The residual silica retained in the R_2O_3 group was recovered by dehydration from the sulphuric acid solution of this group. One aliquot of the solution containing the R_2O_3 group was taken for photometric determination of total iron by the 1.14-HC1 method and one aliquot for colorimetric determination of titanium using Tiron. Aluminium was calculated by difference, calcium was precipitated with oxalic acid and magnesium with dibasic ammonium phosphate.

Another set of six portions (0.5 g) from each sample were decomposed by treatment with hydrofluoric-nitric-sulphuric acid, and aliquots were taken to measure manganese and phosphorus colorimetrically: manganese with potassium periodate, and phosphorus as the yellow molybdovanadophosphoric acid complex. Sodium was determined by flame emission spectrophotometry (AES), and potassium by atomic absorption spectrophotometry. A Jarrel-Ash 810 atomic absorption spectrophotometer was used for the atomic absorption and emission determinations. An air-acetylene flame was used for sodium, potassium and magnesium, and a nitrous oxide-acetylene flame for calcium and aluminium.

Ferrous iron was determined titrimetrically by the Pratt method. Ferric iron was calculated from values for total iron and ferrous iron. Combined water was obtained employing the Penfield method using lead oxide as a flux. The scheme for the main component analysis is shown in figure 1.

Each analyst analysed the six portions of his sample at the same time.

Minor and trace elements

Lead was determined by isotope dilution mass spectrometry. Cobalt, chromium, copper, gallium, nickel, scandium, strontium, vanadium and yttrium were determined by optical emission spectroscopy. Table 8 lists the analytical and reference lines employed.

Six portions from each sample were weighed together with an equal amount of graphite, to which palladium had been added as an internal standard. The mixtures were packed into graphite electrodes and burned in the d-c arc of a Jaco Ebert plane grating 3.4 m spectrograph. The spectra were recorded on Kodak analysis plates and evaluated in a Jarrell-Ash microdensitometer. The "working curves" were drawn from spectra of well documented USGS, French and Canadian silicate-rock reference samples.

This procedure was performed by two analysts treating their own portions from each bottle. In this manner eighteen $(22 \times 3 \times 3)$ spectra of each rock standard sample were recorded and evaluated during a period of three months, the analysts not knowing from which of the rock samples the portions originated.

Figure 1. The scheme for the main component analysis of silicate rock in this work.

6

RESULTS AND DISCUSSION

Main components

Tables 1, 2 and 3 give the arithmetic means (\bar{x}) , the standard deviations (s), the coefficients of variation (v) and the methods used for bulk chemical analysis together with the "best estimates" of W-2, DNC-1 and BIR-1 (Flanagan 1984 and Abbey 1983).

The agreement between the results of the present study and the "best estimates" is good ($|\bar{x}-\bar{x}| < s_{\bar{x}}$, where $\bar{x} =$ the arithmetic mean, $\bar{x} =$ the "best estimate" given by F. J. Flanagan, and $s_{\bar{x}} =$ the standard deviation of the "best estimate") for 22 components and fairly good ($|\bar{x}-\bar{x}| < 2s\bar{x}$) for ten components. Some large differences are noted. In table 2, sample DNC-1, our value for H₂O⁺ is 0.60% (the "best estimate" given by Flanagan is 0.73%). This difference is probably due to the fact that all the water had not escaped from the sample during the ignition in the Penfield method. There is a great numerical difference between our value 1.41% and the "best estimate" 1.65% for Fe₂0₃ (Table 1); we are not able to explain the reason for our low value. The lack of agreement between the MgO result of the present study, 6.72% (Table 1, gravimetric method) and the "best estimate", 6.39%, may be due to the carbon entrapped in our Mg₂P₂O₇ precipitate (Maxwell 1968, p. 165).

Analysis of variance did not show any significant variations between the contents in the three bottles of the same rock standards.

Minor and trace elements

Tables 4, 5 and 6 give the arithmetic means (x), the standard deviations (s) and the coefficients of variation (v) together with the ''best estimates'' of W-2, DNC-1 and BIR-1 (Flanagan 1984 and Abbey 1983). Two chromium outliers from BIR-1 were discarded. A DNC-1 scandium line was abortive. All scandium values obtained, however, are reported.

Table 7 lists the lead contents of W-2, DNC-1 and BIR-1 determined by isotope dilution mass spectrometry.

The analytical lines of gallium and yttrium are embedded in a background. Hence the measurements done by different analysts may differ, aggravating the discrepancies of their results. All the samples are high in iron; BIR-1 and W-2 are also high in titanium. The iron interferes with gallium and the titanium with yttrium. The ''old'' USGS standard, W-1, widely used as a reference, would have been an excellent calibrating aid, but it is depleted. The good results obtained for vanadium are probably due to the availability of suitable rock standards. Our data are not sufficient for a t-test comparison of the results with the ''best estimates'' given by Flanagan. The lead values obtained by O. Kouvo are the only ones mentioned by Flanagan (Personal communication, 1983).

