

Geological Survey of Finland Unit Place of business

1.6.2020

Report No. 28/2020

# Characterization for Konttijärvi Geometallurgical Orientation Study Samples

## **BATCircle Project Report 03**

Simon Michaux Alan Butcher Lorenza Sardisco Chris Hughes Luke Morgan Oleg Knauf Quentin Dehaine

#### **GEOLOGICAL SURVEY OF FINLAND**

#### **DOCUMENTATION PAGE**

Date: 1/6/2020

| Authors<br>Simon Michaux<br>Associate Professor, GTK                                                                                                  | Type of report<br>Open File Work Report                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Alan Butcher<br>Research Professor, GTK                                                                                                               | Commission by<br>BATCircle Project                                                              |
| Quentin Dehaine<br>Postdoctoral Researcher, GTK                                                                                                       |                                                                                                 |
| Oleg Knauf<br>Enrichment Mineralogy, GTK                                                                                                              |                                                                                                 |
| Lorenza Sardisco<br>Senior Geologist, X-Ray Mineral Services                                                                                          |                                                                                                 |
| Chris Hughes<br>Manager XRF Department, X-Ray Mineral Services                                                                                        |                                                                                                 |
| Luke Morgan<br>Geomaterials Analyst, X-Ray Mineral Services                                                                                           |                                                                                                 |
| Title of report<br>Characterization for Konttijärvi Geometallur                                                                                       | gical Orientation Study Samples                                                                 |
| Abstract<br>This report is the documentation of characte<br>Konttijärvi geometallurgical case study in the<br>Package WP1.2. Included in this report: | erization of the Orientation Samples in the<br>e BATCircle project. This report is part of Work |
| BATCircle experimental design                                                                                                                         |                                                                                                 |
| • The rock type character of the difference                                                                                                           | ent Orientation Samples                                                                         |
| <ul> <li>How they were samples and how the</li> </ul>                                                                                                 | ey relate back to the Konttijärvi deposit                                                       |
| Chemical Assay characterization                                                                                                                       |                                                                                                 |
| X-Ray diffraction XRD                                                                                                                                 |                                                                                                 |
| X-Ray fluorescence XRF                                                                                                                                |                                                                                                 |
| SEM automated mineralogy MLA                                                                                                                          |                                                                                                 |
| Mineral profile for each rock type                                                                                                                    |                                                                                                 |
| All data in appendices                                                                                                                                |                                                                                                 |
| Keywords<br>BATCircle Project, WP1.2, Konttijärvi, SAP, G                                                                                             | Geometallurgy                                                                                   |
| Geographical area<br>Suhanko Konttijärvi                                                                                                              |                                                                                                 |
|                                                                                                                                                       |                                                                                                 |
| Geologian tutkimuskeskus   Geologiska forskning                                                                                                       | gscentralen   Geological Survey of Finland                                                      |



| Map sheet<br>N/A                          |                     |                                |              |  |  |  |  |  |  |
|-------------------------------------------|---------------------|--------------------------------|--------------|--|--|--|--|--|--|
| Other information                         |                     |                                |              |  |  |  |  |  |  |
| Report serial 28/2020                     |                     | Archive code                   |              |  |  |  |  |  |  |
| Total pages<br>262                        | Language<br>English | Price Confidentiality N/A N/A  |              |  |  |  |  |  |  |
| Unit and section<br>Mineral Economy Solut | ions (MTR)          | Project code                   |              |  |  |  |  |  |  |
| Signature/Simon Michaux                   |                     | Signature/Pasi Heino           |              |  |  |  |  |  |  |
| Serion 1                                  | Michaux             | San 1                          | lin          |  |  |  |  |  |  |
| Associate Professor Geomet                | allurgy             | Mineral Economy Solutions (MTR | l) Unit Head |  |  |  |  |  |  |

This report was compiled by Simon Michaux. All other authors listed contributed a part which was incorporated into the whole.



#### **EXECUTIVE SUMMARY**

This report details new mineralogical (Chemical Assay, XRF, QXRD & SEM MLA) data for crushed composite core samples from the Konttijärvi Deposit in Finland.

The results confirm the field classification previously developed by Suhanko Arctic Platinum Oy (SAP), based on previous core logging and whole-rock geochemistry, which suggested the samples represent 5 main ore types. Two sub-samples were selected to represent each type, resulting in a total of 10 samples to be studied, as follows:

All five ore types are quite different from each other - in terms of their mineralogy, style of mineralization, and physical properties – making them an ideal suite of extreme end-member ore types typical of the presently-known, commercially-interesting, rocks at Konttijärvi.

Automated SEM-EDS modal analysis (MLA), and QXRD Rietveld data (whole-rock powders from the same samples), are internally consistent, although mineral names reported need to be interpreted to allow corellation.

The Peridotite Marker samples are characteristically talc-rich, in keeping with their original olivine having been replaced to secondary magnesium silicates. The Pyroxenite samples are amphibole-rich, and this is to be expected given that primary pyroxene is known to have been changed into amphibole (tremolite-actinolite) during metamorphism. The Marginal Series Gabbros contain conspicuous plagioclase feldspar. The Transition Zone is marked by the appearance of quartz as a minor phase. Finally, the Basement Gneiss is both plagioclase- and quartz-rich, as expected. Sulphide minerals of particular interest (as they are often associated with PGMs) include: pyrrhotite, chalcopyrite and pentlandite. The most copper-rich (chalcopyrite) sample is SKC-BAS2. The most nickel-rich (pentlandite) and pentlandite-rich samples are SKC-PM2 & SKC-BAS1. These observations confirm previous work by SAP, based on geochemical assays and logging.

#### TABLE OF CONTENTS

| Do  | cume                                                | ntation page                                                               |    |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------|----------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Exe | ecutive                                             | e Summary                                                                  | iv |  |  |  |  |  |  |  |
| Ta  | ble of (                                            | Contents                                                                   | v  |  |  |  |  |  |  |  |
| 1   | Intro                                               | duction                                                                    | 1  |  |  |  |  |  |  |  |
| 2   | Konttijärvi Geometallurgical Experimental Objective |                                                                            |    |  |  |  |  |  |  |  |
|     | 2.1                                                 | Problems to address:                                                       | 1  |  |  |  |  |  |  |  |
| 3   | Kont                                                | tijärvi deposit (SAP) Geology                                              | 2  |  |  |  |  |  |  |  |
|     | 3.1                                                 | Konttijärvi Deposit (SAP) Rock Type Descriptions                           | 3  |  |  |  |  |  |  |  |
|     | 3.2                                                 | Konttijärvi Sample Selection from Drill Core sections                      | 4  |  |  |  |  |  |  |  |
| 4   | Gen                                                 | eral BATCircle Experimental Design Strategy                                | 12 |  |  |  |  |  |  |  |
| 5   | Kont                                                | tijärvi Sample Orientation Sample Preparation                              | 16 |  |  |  |  |  |  |  |
| 6   | Char                                                | acterization of Each Orientation Sample                                    | 16 |  |  |  |  |  |  |  |
| 7   | Cher                                                | nical Assay Characterization of each Konttijärvi Sample Orientation Sample | 17 |  |  |  |  |  |  |  |
| 8   | Bulk                                                | Element XRF Characterization of each Konttijärvi Sample Orientation Sample | 20 |  |  |  |  |  |  |  |
|     | 8.1                                                 | X-ray Fluorescence XRF data – loose powder                                 | 22 |  |  |  |  |  |  |  |
|     | 8.1.1                                               | Instrument Calibration                                                     | 22 |  |  |  |  |  |  |  |
| 9   | Bulk                                                | Mineral XRD Characterization of each Konttijärvi Sample Orientation Sample | 25 |  |  |  |  |  |  |  |
|     | 9.1                                                 | Whole-rock analysis                                                        | 26 |  |  |  |  |  |  |  |
|     | 9.2                                                 | Clay fraction analysis                                                     | 28 |  |  |  |  |  |  |  |
| 10  | Auto                                                | mated Mineralogy Characterization of each Konttijärvi Orientation Sample   | 30 |  |  |  |  |  |  |  |
|     | 10.1                                                | Automated Mineralogy Experimental Procedure                                | 30 |  |  |  |  |  |  |  |
| 11  | Mod                                                 | al Mineralogy of ore types                                                 | 32 |  |  |  |  |  |  |  |
| 12  | Kont                                                | tijärvi Orientation Sample Mineral Profile                                 | 35 |  |  |  |  |  |  |  |
|     | 12.1                                                | Mineral Characterization Summary – PM1                                     | 36 |  |  |  |  |  |  |  |
|     | 12.2                                                | Mineral Characterization Summary – PM2                                     | 42 |  |  |  |  |  |  |  |
|     | 12.3                                                | Mineral Characterization Summary – PX1                                     | 48 |  |  |  |  |  |  |  |
|     | 12.4                                                | Mineral Characterization Summary – PX2                                     | 54 |  |  |  |  |  |  |  |
|     | 12.5                                                | Mineral Characterization Summary – MS1                                     | 60 |  |  |  |  |  |  |  |
|     | 12.6                                                | Mineral Characterization Summary – MS2                                     | 66 |  |  |  |  |  |  |  |
|     | 12.7                                                | Mineral Characterization Summary – TZ1                                     | 72 |  |  |  |  |  |  |  |
|     | 12.8                                                | Mineral Characterization Summary – TZ2                                     | 78 |  |  |  |  |  |  |  |
|     | 12.9                                                | Mineral Characterization Summary – BAS1                                    | 84 |  |  |  |  |  |  |  |
|     | 12.10                                               | Mineral Characterization Summary – BAS2                                    | 90 |  |  |  |  |  |  |  |
| 13  | Refe                                                | rences                                                                     | 96 |  |  |  |  |  |  |  |
| 14  | Арре                                                | endix A - Batcircle project summary                                        | 97 |  |  |  |  |  |  |  |



