Uganda Ready for Investment New Exploration Targets (1)

Carbonatites in Eastern Uganda

Carbonatite complexes are found in eastern Uganda along a N-S striking, ca 250 km long zone, starting with Pakwach and Tororo in the south and continuing with Bukusu, which is probably the largest carbonatite complex in Africa. The zone continues with Beetike (carbonatite plug is called Bukusu), Kalemi and Lubaga, to the west of the Mount Elgon volcanics, extending to Gulu and Tooro in Karamoja. The carbonatite complexes have potential for calcitic limestone (raw material for cement), marble (for dimension stone), apatite for phosphate fertilizers (single phosphate), magnetic minerals for Fe and Ti production, vermiculite mica, REE, Nb, and base metals (Cu, Ni) and gold.

Malic intrusions at Iganga, SE Uganda

The new airborne magnetic maps indicate large round intrusions in the Iganga area in southeast Uganda. Geological mapping verifies some of them to be caused by gabbro, locally with sulfide minerals. A detailed study of these magnetic anomalies is recommended due to their mineral potential (Ni, Cu, Co, and PGE).

Potential for kimberlitic intrusions in SE Uganda

By interpreting the new airborne geophysical data combined with satellite imagery covering the Archaean craton in SE Uganda, a number of small to medium-scale kimberlitic intrusions have been identified [Fig. 1]. Based on examples from Angola and Tanzania, some of these magnetic anomalies could be caused by kimberlitic intrusions. However, older heavy mineral surveys (1970s) on these areas do not report any microdiamonds. Ground geophysical survey carried out in the SMMRP confirmed the existence of magnetic and heat pipe-like intrusions at several anomaly locations shown by Fig. 2.

Diatomites at Pakwach, NW Uganda

In Uganda diatomites have been formed in the Quaternary beds of the Western Rift, on the western side of the Albert Nile. Principal occurrences are known around Abot (Akit), star and Payungo, close to the town of Pakwach.

Some diatomite samples were studied by SEM/EDS carrying out a feature analysis counting the amounts of different minerals and then giving also their natural occurrence in the sample. The analysis shows that diatomite material is low in space, what is also seen in SEM/EDS micro photos.