ACKNOWLEDGEMENTS

We are indebted to Dr. Francis J. Flanagan of the U.S. Geological Survey for providing the samples, to the Geological Survey of Finland for providing the facilities, and to Mr. Christer Ahlsved, Dr. Olavi Kouvo, Mr. Ari Puisto and Mrs. Mervi Wiik for performing their part in the analytical work.

Table 1. Bulk chemical analyses of diabase W-2. Analyst Risto Saikkonen. \bar{x} = arithmetic mean, s =
standard deviation, $v =$ coefficient of variation. Methods = methods used in this study. $\bar{x} =$ the "best
estimate", $s_{\bar{x}}$ = standard deviation of the "best estimate", n = number of laboratory means from which \bar{x}
was calculated (Flanagan 1984, Abbey 1983).

		This stuc	ly	Т	he "best es	stimates"		
	⊼ % (dry basis)	S	v	Methods	⊼ % (dry basis)	₹ %	n	S₹
SiO ₂	52.60	0.10	0.2	Grav.	52.81	52.68	18	0.29
TiO ₂	1.04	0.01	1.0	Color.	1.06	1.062	19	0.013
Al ₂ O ₃	15.51	0.03	0.2	AAS	15.49	15.45	17	0.16
"	15.41	0.13	0.8	Grav.				
Fe ₂ O ₃	1.41	0.04	2.8	Color.	1.65	1.53	6	0.087
FeO	8.39	0.02	0.3	Titr.	8.36	8.34	6	0.093
MnO	0.16	0.00	0.0	Color.	0.167	0.167	20	0.004
MgO	6.63	0.01	0.2	AAS	6.39	6.37	13	0.058
"	6.82	0.06	0.9	Grav.				
CaO	10.74	0.02	0.2	Grav.	10.89	10.86	11	0.078
23	10.68	0.14	1.3	AAS				
Na ₂ O	2.11	0.01	0.2	AES	2.21	2.20	17	0.037
K ₂ Õ	0.63	0.01	1.0	AAS	0.63	0.626	20	0.012
$\tilde{H_{2}O^{+}}$	0.58	0.02	3.0	Grav.	0.55	0.55	6	0.036
P205	0.11	0.00	0.0	Color.	0.14	0.141	18	0.116
H ₂ O						0.25	3	0.018

Table 2. Bulk chemical analyses of diabase DNC-1. Analyst Mervi Wiik. \bar{x} = arithmetic mean, s = standard deviation, v = coefficient of variation. Methods = methods used in this study. \bar{x} = the "best estimate", $s_{\bar{X}}$ = standard deviation of the "best estimate", n = number of laboratory means from which \bar{x} was calculated (Flanagan 1984, Abbey 1983).

		This stuc	ły	Т	"he "best e	stimates"		
	⊼ % (dry basis)	S	v	Methods	⊼ % (dry basis)	₹ %	n	^S ₹
SiO ₂	47.39	0.04	0.1	Grav.	47.29	47.15	11	0.21
TiO ₂	0.50	0.00	0.0	Color.	0.49	0.484	16	0.007
Al_2O_3	18.54	0.05	0.2	AAS	18.39	18.34	16	0.169
"	18.76	0.09	0.5	Grav.				
Fe ₂ O ₃	1.78	0.04	2.4	Color.	1.80	1.79	4	0.107
FeO	7.33	0.01	0.1	Titr.	7.34	7.32	4	0.062
MnO	0.14	0.00	0.0	Color.	0.148	0.148	14	0.003
MgO	10.32	0.01	0.1	AAS	10.16	10.13	15	0.112
"	10.21	0.15	1.5	Grav.				
CaO	11.20	0.02	0.2	AAS	11.52	11.49	9	0.073
"	11.43	0.06	0.5	Grav.				
Na ₂ O	1.93	0.01	0.7	AES	1.89	1.886	21	0.057
K ₂ O	0.23	0.00	0.0	AAS	0.23	0.234	15	0.009
H_2O^+	0.60	0.04	6.0	Grav.	0.73	0.73	4	0.040
P205	0.09	0.00	0.0	Color.	0.07	0.070	9	0.005
H ₂ O ⁻						0.29	3	0.047

Table 3. Bulk chemical analyses of basalt BIR-1. Analyst Christer Ahlsved. \bar{x} = arithmetic mean, s = standard deviation, v = coefficient of variation. Methods = methods used in this study. \bar{x} = the "best estimate", $s_{\bar{x}}$ = standard deviation of the "best estimate", n = number of laboratory means from which \bar{x} was calculated (Flanagan 1984, Abbey 1983).