|    | 14.1                                                        | BATcircle Work Package Structure                                | 97  |  |  |  |  |  |
|----|-------------------------------------------------------------|-----------------------------------------------------------------|-----|--|--|--|--|--|
|    | 14.2                                                        | 98                                                              |     |  |  |  |  |  |
|    | 14.3                                                        | 100                                                             |     |  |  |  |  |  |
|    | 14.4                                                        | 100                                                             |     |  |  |  |  |  |
|    | 14.5                                                        | 101                                                             |     |  |  |  |  |  |
|    | 14.6                                                        | Suhanko Arctic Platinum Oy                                      | 101 |  |  |  |  |  |
|    | 14.7                                                        | Konttijärvi deposit (SAP) BATCircle Geometallurgical Case Study | 101 |  |  |  |  |  |
| 15 | Apper                                                       | dix B – BATcircle Project WP1.2 Sample Labelling Protocol       | 102 |  |  |  |  |  |
| 16 | Apper                                                       | dix C – Sample pictures drill core in tray                      | 104 |  |  |  |  |  |
| 17 | Appendix D. KJV Geology Logs for BATCircle samples taken 1: |                                                                 |     |  |  |  |  |  |
| 18 | 3 Appendix E – Sample Preparation 11                        |                                                                 |     |  |  |  |  |  |
| 19 | Appendix F – Chemical Assay data 1                          |                                                                 |     |  |  |  |  |  |
| 20 | Appendix G – X-ray Fluorescence XRF data 142                |                                                                 |     |  |  |  |  |  |
| 21 | Appendix H – X-ray Diffraction XRD data 16                  |                                                                 |     |  |  |  |  |  |
| 22 | Apper                                                       | idix I – Automated Mineralogy data                              | 175 |  |  |  |  |  |



vi

#### **1** INTRODUCTION

This report is one in a series of reports to document work done in the development of the geometallurgy Konttijärvi case study, which is part of Work Package WP1.2 in the BATCircle project. A description and experimental approach of the BATCircle project is shown in Appendix A.

Samples were collected in consultation with Suhanko Arctic Platinum (SAP) staff, which would be the foundation of the geometallurgical Orientation Study (see Section C and D). These samples were to represent the rock texture extremes in which the rest of the deposit is made up of a combination of these samples. If these samples are characterized appropriately, process behaviour can be more effectively planned for.

The collected samples were transported to GTK-Mintec for sample preparation. Part of this sample preparation was to prepare a series of sub-samples, each of which were to be tasked for a specific process separation test. One of these sub-samples for each rock type was to be used to characterize the mineral composition and form of the rock as received (unprocessed). These characterization results would later be used to compare the products of process separation tests on parallel sister samples.

### 2 KONTTIJÄRVI GEOMETALLURGICAL EXPERIMENTAL OBJECTIVE

In context of mineral processing, both leaching and flotation have been considered as process paths in previous work. Sulphide extraction to be considered is to target both copper (Cu) and nickel (Ni). The geometallurgical objective for this campaign is:

Based on geometallurgical studies to refine the metallurgical process route to maximize recovery of minerals into separate Cu/PGE and Ni/PGE/Co concentrates

#### 2.1 Problems to address:

- Primary question what is the most useful process path? Flotation, leaching, or a combination of both?
- Can gravity separation and magnetic separation augment the best process path?
- How does this change between rock types?
- How to achieve 80% for palladium recovery, where grain size is below 10 micron and mostly in pentlandite.
- Ni is concentrated at the lower end of the deposit. How to exploit this?
- A useful metallurgical target would be to try and suppress the pyrrhotite, as this would be a penalty element at the smelter.



### 3 KONTTIJÄRVI DEPOSIT (SAP) GEOLOGY

This geometallurgical approach will be applied to two case studies in the BATcircle Project. One of those BATCircle WP1.2 case studies is the Konttijärvi deposit, owned by Suhanko Arctic Platinum (SAP). Konttjärvi is a lense deposits that is deposited in clear layers, with the deposit 15-80m thick. There are five basic rock types.

- PM
- PYR
- MGB
- TZ
- BAS (quartz)

Minerals of interest could be will be chalcopyrite, pyrrhotite, some pyrite, pentlandite, with a basement of sphalerite. Economic minerals in order of importance Palladium (2g/t), Pt (0.5g/t), Cu (0.16%), Ni (0.08%), Au (0.1g/t), Co, Ag, Rhodium. The platinum group elements (PGE) are the most valuable, palladium (Pd) in particular.



### 3.1 Konttijärvi Deposit (SAP) Rock Type Descriptions

A description of each of the ten end member rock type extremes is shown in Table 1. Each one of these rock types was sampled (20 to 30kg) to form the Konttijärvi Orientation Sample set.

| Stratigraphic Unit     | Average<br>Thickness    | Lithology Description                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hanging Wall           |                         | Gabbroic rocks, ranging from melanocratic to<br>leucocratic varieties, with thinner or minor units of<br>pyroxenites and olivine pyroxenites. Not<br>mineralized.                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peridotite Marker      | 15 - 50 m,<br>avg. 25 m | Pyroxenites and olivine pyroxenites at the top,<br>through peridotite in the middle to olivine<br>pyroxenites at the bottom. Olivine has mainly been<br>replaced by talc and magnetite, and pyroxenes by<br>tremolite-actinolite. Euhedral carbonate crystals are<br>common in places.Highly magnetic. Sulphide<br>content, mainly pyrrhotite, increases towards the<br>base. Disseminated chalcopyrite common at base.<br>Sulphides mainly fine grained.                       | Sample PM1. Typical peridotite marker ore.<br>Metaperidotite - olivine pyroxenite with high PGE and<br>average base metal grades.<br>Sample PM2.<br>Typical peridotite marker ore.<br>Metaperidotite - olivine pyroxenite with slightly below<br>average PGE, average Cu, and slightly elevated Ni<br>grades.                                                                                                                                                                                                                                                                                                                  |
| Pyroxenite             | 2 - 10 m,<br>avg. 5 m   | Olivine pyroxenite and pyroxenite, chlorite schist at<br>the base. Pyroxenes have been replaced by<br>amphibole (tremolite-actinolite). Grain size typically<br>varies from fine to medium, but also coarse grained<br>variations are fairly common. Low magnetic<br>susceptibility. Fine disseminated sulphides, mainly<br>chalcopyrite, and minor pyrrhotite. Lower part of<br>pyroxenite often low sulhur, bornite bearing zone.<br>Commonly a sharp contact to rocks below. | Sample PX1. Typical pyroxenite ore. Chlorite tremolite<br>rock and chlorite schist at basal part of sampling<br>interval. Fine grained patchy chalcopyrite<br>dissemination with some pyrrhotite. Sulphides are<br>mainly fine grained, in basal part of the sample partially<br>medium grained. High PGE and average base metal<br>grades<br>Sample PX2. Typical pyroxenite ore. Chlorite tremolite<br>rock and chlorite schist at basal part of sampling<br>interval. Traces of fine grained chalcopyrite, basal part<br>of sample is bornite bearing. Average PGE grades with<br>low basemetal and very low sulphur grades. |
| Marginal Series Gabbro | 0 - 25 m,               | Gabbronorites, feldspathic pyroxenites, pyroxenites<br>and assimilated hybrid gabbros. Heterogenous<br>zone. Main minerals are amphiboles, plagioclase<br>and chlorite. Grain size typicalle medium to coarse.<br>Assimilation features and basement xenoliths yery                                                                                                                                                                                                             | Sample MS1. Typical melanocratic to pyroxenitic marginal gabbro ore. Granular, medium to coarse grained mela gabbro or pyroxenite. Medium to coarse grained, patchy pyrrhotite and chalcopyrite. Moderate PGE grade, pyrrhotite dominant mineralisation.                                                                                                                                                                                                                                                                                                                                                                       |
|                        | a.g. 10                 | common. Main sulphides are chalcopyrite, pyrrhotite<br>and pentlandite, which occur as fine to coarse<br>grained disseminations or patchy aggregates.                                                                                                                                                                                                                                                                                                                           | Granular, medium to coarse grained gabbro ore.<br>Granular, medium to coarse grained gabbro. Patchy,<br>medium to fine grained chalcopyrite and pyrrhotite<br>dissemination. Fairly high PGE and Cu grades. Bornite<br>in the upper part of the sampling interval.                                                                                                                                                                                                                                                                                                                                                             |
| T                      | 0 - 40 m,               | Gradational contact between layered intrusion and<br>basement. Heterogenous zone that comprises<br>highly assimilated marginal series rocks, mainly<br>hybrid gabbros, and altered basement rocks. Grain                                                                                                                                                                                                                                                                        | <u>Sample TZ1.</u> Typical heterogenous banded amphibole<br>gneiss type TZ ore. Alternating mafic and felsic bands.<br>Silicate mineral grain size varies from fine to coarse.<br>Dominantly fine grained chalcopyrite and pyrrhotite<br>dissemination. Moderate PGE grade.                                                                                                                                                                                                                                                                                                                                                    |
| Transition Zone        | avg. 15 m               | size usually medium to coarse. Typically dominantly<br>mineralized with fine grained disseminated<br>chalcopyrite and pyrrhotite, but also containing<br>coarse grained and patchy sulphide aggregates.                                                                                                                                                                                                                                                                         | <u>Sample TZ2.</u> Typical heterogenous hybrid gabbro type TZ ore. Mafic, medium to coarse grained. Patchy/blebby chalcopyrite and pyrrhotite, with coarser sulphides often concentrated in leucocratic blotches or veinlets. Low PGE and average base metal grades.                                                                                                                                                                                                                                                                                                                                                           |
| Basement               |                         | Archaean basement complex quartz diorites,<br>gneisses and amphibolites, interlayered with<br>possible hybrid gabbros and mafic dykes/sills<br>(related to intrusion?). Texture varies from granular<br>to gneissic and grain size medium to coarse. Main<br>sulphides are pyrrhotite and chalcopyrite, which<br>often occur as pervasive, fine grained<br>disseminations. Pyrite is present in minor amounts.<br>Moving away from the intrusion contact, the amount            | Sample BAS1. Typical felsic quartz dioritic basement<br>ore type with minor amphibolite. Texture varies from<br>granular to gneissic. Patchy, fine to medium grained<br>chalcopyrite and pyrrhotite dissemination. Pyrrhotite<br>dominant mineralised zone with average PGE and Cu,<br>but high Ni grades.<br>Sample BAS2. Typical mafic basement ore type.<br>Medium grained, sheared and banded amphibole<br>gneiss. Strong, fine grained chalcopyrite dissemination.                                                                                                                                                        |
|                        |                         | of pyrite increases as pyrrhotite and chalcopyrite start to disappear.                                                                                                                                                                                                                                                                                                                                                                                                          | minor pyrrhotite. Chalcopyrite dominant mineralised zone with average PGE, high Cu and low Ni grades.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Table 1: Suhanko Arctic Platinum Oy Konttijärvi mineralised stratigraphy and ore type samples



### 3.2 Konttijärvi Sample Selection from Drill Core sections

Samples were selected to make up 20 to 30kg of each of the selected 10 rock types observed at the Konttijärvi deposit. The drill holes that were sampled (and at what depths) to deliver 20 to 30kg per rock type is shown in Appendix C & D.



Figure 1. Samples were taken from this part of the stratigraphy





Figure 2. Sample selection from drill hole KOJ/MET-3S9





Figure 3. Sample selection from drill hole KOJ/MET-5N3





Figure 4. Sample selection from drill hole KOJ/MET-7N4





Figure 5. Sample selection from drill hole KOJ/MET-10N3





Figure 6. Sample selection from drill hole KOJ/MET-13S6





Figure 7. Sample selection from drill hole KOJ/MET-14N4





Figure 8. Sample selection from drill hole KOJ/MET-723



### 4 GENERAL BATCIRCLE EXPERIMENTAL DESIGN STRATEGY

The first part of the experimental procedure that would be carried out for this case study are as follows:

- 1. Meet with SAP staff and discuss the geology structures of the deposit, then come to an agreement in how many rock type extremes are present in the deposit, which could produce the process behaviour extremes. See Appendices C and D.
- 2. Select a number of samples that show end member rock texture extremes (the Orientation Study). These samples should reflect all the rock textures encountered in the deposits where all other textures would be a combination of these rock types. The mass of each of these orientation samples should be large enough to do all of the planned process and characterisation tests in a representative manner. In doing so, each test would be done on the same rock type texture (as close as practical). See Appendices C and D.
- 3. Sample preparation to produce Orientation Samples for process testing. See Appendix E. Crush the sample to 99% mass passing 3.35mm. Rotary divide the sample into representative sub-samples that would be tasked to specific characterization and process separation tests.



Figure 9. The sample preparation and subsampling of each Orientation Sample for process testing



- 4. First characterize each orientation sample with a series of methods that will be useful to compare to later test work across the whole geometallurgical campaign. Results are shown in Appendices F, G, H and I.
- 5. Do a series of detailed process characterisation tests and mineralogy characterisation tests on these small set of samples (gravity separation, flotation, and leaching), that could be made up into several parallel process paths. Characterize the products of each test in context of how the unprocessed samples were characterized.



Figure 10. Ideal characterization work to be done on each Orientation Sample

- 6. Compare the characterized process products to the characterized unprocessed samples (results presented in this report). Assemble all process separation test outcomes and test product characterization data where all process methods applied on the same rock sample can be compared directly. Use the characterization data of the original sample (in this report) as a base reference.
- 7. Assemble all process separation test data together to model a theoretical process path.
- 8. Compare all process paths that have been examined for each rock type sample to the appropriate metrics. Determine what the best process path for that rock type is. What is the best for each target metal? What is the best polymetallic path for 2 or 3 target minerals?
- 9. Compare all process paths in all Orientation Sample rock types for this study. Determine what the best process path for all rock types is in this deposit system. What is the best for each target metal? What is the best polymetallic path for 2 or 3 target minerals?





Figure 11. Diagnosis of the best process path for each ore type sample





Figure 12. Diagnosis of the best process path for all ore type samples together



### 5 **KONTTIJÄRVI SAMPLE ORIENTATION SAMPLE PREPARATION**

Sample selection with SAP staff and delivery to GTK-Mintec (results are in Appendix E).

- 1. Photograph each sample while still in the core tray
- 2. Apply Personal Protection Equipment (PPE): dust masks, safety glasses, ear muffs, and steel capped boots
- 3. Record the net mass of uncrushed core out of the tray for each sample
- 4. Clean jaw crusher before and after each sample with compressed air and brush
- 5. Clean each bucket with compressed air and brush
- 6. Clean floor around crusher and buckets with compressed air and brush
- 7. Crush sample and collect in a bucket
- 8. Record net mass of sample after crushing
- 9. Clean down rotary divider or riffle with compressed air and brush
- 10. Divide the sample into multiple sub-samples and collect in a cleaned bucket
- 11. Record the net mass of each sub-sample
- 12. Put each sub-sample into an appropriately labelled bag
- 13. Log each sub-sample into sample handling records
- 14. Store each sample appropriately in a safe place

Conduct data QA/QC, by using recorded net masses between preparation steps. Ideally each crushing step should not lose more than 0.5%. The cleaning steps are to reduce the risk of sample cross contamination.

The labelling protocol is in Appendix B.

### 6 CHARACTERIZATION OF EACH ORIENTATION SAMPLE

This report is to present the characterization results of the SKC sample series. These SKC samples will be subject to the following procedures:

- Chemical Assays are what a mine site will do routinely. This is the trusted method to define the presence of precious metals content (Pd, Pt, Au, Ag). Ideally a relationship between chemical assays and other tests will be developed to later facilitate an operational routine protocol. (see Appendix F)
- XRF provides bulk element content, again quickly, cheaply and on a small volume sample. (see Appendix G)
- XRD provides bulk mineralogy, quickly and cheaply, and can be done on a relatively small volume sample. XRD will be used to characterize process separation products in later work done, thus will provide a good comparison to the unprocessed samples. (see Appendix H)
- SEM Automated mineralogy is a sophisticated methodology that measures individual particles in context of what minerals are present and in what textural structure are they assembled together. It is this data that will be used to compare flotation and leaching performance against the unprocessed sample. (see Appendix I)





Figure 13. The four kinds of characterization used

### 7 CHEMICAL ASSAY CHARACTERIZATION OF EACH KONTTIJÄRVI SAMPLE ORIENTATION SAMPLE

The chemical assay results of all 10 samples in comparison is shown in Figures 14 to 18.



Figure 14. Precious metal content from chemical fire assay measurements for Konttijärvi Orientation Samples (Appendix F)





Figure 15. Copper and nickel content

Four-acid digestion and Multi-element analysis by ICP-OES-technique (Method 306P) (Appendix F)



Figure 16. Cobalt content Four-acid digestion and Multi-element analysis by ICP-OES-technique (Method 306P) (Appendix F)







Figure 17. Determination of Sulphur (sulphur analyzer Method Eltra 810L) and Determination of carbon (carbon analyzer Method Eltra 811L) (Appendix F)



Figure 18. Principle Component Analysis of chemical assay measurements for Konttijärvi Orientation Samples



#### 8 BULK ELEMENT XRF CHARACTERIZATION OF EACH KONTTIJÄRVI SAMPLE ORIENTATION SAMPLE

The bulk mineralogy for the 10 SAP Orientation samples was characterized with XRF by X-Ray Minerals in the United Kingdom and Eurofins Labtium Oy in Finland (the XRF pellet method 180X was used). (see Appendix G)

XRF is an elemental analysis and can chemical elements are present and what are their concentrations. For example the sample contains iron (Fe) and calcium (Ca) in a measured proportion. An X-ray fluorescence (XRF) spectrometer is an x-ray instrument used for routine, relatively nondestructive chemical analyses of rocks, minerals, sediments and fluids. In a laboratory X-ray fluorescence (XRF) spectrometer the emission of characteristic "secondary" (or fluorescent) X-rays from a material that has been excited by being bombarded with high-energy X-rays (Fitton 1997, Potts 1987 and Rollinson 1993).

It works on wavelength-dispersive spectroscopic principles that are similar to an electron microprobe (EPMA). However, an XRF cannot generally make analyses at the small spot sizes typical of EPMA work (2-5 microns), so it is typically used for bulk analyses of larger fractions of geological materials. The relative ease and low cost of sample preparation, and the stability and ease of use of x-ray spectrometers make this one of the most widely used methods for analysis of major, minor and trace elements in rocks, minerals, liquids, solids, oils and sediment.

The best results one can obtain with matrix specific calibrations. For rocks and minerals, typical commercial instruments require a sample constituting at least several grams of material, pressed pellet between 15-20 grams, although the sample collected may be much larger. For XRF chemical analyses of rocks, samples are collected that are several times larger than the largest size grain or particle in the rock. This initial sample then suffers a series of crushing steps to reduce it to an average grain size of a few millimeters to a centimeter, when it can be reduced by splitting to a small representative sample of a few tens to hundreds of grams. This small sample split is then ground into a fine powder by any of a variety of techniques to create the XRF sample. Care must be taken particularly at this step to be aware of the composition of the crushing implements, which will inevitably contaminate the sample to some extent. Ideally powdered sample has grain size at 10µm scale but best results are obtained using glass beads where all grains have been melted in a flux. Sample size for a compressed powder pellet XRF measurement is 10 to 50 grams, but less can be used depending on mineralogical circumstance.

A sub-sample of each of the SAP Konttijärvi Orientation samples was characterized with XRF at X-ray Mineral Services Ltd (United Kingdom).