	,	This stuc	ły	Т	"he "best e	stimates"		
	⊼ ‰ (dry basis)	S	v	Methods	⊼ % (dry basis)	₹ %	n	S≣
SiO ₂	47.85	0.06	0.1	Grav.	48.00	47.96	13	0.19
TiO ₂	0.96	0.00	0.0	Color.	0.96	0.96	15	0.010
Al_2O_3	15.72	0.00	0.0	AAS	15.54	15.53	12	0.15
"	16.21	0.29	1.9	Grav.				
Fe ₂ O ₃	2.08	0.00	0.0	Color.	2.06	2.06	5	0.104
FeO	8.30	0.01	0.1	Titr.	8.35	8.34	5	0.097
MnO	0.17	0.00	0.0	Color.	0.175	0.175	13	0.003
MgO	9.84	0.02	0.2	AAS	9.71	9.70	10	0.079
> >	9.84	0.03	0.3	Grav.				
CaO	13.30	0.02	0.1	AAS	13.33	13.32	16	0.12
"	13.33	0.03	0.2	Grav.				
NaO	1.78	0.00	0.0	AES	1.82	1.820	16	0.045
K ₂ O	0.03	0.00	0.0	AAS	0.03	0.030	11	0.003
H_2O^+	0.06	0.01	8.2	Grav.	0.086	0.086	5	0.025
P_2O_5	0.02	0.00	0.0	Color.	0.021	0.021	4	0.014
H_2O^-						0.078	2	0.016

Table 4. Analysis of diabase W-2 by optical emission spectroscopy. Analysts Ari Puisto, AP, and Ringa Danielsson, RD. \bar{x} = arithmetic mean, s = standard deviation, v = coefficient of variation. \bar{x} = the "best estimate", $s_{\bar{X}}$ = standard deviation of the "best estimate", n = number of laboratory means from which \bar{x} was calculated (Flanagan 1984, Abbey 1983).

		This study		The "	best estima	nates''	
Element		x ppm	S	v	⊼̄ ppm	n	SĀ
Co	AP RD Tot	39.1 37.7 38.4	4.96 3.74 4.39	12.6 9.9 11.4	43.15	21	2.11
Cr	AP RD Tot	143 100 122	18.0 8.75 14.2	12.6 8.7 11.6	91.5	19	4.45
Cu	AP RD Tot	116 132 124	18.6 10.8 15.2	16 8.2 12.2	106.2	10	4.88
Ga	AP RD Tot	27.8 15.6 21.7	3.67 1.64 2.84	13 11 13	16.8	4	0.89
Ni	AP RD Tot	86.6 85.0 85.8	7.21 5.17 6.28	8.3 6.1 7.3	70.4	10	2.46
Sc	AP RD Tot	44.1 37.4 40.8	10.3 9.08 9.72	23.4 24.3 23.8	35.7	9	1.06
V	AP RD Tot	262 266 264	13.9 12.4 13.2	5.3 4.7 5	259	13	12.27
Y	AP RD Tot	33.4 27.1 30.3	3.91 4.46 4.19	11.7 16.5 13.3	23.0	7	1.63

		This study	The "best estimates"				
Element		x ppm	S	v	⊼ ppm	n	S₹
Co	AP RD Tot	50.0 50.5 50.3	4.87 4.43 4.66	9.7 8.8 9.9	56.75	18	2.19
Cr	AP RD Tot	403 303 356	44.8 19.1 35.2	11 6 10	270.1	12	8.48
Cu	AP RD Tot	112 97.7 105	13.8 7.87 11.3	12.3 8.0 10.8	99.7	7	2.64
Ga	AP RD Tot	18.9 12.6 15.9	2.67 2.83 2.75	14.1 22.5 17.3	14.7	5	0.92
Ni	AP RD Tot	326 311 318	27.4 41.3 35.1	8.4 13.3 11.0	247	12	11.78
Sc	AP RD Tot	34.1 35.0^{1} 34.5	5.67 6.30 5.97	16.6 18 17.9	31.4	10	0.98
Sr	AP RD Tot	 	22.7	15.6	144	7	1.77
v	AP RD Tot	143 148 146	7.07 7.07 7.07	4.9 4.8 4.8	147.5	14	8.32
Y	AP RD Tot	26.0 26.4 26.2	3.57 4.19 3.89	13.7 15.9 18.7	18.5	4	0.82

Table 5. Analysis of diabase DNC-1 by optical emission spectroscopy. Analysts Ari Puisto, AP, and Ringa Danielsson, RD. \bar{x} = arithmetic mean, s = standard deviation, v = coefficient of variation. \bar{x} = the "best estimate", $s_{\bar{\chi}}$ = standard deviation of the "best estimate", n = number of laboratory means from which \bar{x} was calculated (Flanagan 1984, Abbey 1983).