The sub-sample was finely ground in a planetary ball mill, mixed with Mowiol binder and pressed into a 32mm diameter pellet. The pellet was analysed on a Rigaku NEX-DE energy dispersive XRF spectrometer calibrated using 12 United States Geological Survey (USGS) and 3 African Mineral Standards (AMIS) to represent a range of geological matrix types (see list below).



|       |        |        | AMIS  |        |      |  |  |  |
|-------|--------|--------|-------|--------|------|--|--|--|
| AGV-2 | BCR-2  | BHVO-2 | 87    | 95     | 96   |  |  |  |
| GSP-2 | QLO-1a | SBC-1  | SDC-1 | SGR-1b | W-2a |  |  |  |

| Element | Limit of  | SKC-PM1 | SKC-PM2 | SKC-PX1 | SKC-PX2 | SKC-MS1 | SKC-MS2 | SKC-TZ1 | SKC-TZ2 | SKC-BAS1 | SKC-BAS2 |
|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|
|         | Detection | ppm      | ppm      |
| v       | 37        | 65      | 66      | 70      | 92      | 117     | 38      | 81      | 85      | 38       | 117      |
| Cr      | 39        | 746     | 378     | 914     | 1250    | 850     | 449     | 347     | 601     | 262      | 484      |
| Со      | 10        | 77      | 94      | 80      | 89      | 53      | ND      | ND      | 25      | 10       | ND       |
| Ni      | 11        | 1420    | 2210    | 1260    | 956     | 1220    | 1190    | 1060    | 810     | 1490     | 517      |
| Cu      | 10        | 1000    | 1110    | 1040    | 363     | 1740    | 1870    | 2110    | 1440    | 1610     | 4870     |
| Zn      | 7         | 80      | 88      | 89      | 114     | 113     | 87      | 85      | 80      | 400      | 128      |
| Ga      | 3         | 6       | 5       | 6       | 7       | 11      | 17      | 20      | 16      | 29       | 19       |
| Ge      | 2         | 4       | ND      | ND      | ND      | 3       | ND      | 2       | ND      | ND       | ND       |
| As      | 5         | ND      | 9        | ND       |
| Se      | 2         | 3       | 2       | 3       | ND      | 4       | 4       | 3       | 3       | 4        | 4        |
| Rb      | 3         | 5       | 11      | 3       | 5       | 12      | 39      | 12      | 26      | 48       | 19       |
| Sr      | 30        | ND      | ND      | ND      | ND      | 114     | 465     | 489     | 479     | 649      | 375      |
| Y       | 5         | ND      | 5       | 6       | 9       | 11      | ND      | 7       | ND      | ND       | 7        |
| Zr      | 5         | 29      | 31      | 32      | 44      | 41      | 43      | 42      | 37      | 45       | 30       |
| Nb      | 5         | ND       | ND       |
| Мо      | 20        | ND       | ND       |
| Sn      | 2         | ND       | ND       |
| Sb      | 2         | ND       | ND       |
| Cs      | 3         | ND       | ND       |
| Ва      | 56        | ND      | ND      | ND      | ND      | 110     | 346     | 229     | 206     | 446      | 183      |
| La      | 6         | ND      | ND      | ND      | ND      | 8       | ND      | ND      | ND      | 6        | ND       |
| Ce      | 9         | ND      | ND      | ND      | 9       | 16      | 17      | 13      | 10      | 22       | ND       |
| Nd      | 2         | ND      | ND      | ND      | 7       | ND      | ND      | ND      | ND      | 6        | 6        |
| Hf      | 4         | ND       | ND       |
| Pb      | 5         | ND      | 5       | ND      | ND      | 11      | 24      | 19      | 15      | 106      | 13       |
| Th      | 2         | ND      | 5       | ND       | ND       |
| U       | 2         | ND       | ND       |

#### Table 3. Multi-element analysis by X-ray Fluorescence

ND = Not determined (abundance < limit of detection)



### 8.1 X-ray Fluorescence XRF data – loose powder

A sub-sample of each of the SAP Konttijärvi Orientation samples was characterized with XRF at Chemostrat Ltd (a sister company of X-ray Mineral Services Ltd, United Kingdom).

Samples were received in homogenised powdered form, and were analysed in the same condition (no additional preparation took place). They were weighed to 5g using a 5 d.p. balance and transferred into an analysis cup topped with 4-micron Prolene film, through which the analysis was performed.

### 8.1.1 Instrument Calibration

All XRF analyses were carried out on a Spectro Scout pXRF spectrometer. The sample is excited via direct excitation, through three filters to account for matrix and background interferences. Concentrations of elements present are achieved via a bespoke calibration tailored to what we would expect to see in the sample, automatically applied by the instrument to the spectra. Calibrations are attained using various accepted GeoPT and other in-house standards (see list below) whose composition is obtained via ICP-OES and ICP-MS (Inductively Coupled Plasma – Optical Emission Spectroscopy and Mass Spectroscopy).

In addition, the instrument is also checked for acceptable calibration via an internal standard every sample to account for drift, differing analysis conditions or to detect faulty components.

| WG-1            | GSR-03        | AC-E             | NIST 697  | GSS-07          | DT-N         | BX-N         | IF-G         |
|-----------------|---------------|------------------|-----------|-----------------|--------------|--------------|--------------|
| GS-N            | MICA Fe-klein | IF-G             | NIST 1d   | AMIS 0118-klein | DT-N-jch     | GSR-05       | NCS DC 70003 |
| BHVO-2          | BCR-2         | OU-6             | NIST 120c | AMIS 0180-klein | GSR-01       | GSS-04-klein | UB-N         |
| ADS-1           | SGR-1b        | SdAR-1           | ADS-1     | NOD-A-1         | GSS-03-klein | W-2a         | BE-N         |
| WS-E            | NOD-P-1       | SDC-1            | OU-7      | BE-N            | RGM-2        | NIST-88b     | DTS-2b       |
| GSP-2 NEW       | SyMP-1        | GSS-01           | WS-E      | NIST 697        | CG-2         | NOD-A-1      | GSR-03       |
| Matador 10231.4 | SY-3          | SDAR-H1          | SDO-1     | MA-N            | BIR-1a       | NIST-1C      | DNC-1a       |
| GSR-04          | AGV-2         | ShWYO-1          | BHVO-2    | NIST 69b        | GSR-06       | BX-N         | BIR-1a       |
| OU-7            | NIST-692      | GSS-08           | MNS-1     | NIST 120c       | GSS-06       | AN           | PM-S         |
| SCO-1           | SdAR-M2       | MDO-G            | ZW-C      | AMIS 0185       | SDO-1        | WG-1         | GSM-1        |
| GSR-02          | DNC-1a        | Matador 10232.85 | BCR-2     | GSS-05          | GSS-02-klein | GSS-05       | AN-G         |

Table 4. List of GeoPT and in-house standards used for the calibration of the instrument.





1.6.2020

Figure 19. Key Calibration Cross Plots taken directly from the Spectro Scout spectrometer.



| Table 5. Multi-element ana | alysis by XRF |
|----------------------------|---------------|
|----------------------------|---------------|

|          |           | LOD    | SKC-PM1                                                                                                                                                                                                                                                                         | SKC-PM2                                                                                                                                                                                                                                             | SKC-PX1                                                                                                                                                                                                                 | SKC-PX2                                                                                                                                                                                     | SKC-MS1                                                                                                                                                         | SKC-MS2                                                                                                                             | SKC-TZ1                                                                                                 | SKC-TZ2                                                                     | SKC-BAS1                                        | SKC-BAS2            |
|----------|-----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| Al2O3    | %         | 0.0038 | 5.25                                                                                                                                                                                                                                                                            | 3.02                                                                                                                                                                                                                                                | 5.70                                                                                                                                                                                                                    | 4.55                                                                                                                                                                                        | 5.99                                                                                                                                                            | 15.3                                                                                                                                | 13.6                                                                                                    | 14.0                                                                        | 18.0                                            | 14.6                |
| SiO2     | %         | 0.0011 | 48.1                                                                                                                                                                                                                                                                            | 49.9                                                                                                                                                                                                                                                | 48.6                                                                                                                                                                                                                    | 50.6                                                                                                                                                                                        | 54.9                                                                                                                                                            | 53.4                                                                                                                                | 56.4                                                                                                    | 53.1                                                                        | 56.4                                            | 53.2                |
| TiO2     | %         | 0.0013 | 0.12                                                                                                                                                                                                                                                                            | 0.13                                                                                                                                                                                                                                                | 0.15                                                                                                                                                                                                                    | 0.20                                                                                                                                                                                        | 0.30                                                                                                                                                            | 0.16                                                                                                                                | 0.25                                                                                                    | 0.23                                                                        | 0.18                                            | 0.34                |
| Fe2O3    | %         | 0.0003 | 12.0                                                                                                                                                                                                                                                                            | 12.9                                                                                                                                                                                                                                                | 11.4                                                                                                                                                                                                                    | 12.8                                                                                                                                                                                        | 11.3                                                                                                                                                            | 7.3                                                                                                                                 | 8.31                                                                                                    | 8.30                                                                        | 6.58                                            | 10.2                |
| MnO      | %         | 0.0003 | 0.13                                                                                                                                                                                                                                                                            | 0.13                                                                                                                                                                                                                                                | 0.16                                                                                                                                                                                                                    | 0.29                                                                                                                                                                                        | 0.21                                                                                                                                                            | 0.10                                                                                                                                | 0.12                                                                                                    | 0.11                                                                        | 0.06                                            | 0.15                |
| MgO      | %         | 0.0166 | 29.2                                                                                                                                                                                                                                                                            | 32.0                                                                                                                                                                                                                                                | 26.9                                                                                                                                                                                                                    | 22.6                                                                                                                                                                                        | 17.1                                                                                                                                                            | 14.0                                                                                                                                | 10.3                                                                                                    | 13.6                                                                        | 8.08                                            | 11.2                |
| CaO      | %         | 0.0021 | 5.13                                                                                                                                                                                                                                                                            | 1.94                                                                                                                                                                                                                                                | 7.05                                                                                                                                                                                                                    | 8.97                                                                                                                                                                                        | 9.90                                                                                                                                                            | 6.50                                                                                                                                | 8.46                                                                                                    | 8.47                                                                        | 5.28                                            | 7.65                |
| Na2O     | %         | 0.1348 | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2.07</th><th>1.83</th><th>1.39</th><th>3.62</th><th>2.09</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                                                                            | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2.07</th><th>1.83</th><th>1.39</th><th>3.62</th><th>2.09</th></lod<></th></lod<></th></lod<></th></lod<>                                                                            | <lod< th=""><th><lod< th=""><th><lod< th=""><th>2.07</th><th>1.83</th><th>1.39</th><th>3.62</th><th>2.09</th></lod<></th></lod<></th></lod<>                                                                            | <lod< th=""><th><lod< th=""><th>2.07</th><th>1.83</th><th>1.39</th><th>3.62</th><th>2.09</th></lod<></th></lod<>                                                                            | <lod< th=""><th>2.07</th><th>1.83</th><th>1.39</th><th>3.62</th><th>2.09</th></lod<>                                                                            | 2.07                                                                                                                                | 1.83                                                                                                    | 1.39                                                                        | 3.62                                            | 2.09                |
| к20      | %         | 0.0024 | 0.03                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                | 0.04                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                        | 0.35                                                                                                                                                            | 1.15                                                                                                                                | 0.67                                                                                                    | 0.83                                                                        | 1.74                                            | 0.52                |
| P2O5     | %         | 0.0007 | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.04</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.04</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.04</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.04</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.04</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                | <lod< th=""><th><lod< th=""><th><lod< th=""><th>0.04</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>                | <lod< th=""><th><lod< th=""><th>0.04</th><th><lod< th=""></lod<></th></lod<></th></lod<>                | <lod< th=""><th>0.04</th><th><lod< th=""></lod<></th></lod<>                | 0.04                                            | <lod< th=""></lod<> |
|          |           |        | SKC DM1                                                                                                                                                                                                                                                                         | SKC DM2                                                                                                                                                                                                                                             |                                                                                                                                                                                                                         | SKC DV2                                                                                                                                                                                     | SKC MS1                                                                                                                                                         | SKC MS2                                                                                                                             | SKC T71                                                                                                 | SKC-T72                                                                     | SVC BASI                                        | SKC-BAS2            |
|          | ۰⁄.       | 0.002  | 0.04                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                        | 0.02                                                                                                                                                            | 0.02                                                                                                                                | 0.02                                                                                                    | 0.00                                                                        | 0.04                                            | 0.02                |
| s        | %         | 0.003  | 0.04                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                        | 0.02                                                                                                                                                            | 0.03                                                                                                                                | 0.03                                                                                                    | 0.00                                                                        | 0.04                                            | 0.02                |
| Δς       | 70<br>nnm | 0.001  | <10D                                                                                                                                                                                                                                                                            | <10D                                                                                                                                                                                                                                                | 0.20                                                                                                                                                                                                                    | <10D                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                     | 0.55                                                                                                    |                                                                             |                                                 |                     |
| Ba       | nnm       | 6      | 33                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                   | 26                                                                                                                                                                                                                      | 23                                                                                                                                                                                          | 108                                                                                                                                                             | 383                                                                                                                                 | 274                                                                                                     | 227                                                                         | /95                                             | 215                 |
| Ce       | ppm       | 12     | 127                                                                                                                                                                                                                                                                             | 94                                                                                                                                                                                                                                                  | 59                                                                                                                                                                                                                      | 80                                                                                                                                                                                          | 84                                                                                                                                                              | 87                                                                                                                                  | 154                                                                                                     | 95                                                                          | 131                                             | 139                 |
| <u> </u> | nnm       | 12     | 120                                                                                                                                                                                                                                                                             | 152                                                                                                                                                                                                                                                 | 102                                                                                                                                                                                                                     | 93                                                                                                                                                                                          | 84                                                                                                                                                              | 53                                                                                                                                  | 47                                                                                                      | 56                                                                          | 51                                              | 51                  |
| Cr       | nnm       | 3      | 563                                                                                                                                                                                                                                                                             | 185                                                                                                                                                                                                                                                 | 737                                                                                                                                                                                                                     | 1017                                                                                                                                                                                        | 679                                                                                                                                                             | 411                                                                                                                                 | 271                                                                                                     | 535                                                                         | 215                                             | 358                 |
| Cs       | nom       | 4      | 41                                                                                                                                                                                                                                                                              | 36                                                                                                                                                                                                                                                  | 40                                                                                                                                                                                                                      | 50                                                                                                                                                                                          | 37                                                                                                                                                              | 53                                                                                                                                  | 75                                                                                                      | 46                                                                          | 52                                              | 76                  |
| Cu       | nnm       | 06     | 793                                                                                                                                                                                                                                                                             | 719                                                                                                                                                                                                                                                 | 826                                                                                                                                                                                                                     | 311                                                                                                                                                                                         | 1369                                                                                                                                                            | 1544                                                                                                                                | 1647                                                                                                    | 1088                                                                        | 1128                                            | 3657                |
| 62       | nnm       | 0.8    | <10D                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                   | <10D                                                                                                                                                                                                                    | 5                                                                                                                                                                                           | <10D                                                                                                                                                            | 11                                                                                                                                  | 12                                                                                                      | 13                                                                          | 24                                              | 11                  |
| Ge       | nom       | 0.7    | <100                                                                                                                                                                                                                                                                            | <10D                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         | <10D                                                                                                                                                                                        | <100                                                                                                                                                            |                                                                                                                                     | <100                                                                                                    | <100                                                                        | <100                                            | <100                |
| Hf       | nom       | 3      | 9                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                       | 20                                                                                                                                                                                          | 14                                                                                                                                                              | 6                                                                                                                                   | 9                                                                                                       | 8                                                                           | 34                                              | 109                 |
| La       | ppm       | 10     | 98                                                                                                                                                                                                                                                                              | 78                                                                                                                                                                                                                                                  | 105                                                                                                                                                                                                                     | 108                                                                                                                                                                                         | 74                                                                                                                                                              | 123                                                                                                                                 | 104                                                                                                     | 117                                                                         | 116                                             | 96                  |
| Mo       | ppm       | 0.4    | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2</th><th>2</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                                     | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2</th><th>2</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                                     | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2</th><th>2</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                                     | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2</th><th>2</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                                     | <lod< th=""><th><lod< th=""><th><lod< th=""><th>2</th><th>2</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>                                     | <lod< th=""><th><lod< th=""><th>2</th><th>2</th><th><lod< th=""></lod<></th></lod<></th></lod<>                                     | <lod< th=""><th>2</th><th>2</th><th><lod< th=""></lod<></th></lod<>                                     | 2                                                                           | 2                                               | <lod< th=""></lod<> |
| Nb       | ppm       | 0.3    | <lod< th=""><th><lod< th=""><th><lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                   | <lod< th=""><th><lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                   | <lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                   | 2                                                                                                                                                                                           | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""></lod<></th></lod<> | <lod< th=""></lod<> |
| Nd       | ppm       | 20     | 78                                                                                                                                                                                                                                                                              | 92                                                                                                                                                                                                                                                  | 105                                                                                                                                                                                                                     | 106                                                                                                                                                                                         | 139                                                                                                                                                             | 53                                                                                                                                  | <lod< th=""><th>72</th><th><lod< th=""><th>40</th></lod<></th></lod<>                                   | 72                                                                          | <lod< th=""><th>40</th></lod<>                  | 40                  |
| Ni       | ppm       | 0.6    | 1176                                                                                                                                                                                                                                                                            | 1574                                                                                                                                                                                                                                                | 1038                                                                                                                                                                                                                    | 833                                                                                                                                                                                         | 925                                                                                                                                                             | 873                                                                                                                                 | 704                                                                                                     | 543                                                                         | 900                                             | 443                 |
| Pb       | ppm       | 0.5    | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0</th><th>14</th><th>13</th><th>5</th><th>81</th><th>2</th></lod<></th></lod<></th></lod<></th></lod<>                                                                                                          | <lod< th=""><th><lod< th=""><th><lod< th=""><th>0</th><th>14</th><th>13</th><th>5</th><th>81</th><th>2</th></lod<></th></lod<></th></lod<>                                                                                                          | <lod< th=""><th><lod< th=""><th>0</th><th>14</th><th>13</th><th>5</th><th>81</th><th>2</th></lod<></th></lod<>                                                                                                          | <lod< th=""><th>0</th><th>14</th><th>13</th><th>5</th><th>81</th><th>2</th></lod<>                                                                                                          | 0                                                                                                                                                               | 14                                                                                                                                  | 13                                                                                                      | 5                                                                           | 81                                              | 2                   |
| Rb       | ppm       | 0.1    | <lod< th=""><th>2</th><th>2</th><th><lod< th=""><th>9</th><th>41</th><th>13</th><th>28</th><th>52</th><th>17</th></lod<></th></lod<>                                                                                                                                            | 2                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                       | <lod< th=""><th>9</th><th>41</th><th>13</th><th>28</th><th>52</th><th>17</th></lod<>                                                                                                        | 9                                                                                                                                                               | 41                                                                                                                                  | 13                                                                                                      | 28                                                                          | 52                                              | 17                  |
| Sb       | ppm       | 6      | 9                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                   | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>6</th><th><lod< th=""><th>8</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                                     | <lod< th=""><th><lod< th=""><th><lod< th=""><th>6</th><th><lod< th=""><th>8</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>                                     | <lod< th=""><th><lod< th=""><th>6</th><th><lod< th=""><th>8</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>                                     | <lod< th=""><th>6</th><th><lod< th=""><th>8</th><th><lod< th=""></lod<></th></lod<></th></lod<>                                     | 6                                                                                                       | <lod< th=""><th>8</th><th><lod< th=""></lod<></th></lod<>                   | 8                                               | <lod< th=""></lod<> |
| Se       | ppm       | 0.2    | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""></lod<></th></lod<> | <lod< th=""></lod<> |
| Sn       | ppm       | 6      | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""></lod<></th></lod<> | <lod< th=""></lod<> |
| Sr       | ppm       | 0.1    | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>113</th><th>489</th><th>528</th><th>519</th><th>693</th><th>406</th></lod<></th></lod<></th></lod<></th></lod<>                                                                                                 | <lod< th=""><th><lod< th=""><th><lod< th=""><th>113</th><th>489</th><th>528</th><th>519</th><th>693</th><th>406</th></lod<></th></lod<></th></lod<>                                                                                                 | <lod< th=""><th><lod< th=""><th>113</th><th>489</th><th>528</th><th>519</th><th>693</th><th>406</th></lod<></th></lod<>                                                                                                 | <lod< th=""><th>113</th><th>489</th><th>528</th><th>519</th><th>693</th><th>406</th></lod<>                                                                                                 | 113                                                                                                                                                             | 489                                                                                                                                 | 528                                                                                                     | 519                                                                         | 693                                             | 406                 |
| Th       | ppm       | 0.3    | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""></lod<></th></lod<> | <lod< th=""></lod<> |
| U        | ppm       | 0.3    | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<> | <lod< th=""><th><lod< th=""></lod<></th></lod<> | <lod< th=""></lod<> |
| v        | ppm       | 5      | 29                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                                                                                                  | 62                                                                                                                                                                                                                      | 100                                                                                                                                                                                         | 128                                                                                                                                                             | 24                                                                                                                                  | 35                                                                                                      | 53                                                                          | <lod< th=""><th>76</th></lod<>                  | 76                  |
| Y        | ppm       | 0.2    | 0                                                                                                                                                                                                                                                                               | <lod< th=""><th>1.19</th><th>8.19</th><th>9.78</th><th><lod< th=""><th>0.55</th><th><lod< th=""><th><lod< th=""><th>2.89</th></lod<></th></lod<></th></lod<></th></lod<>                                                                            | 1.19                                                                                                                                                                                                                    | 8.19                                                                                                                                                                                        | 9.78                                                                                                                                                            | <lod< th=""><th>0.55</th><th><lod< th=""><th><lod< th=""><th>2.89</th></lod<></th></lod<></th></lod<>                               | 0.55                                                                                                    | <lod< th=""><th><lod< th=""><th>2.89</th></lod<></th></lod<>                | <lod< th=""><th>2.89</th></lod<>                | 2.89                |
| Zn       | ppm       | 0.4    | 73                                                                                                                                                                                                                                                                              | 78                                                                                                                                                                                                                                                  | 79                                                                                                                                                                                                                      | 103                                                                                                                                                                                         | 104                                                                                                                                                             | 75                                                                                                                                  | 70                                                                                                      | 64                                                                          | 292                                             | 106                 |
| Zr       | ppm       | 0.2    | 13                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                      | 29                                                                                                                                                                                          | 26                                                                                                                                                              | 21                                                                                                                                  | 23                                                                                                      | 16                                                                          | 20                                              | 13                  |