¹ Calculated from eight measuring results.

Table 6. Analysis of basalt BIR-1 by optical emission spectroscopy. Analysts Ari Puisto, AP, and Ringa Danielsson, RD. \bar{x} = arithmetic mean, s = standard deviation, v = coefficient of variation. \bar{x} = the "best estimate", $s_{\bar{X}}$ = standard deviation of the "best estimate", n = number of laboratory means from which \bar{x} was calculated (Flanagan 1984, Abbey 1983).

		This study		The	"best estim	ates"	
Element		x ppm	S	v	₹ ppm	n	SĀ
Со	AP RD Tot	49.3 48.6 49.0	4.37 2.40 3.53	8.7 4.9 7.2	51.6	18	1.88
Cr	AP RD Tot	491 ¹ 405 ¹ 448	36.4 44.2 40.5	7.4 10.9 9.0	372.5	7	8.25
Cu	AP RD Tot	116 128 122	11.3 12.0 11.7	9.7 9.4 9.6	124.7	11	3.71
Ga	AP RD Tot	19.0 13.6 16.3	2.50 2.17 2.34	13.2 16.0 14.4	15.0	5	1.0
Ni	AP RD Tot	222 221 222	14.8 16.9 15.9	6.9 7.65 7.2	166.4	9	5.88
Sc	AP RD Tot	51.8 52.9 52.3	7.97 8.01 7.99	15.4 15.1 15.3	43.4	8	1.13
Sr	AP RD Tot	 	12.5	<u>11</u> .3	107.2	7	1.49
V	AP RD Tot	307 336 321	18.7 23.6 21.3	6.1 7.0 6.4	311.6	12	11.47
Y	AP RD Tot	25.0 19.6 22.1	3.96 6.86 5.69	15.8 35.0 25.75	15.8	4	0.92

¹ Calculated from eight measuring results.

Table 7. Lead contents of W-2, DNC-1 and BIR-1. Analyst Dr. Olavi Kouvo. Lead was determined by isotope dilution mass spectrometry. These values are identical to those of the "best estimate" given by Dr. Flanagan (Flanagan 1984).

W-2 DNC-1 BIR-1 7.66 ppm 6.21 ppm 3.11 ppm

Table 8. Spectral lines used for the determination of minor and trace elements by optical emission spectroscopy.

Element	λ (Ångström)					
Со	3453.50					
Cr	2843.25, 4254.35					
Cu	3273.96					
Ga	2943.64					
Ni	3414.76, 3492.96					
Sc	4246.83					
Sr	4077.71					
V	3185.40					
Y	3710.30					

(internal standard) Pd

3242.70 (reference line)

REFERENCES

Abbey, S., 1983. Studies in "standard samples" of silicate rocks and minerals 1969–1982. Geol. Surv. Can., Paper 83-15, 114 p.

Flanagan, F. J., 1976. Descriptions and analyses of eight new USGS rock standards. U.S. Geol. Surv. Prof. Paper 840, 192 p.

-, 1984. Three USGS Mafic rock reference samples, W-2, DNC-1, and BIR-1. U.S. Geol. Surv. Bull. 1623, 54 p.

Maxwell, J. A., 1968. Rock and Mineral Analysis. New York, John Wiley & Sons, 584 p.

Tätä julkaisua myy

POSTIMYYNTI

PL 516 00101 Helsinki Vaihde (90) 539 011 Telex 123458 vapk sf KIRJAKAUPAT HELSINGISSÄ Annankatu 44 (Et. Rautatiekadun kulma) Vaihde (90) 17 341 Eteläesplanadi 4 Puh. (90) 662 801

POSTFÖRSÄLJNING PB 516 00101 Helsingfors Växel (90) 539 011 Telex 123458 vapk sf BOKHANDLAR I HELSINGFORS Annegatan 44 (I hörnet av S. Järnv.g.) Växel (90) 17 341

Södra esplanaden 4 Tel. (90) 662 801

MAIL ORDERS P.O.BOX 516 SF-00101 Helsinki Finland Phone internat. + 358 0 539 011 Telex 123458 vapk sf BOOKSHOPS IN HELSINKI Annankatu 44 Phone (90) 17 341 Eteläesplanadi 4 Phone (90) 662 801

> ISSN 0781-4240 ISBN 951-690-208-1