Figure 20. Mineral content from XRF Multi-element analysis (X-Ray Minerals) (Appendix G)

### 9 BULK MINERAL XRD CHARACTERIZATION OF EACH KONTTIJÄRVI SAMPLE ORIENTATION SAMPLE

The samples bulk mineralogy was characterized with X-ray Diffraction (XRD) by X-Ray Mineral Services Ltd. in the United Kingdom. XRD is a versatile analytical method to analyze material properties like phase composition and proportions of a powder sample. Identification of the phases is achieved by comparing the X-ray diffraction pattern obtained from the sample being measured with a reference database. With one single measurement one can identify mineral phases (qualitative) and their concentrations/proportions (Quantitative). X-rays are generated in a laboratory diffractometer using x-ray tubes with a suitable anode material (Cu, Co etc).

For example, XRD can distinguish between a sample that contains  $Fe_2O_3$  and  $Fe_3O_4$ . It can also distinguish between minerals like calcite, aragonite and vaterite (Chang-Zhong et al 2015, Ruffell & Wiltshire 2004, Tammishetti et al 2015, Potts 1987 and Rollinson 1993).



#### 9.1 Whole-rock analysis

A whole-rock and clay fraction XRD analysis was carried out for each Konttijärvi sample. The samples were first disaggregated gently using a pestle and mortar. A 2g split of this material was used for the whole rock analysis: the samples were 'micronised' using a McCrone Micronising Mill to obtain an x-ray diffraction 'powder' with a mean particle diameter of between 5 - 10 microns. The slurry was dried overnight at 80°C, re-crushed to a fine powder and back-packed into a steel sample holder, producing a randomly orientated sample for presentation to the x-ray beam. A powder diffractogram is obtained by counting the detected intensity as a function of the angle between incoming and diffracted x-ray beam.

The whole-rock samples were scanned on a PANalytical X'Pert PRO diffractometer using a CuK $\alpha$  radiation at 40 kV and 40 mA. The diffractometer is equipped with Automatic Divergence Slits (10 mm irradiated area), sample spinner and PIXcel 1-D detector. Scan parameters are from 4.5 to 75° (2 $\theta$ ), at a step size of 0.013 and nominal time per step of 0.2 s (continuous scanning mode).

The goal of the whole-rock sample preparation is to have a random orientation of the grains, allowing unbiased phase quantification and minimizing the error caused by preferred orientation of certain minerals (e.g. mica flakes, feldspar, calcite). The study of a randomly oriented powder will give an approximate proportion of clay minerals present in the sample.

Qualitative analysis on whole rock samples was carried out using two commercial software packages associated with the ICDD database: Traces (v.6) by GBC Scientific Equipment and HighScore Plus (v.4) by PANalytical.

Quantitative X-ray Diffraction (QXRD) was performed using the Rietveld method with BGMN Autoquan software. The Rietveld method is based upon a full-pattern analysis where a computer model allows a theoretical diffractogram to be calculated for any phase mixture. The Rietveld method is able to decipher experimental complications, such as peak overlap and preferred orientation of the crystallites (Post and Bish, 1989). The Konttijärvi samples contain minerals such as chlorite, biotite, talc and amphibole in abundant quantities – these minerals' grains tend to have strong preferred orientation normal to the surface of the sample. The preferred orientation creates a systematic error in the observed diffraction peak intensities, but the Rietveld method has proven to be effective even with samples that contain abundant minerals with a platy or fibrous texture.







Figure 21. XRD measurement results for Konttijärvi Orientation Samples (Appendix H)





Figure 22. Gangue minerals of interest that may hamper recovery (XRD) (Appendix H)

The accuracy and precision of the mineralogical quantification of the Konttijärvi samples by the Rietveld method was verified against synthetic mixtures of known composition. These mixtures were prepared from appropriate mineral standards to resemble Konttijärvi rocks. This is the only way to check the accuracy and precision of a technique applied to natural samples. In this validation project, most of the minerals were quantified within 2 wt.% absolute error. The accuracy of the XRD results was also cross-checked with the XRF analysis using a mass balance calculation.

Detection limits of XRD vary depending on the mineral's crystallinity, whether other minerals in the sample produce overlapping diffraction peaks, and how the XRD experiment has been set up. The average detection limit for Konttijärvi rock-types is approximately 2%.

#### 9.2 Clay fraction analysis

Although clay minerals can be detected in the whole-rock diffraction pattern, the most satisfactory method for their identification and quantification is to separate out the fine fraction (-2 micron), to produce preferred orientation, which facilitates the identification of the clay minerals (Moore and Reynolds, 1997).



For each Konttijärvi sample, a 5g split of the disaggregated material was taken and weighed accurately. The weight was recorded in a central register for later reference. Separating the <2 micron fraction was achieved by ultrasound and centrifugation.

The total weight of clay extracted was determined by removing a 20-25g aliquot of the final clay suspension and evaporating to dryness at 80°C. The initial and final weights of the beaker used were also recorded in the register.

The clay XRD mount was obtained by filtering the clay suspension through a Millipore glass micro-fibre filter and drying the filtrate on the filter paper. The samples were analysed as an untreated clay, after overnight saturation with ethylene glycol vapour and following heating at 380°C for 2 hours, with a further heating to 550°C for one hour.

Clay filters were scanned on a Philips PW1730 diffractometer using a CuK $\alpha$  radiation at 40 kV and 20/25 mA. Clay filters were scanned from 3 to 35° (2 $\theta$ ) at a step size of 0.05° and 2 s step time.

Identification and characterization of clay minerals in the <2 micron fraction was performed following the guidelines described by Moore and Reynolds (1997), overlaying the diffractograms from the four clay treatments.

Clay quantification was performed on the oriented samples using a Reference Intensity Ratio (RIR) based method. Peak intensities are measured and incorporated into a formula to indicate the relative amounts of clay minerals present. This data is then used to quantify the clay minerals with respect to the whole rock by reference to the total amount of <2 micron clay fraction, which is calculated from the aliquot previously extracted and dried. An indication of the clay minerals' crystallinity was given by assessment of the peak width for each component.

The results of the clay fraction analysis are considered semi-quantitative, whereas the whole-rock are quantitative as they are achieved with a different method that is standard-less (the Rietveld method). Direct correlation between the results of the whole-rock and the clay fraction analyses is not recommended because they were performed using two different methods.



### 10 AUTOMATED MINERALOGY CHARACTERIZATION OF EACH KONTTIJÄRVI ORIENTATION SAMPLE

The micro-texture of the 10 SAP Orientation samples was characterized using automated mineralogy in a Scanning Electron Microscope (SEM) by GTK-Mintec in Finland. (data is shown in Appendix I)

Automated mineralogy as a characterization tool has advanced considerably. Reliable instrumentation, continuously updated software capabilities and faster data acquisition. Samples are mounted into polished resin blocks and are mapped using a scanning electron microscope (SEM). This method can be good for mapping micro-textures, but it is not as effective for gangue mineralogy in some cases, or with mineralogy with very similar back scattered electron grey scales. However, it is best practice to use complimentary analysis to establish good mineral chemistry with probe work and LA-ICP-MS or Raman, depending on the MOI (Hrstka *et al* 2018, Aylmore *et al* 2018, and Anderson *et al* 2014).



Figure 23. In the foreground is the new FEI Quanta 650 field emission scanning electron microscope, in the background is an older MLA equipment. (Image and copyright: GTK)

#### **10.1** Automated Mineralogy Experimental Procedure

Each sample was sieved into three size fractions  $-250+150\mu m$ ,  $-150+75\mu m$  and  $-75\mu m$ . Three vertical polished block sections were prepared of the coarsest, middle and fine fractions respectively. The polished block sections were prepared according to procedure in order to minimalize the settling effect, and to reduce particle agglomeration.

The material (ore sample prepared to a set grind size in a rod mill) was mixed with fine graphite in 1:1 proportion then, the mixture was moulded with epoxy. After the epoxy solidified, the section was cut into


slices, which were turned for 90° and molded again. Finally, the specimens were polished, and carbon coated.

The SEM system Mineral Liberation Analyzer (MLA) was used to reach the aims of the study. This is an automated mineral analysis system that can identify minerals in different kinds of polished sections, as well as quantify a wide range of mineral characteristics, such as mineral abundance, grain size, mineral liberation and association. MLA combines a large specimen chamber automated Scanning Electron Microscope (SEM), multiple Energy Dispersive X-ray spectrometers (EDS) with state-of-the-art automated quantitative mineralogy software. The software controls SEM and EDS hardware to quantitatively analyze minerals and their characteristics. The present study specimens were measured by the XBSE measurement mode. The mode is an extended liberation analysis method in which each BSE image is collected and segmented to delineate mineral grain boundaries in each particle, then each mineral grain is analysed with one x-ray analysis. The off-line processing generates particle mineral maps from particle segmentation data and x-ray spectra.



Figure 24. Sulphide minerals measured in Konttijärvi samples (MLA modal mineralogy head calculation) (Appendix I)



### **11 MODAL MINERALOGY OF ORE TYPES**

This report details new mineralogical (QXRD & MLA) data for crushed composite core samples from the Konttijärvi Deposit in Finland.

The results confirm the field classification previously developed by Suhanko Arctic Platinum Oy (SAP), based on previous core logging and whole-rock geochemistry, which suggested the samples represent 5 main ore types. Two sub-samples were selected to represent each type, resulting in a total of 10 samples to be studied, as follows:

All five ore types are quite different from each other - in terms of their mineralogy, style of mineralization, and physical properties – making them an ideal suite of extreme end-member ore types typical of the presently-known, commercially-interesting, rocks at Konttijärvi.

Automated SEM-EDS modal analysis (MLA), and QXRD Rietveld data (whole-rock powders from the same samples), are internally consistent, although mineral names reported need to be interpreted to allow corellation.

The Peridotite Marker samples are characteristically talc-rich, in keeping with their original olivine having been replaced to secondary magnesium silicates. The Pyroxenite samples are amphibole-rich, and this is to be expected given that primary pyroxene is known to have been changed into amphibole (tremolite-actinolite) during metamorphism. The Marginal Series Gabbros contain conspicuous plagioclase feldspar. The Transition Zone is marked by the appearance of quartz as a minor phase. Finally, the Basement Gneiss is both plagioclase- and quartz-rich, as expected. Sulphide minerals of particular interest (as they are often associated with PGMs) include: pyrrhotite, chalcopyrite and pentlandite. The most copper-rich (chalcopyrite) sample is SKC-BAS2. The most nickel-rich (pentlandite) and pentlandite-rich samples are SKC-PM2 & SKC-BAS1. These observations confirm previous work by SAP, based on geochemical assays and logging.

The following modal mineral assemblages allow the different rock types to be distinguished:









Figure 26. Amphibole in pyroxene marker rock types PX1 and PX2







Figure 28. Plagioclase and quartz in transition zone marker rock types TZ1 and TZ2





Figure 29. Plagioclase and quartz in basement gneiss marker rock types BAS1 and BAS2

# 12 KONTTIJÄRVI ORIENTATION SAMPLE MINERAL PROFILE

A compilation of data from the different characterization methods was assembled into a mineral profile for each of the Konttijärvi Orientation Sample.



### 12.1 Mineral Characterization Summary – PM1



Figure 30. Chemical Assay Summary – PM1 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)





1.6.2020





Figure 32. XRD Whole rock Multi-element mineral analysis Summary – PM1 (Appendix H)

Table 6. XRD Whole rock Multi-element clay mineral analysis of -2µm fraction Summary – PM1 (Appendix H)

| Sample  | Wt. % of<br>Ogrinal Sample | Chlorite |     |      |   | Talc |     | Amphibole |     |
|---------|----------------------------|----------|-----|------|---|------|-----|-----------|-----|
|         | <2µm                       | % A      | % B | Crys | Υ | % A  | % B | % A       | % B |
| SKC-PM1 | 6,5                        | 67,4     | 4,4 | W    | 0 | 20,4 | 1,3 | 12,2      | 0,8 |

A = Weight % relevant size fraction

Y = No. of Fe atoms in six octahedral sites

B = Weight % bulk sample

Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1) LR = Long-range Ordering (R3) Crystallinity: VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised









5.37%

PM1 Pentlandite, Average Mineral

1.09%

1.53%

4.57%

7.97%

1.6.2020



#### Average Sulphide Mineral Size (µm)

| PM1        | Pentlandite | Chalcopyrite | Pyrrhotite |
|------------|-------------|--------------|------------|
|            | (μm)        | (µm)         | (µm)       |
| -250+150µm | 64,36       | 83,38        | 120,48     |
| -150+75µm  | 59,07       | 49,75        | 57,80      |
| -75µm      | 25,19       | 14,70        | 20,28      |



76.77% –∕ Particle Free Surface

Figure 34. PM1 - Pentlandite liberation, mineral association and modal mineral proportions (Appendix I)





Average Sulphide Mineral Size (µm)

| PM1        | Pentlandite | Chalcopyrite | Pyrrhotite |
|------------|-------------|--------------|------------|
|            | (μm)        | (μm)         | (μm)       |
| -250+150µm | 64,36       | 83,38        | 120,48     |
| -150+75µm  | 59,07       | 49,75        | 57,80      |
| -75µm      | 25,19       | 14,70        | 20,28      |

Mass % of Chalcopyrite by Free Surface (%)

Not exposed

0% < x <= 10%

10% < x <= 20%

20% < x <= 30%

30% < x <= 40%

40% < x <= 50%

50% < x <= 60%

60% < x <= 70%

70% < x <= 80%

80% < x <= 90%

Liberation Classes



Not exposed 10% < x <= 20% 20% < x <= 30% 50% < x <= 60% 60% < x <= 70% 80% < x <= 90% 90% < x < 100% 70% < x <= 80% 30% < x <= 40% 40% < x <= 50% 90% < x < 100% %0 Figure 35. PM1 - Chalcopyrite liberation, mineral association and modal mineral proportions (Appendix I)

< x <= 10%





| Average | Sulphide | Mineral Siz | e (µm) |
|---------|----------|-------------|--------|
|---------|----------|-------------|--------|

| PM1        | Pentlandite | Chalcopyrite | Pyrrhotite |
|------------|-------------|--------------|------------|
|            | (μm)        | (μm)         | (μm)       |
| -250+150µm | 64,36       | 83,38        | 120,48     |
| -150+75µm  | 59,07       | 49,75        | 57,80      |
| -75µm      | 25,19       | 14,70        | 20,28      |

Mass % of Pyrrhotite by Free Surface (%)

Not exposed

0% < x <= 10%

10% < x <= 20%

20% < x <= 30%

Liberation Classes





Figure 36. PM1 - Pyrrhotite liberation, mineral association and modal mineral proportions (Appendix I)



# 12.2 Mineral Characterization Summary – PM2



Figure 37. Chemical Assay Summary – PM2 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)











| Table 7. XRD Whole rock Multi-element clay | mineral analysis of -2µm | fraction Summary – PM2 | (Appendix H) |
|--------------------------------------------|--------------------------|------------------------|--------------|
|--------------------------------------------|--------------------------|------------------------|--------------|

| Sample  | Wt. % of<br>Ogrinal Sample | Chlorite |     |      |   | Talc |     | Amphibole |     |
|---------|----------------------------|----------|-----|------|---|------|-----|-----------|-----|
|         | <2µm                       | % A      | % B | Crys | Υ | % A  | % B | % A       | % B |
| SKC-PM2 | 6,4                        | 37,4     | 2,4 | W    | 0 | 62,6 | 4,0 | 0,0       | 0,0 |

A = Weight % relevant size fraction

Y = No. of Fe atoms in six octahedral sites

B = Weight % bulk sample

Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1) LR = Long-range Ordering (R3) Crystallinity: VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised



Figure 40. Automated Mineralogy modal mineralogy, average grain size, surface mineralogy – PM2 (Appendix I)



8.42%

3.24%

4.30%

6.84%

1.6.2020



#### Average Sulphide Mineral Size (µm)

| PM2        | Pentlandite | Chalcopyrite | Pyrrhotite |
|------------|-------------|--------------|------------|
|            | (μm)        | (μm)         | (µm)       |
| -250+150μm | 89,01       | 105,14       | 138,45     |
| -150+75μm  | 74,34       | 62,82        | 75,11      |
| -75µm      | -75µm 29,03 |              | 29,86      |



Figure 41. PM2 - Pentlandite liberation, mineral association and modal mineral proportions (Appendix I)



69.26% Particle Free Surface 4.54%

6.07%

9.98%

5.26%

2.33%

Pentlandite

■ Serpentine

Plagioclase

■ Chlorite

Apatite

■ Free Surface





Average Sulphide Mineral Size (µm)

| PM2        | Pentlandite | Chalcopyrite | Pyrrhotite |  |  |
|------------|-------------|--------------|------------|--|--|
|            | (μm)        | (μm)         | (µm)       |  |  |
| -250+150μm | 89,01       | 105,14       | 138,45     |  |  |
| -150+75µm  | 74,34       | 62,82        | 75,11      |  |  |
| -75µm      | 29,03       | 15,37        | 29,86      |  |  |



Figure 42. PM2 - Chalcopyrite liberation, mineral association and modal mineral proportions (Appendix I)



50,5

60% < x <= 70% 70% < x <= 80% 80% < x <= 90% < x < 100%

90%

SKC-PM2 (%) Sulphide Grains

3.36%

PM2 Pyrrhotite, Average Mineral Association (%)

5.13%

3.48%

Pentlandite

■ Serpentine

Plagioclase

■ Chlorite

Apatite

Free Surface

6.99%

7.63%

2.85% 1.23%

1.6.2020



### Average Sulphide Mineral Size (µm)

| PM2        | Pentlandite | Chalcopyrite | Pyrrhotite |
|------------|-------------|--------------|------------|
|            | (µm)        | (μm)         | (μm)       |
| -250+150μm | 89,01       | 105,14       | 138,45     |
| -150+75μm  | 74,34       | 62,82        | 75,11      |
| -75µm      | 29,03       | 15,37        | 29,86      |



Figure 43. PM2 - Pyrrhotite liberation, mineral association and modal mineral proportions (Appendix I)

68.09% Particle Free Surface



50,63

< x < 100%

%06

× <= 90%

80%

< x <= 80%

70%

# 12.3 Mineral Characterization Summary – PX1



Figure 44. Chemical Assay Summary – PX1 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)





1.6.2020





Figure 46. XRD Whole rock Multi-element mineral analysis Summary – PX1 (Appendix H)

| Table 8. XRD Whole rock Multi-eleme | nt clay minera | I analysis of -2µn | n fraction Summary | <ul> <li>– PX1 (Appendix H)</li> </ul> |
|-------------------------------------|----------------|--------------------|--------------------|----------------------------------------|
|-------------------------------------|----------------|--------------------|--------------------|----------------------------------------|

| Sample  | Wt. % of<br>Ogrinal Sample | Chlorite |     |      | Talc |     | Amphibole |      |     |
|---------|----------------------------|----------|-----|------|------|-----|-----------|------|-----|
|         | <2µm                       | % A      | % B | Crys | Υ    | % A | % B       | % A  | % B |
| SKC-PX1 | 4,7                        | 67,3     | 3,2 | W    | 0    | 6,3 | 0,3       | 26,3 | 1,2 |

A = Weight % relevant size fraction B = Weight % bulk sample

Y = No. of Fe atoms in six octahedral sites

Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1) LR = Long-range Ordering (R3) Crystallinity: VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised





Figure 47. Automated Mineralogy modal mineralogy, average grain size, surface mineralogy – PX1 (Appendix I)





Figure 48. PX1 - Pentlandite liberation, mineral association and modal mineral proportions (Appendix I)



76.47% → Particle Free Surface 1.72%

PX1 Chalcopyrite, Average Mineral Association (%)

11.71%

8.35%

1.6.2020



Average Sulphide Mineral Size (µm)

| PX1        | Pentlandite | Chalcopyrite | Pyrrhotite |  |  |
|------------|-------------|--------------|------------|--|--|
|            | (µm)        | (μm)         | (µm)       |  |  |
| -250+150μm | 73,32       | 82,26        | 95,67      |  |  |
| -150+75µm  | 46,62       | 59,80        | 69,09      |  |  |
| -75µm      | 8,53        | 33,00        | 12,00      |  |  |



Figure 49. PX1 - Chalcopyrite liberation, mineral association and modal mineral proportions (Appendix I)



63.86%

Particle Free Surface 3.64%

1.48%

1.35%

18.36%

6.67%

0.89%

2.39%

PX1 Pyrrhotite, Average Mineral

1.6.2020



Average Sulphide Mineral Size (µm)

| PX1        | Pentlandite | Chalcopyrite | Pyrrhotite |
|------------|-------------|--------------|------------|
|            | (µm)        | (µm)         | (µm)       |
| -250+150µm | 73,32       | 82,26        | 95,67      |
| -150+75μm  | 46,62       | 59,80        | 69,09      |
| -75µm      | 8,53        | 33,00        | 12,00      |



Figure 50. PX1 - Pyrrhotite liberation, mineral association and modal mineral proportions (Appendix I)



### 12.4 Mineral Characterization Summary – PX2



Figure 51. Chemical Assay Summary – PX2 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)





Figure 52. XRF Multi-element mineral analysis Summary – PX2 (Method 180X – Appendix G)



Figure 53. XRD Whole rock Multi-element mineral analysis Summary – PX2 (Appendix H)

| Sample  | Wt. % of<br>Ogrinal Sample | Chlorite |     |      | Talc |     | Amphibole |      |     |
|---------|----------------------------|----------|-----|------|------|-----|-----------|------|-----|
|         | <2µm                       | % A      | % B | Crys | Υ    | % A | % B       | % A  | % B |
| SKC-PX2 | 5,0                        | 43,3     | 2,2 | W    | 1    | 0,0 | 0,0       | 56,7 | 2,8 |

A = Weight % relevant size fraction

B = Weight % bulk sample

Y = No. of Fe atoms in six octahedral sites

Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1) LR = Long-range Ordering (R3) Crystallinity: VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised









1.15%

2.48%

PX2 Pentlandite, Average Mineral Association (%)

4.91%

3.41%

9.93%

35.74%





| PX2        | Pentlandite | Chalcopyrite | Pyrrhotite |
|------------|-------------|--------------|------------|
|            | (µm)        | (µm)         | (μm)       |
| -250+150µm | 17,96       | 59,24        | 17,73      |
| -150+75μm  | 4,26        | 59,52        | 9,97       |
| -75µm      | 0,00        | 7,87         | 4,62       |







67.36%

Particle Free Surface

> PX2 Chalcopyrite, Average Mineral Association (%)

1.6.2020



Average Sulphide Mineral Size (µm)

| PX2        | Pentlandite | Chalcopyrite | Pyrrhotite |
|------------|-------------|--------------|------------|
|            | (µm)        | (μm)         | (μm)       |
| -250+150µm | 17,96       | 59,24        | 17,73      |
| -150+75μm  | 4,26        | 59,52        | 9,97       |
| -75µm      | 0,00        | 7,87         | 4,62       |



Figure 56. PX2 - Chalcopyrite liberation, mineral association and modal mineral proportions (Appendix I)



20.34%

1.82%

0.25

0.20

0.63%

3.83%

1.03%



1.6.2020

SKC-PX2 (%) Sulphide Grains

Pentlandite

Chalcopyrite



Figure 57. PX2 - Pyrrhotite liberation, mineral association and modal mineral proportions (Appendix I)



# 12.5 Mineral Characterization Summary – MS1



Figure 58. Chemical Assay Summary – MS1 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)





Figure 59. XRF Multi-element mineral analysis Summary – MS1 (Method 180X – Appendix G)



Figure 60. XRD Whole rock Multi-element mineral analysis Summary – MS1 (Appendix H)

| Table 10. ARD whole fock wulli-element clay mineral analysis of -2µm fraction summary – wist (Append | Table 10. | . XRD Whole rock | Multi-element clay | mineral analys | sis of -2µm fr | action Summary – | MS1 (Appendix |
|------------------------------------------------------------------------------------------------------|-----------|------------------|--------------------|----------------|----------------|------------------|---------------|
|------------------------------------------------------------------------------------------------------|-----------|------------------|--------------------|----------------|----------------|------------------|---------------|

| Sample  | Wt. % of Ogrinal<br>Sample | Biotite |     |      | Chlorite |     |      | Quartz |     | Amphibole |      | Plagioclase |     |     |
|---------|----------------------------|---------|-----|------|----------|-----|------|--------|-----|-----------|------|-------------|-----|-----|
|         | <2µm                       | % A     | % B | Crys | % A      | % B | Crys | Y      | % A | % B       | % A  | % B         | % A | % B |
| SKC-MS1 | 2,9                        | TR      | TR  | Ρ    | 57,4     | 1,7 | W    | 1      | 3,1 | 0,1       | 39,5 | 1,1         | 0,0 | 0,0 |

A = Weight % relevant size fraction

Y = No. of Fe atoms in six octahedral sites

B = Weight % bulk sample

Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1) LR = Long-range Ordering (R3) Crystallinity: VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised











Figure 62. MS1 - Pentlandite liberation, mineral association and modal mineral proportions (Appendix I)





Figure 63. MS1 - Chalcopyrite liberation, mineral association and modal mineral proportions (Appendix I)





Figure 64. MS1 - Pyrrhotite liberation, mineral association and modal mineral proportions (Appendix I)



# 12.6 Mineral Characterization Summary – MS2



Figure 65. Chemical Assay Summary – MS2 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)




Figure 66. XRF Multi-element mineral analysis Summary – MS2 (Method 180X – Appendix G)



Figure 67. XRD Whole rock Multi-element mineral analysis Summary – MS2 (Appendix H)

| Table 11. XR | D Whole rock | Multi-element c | lav mineral | analysis of - | 2um fraction | Summarv – M | S2 (Appendix H) |
|--------------|--------------|-----------------|-------------|---------------|--------------|-------------|-----------------|
|              |              |                 |             |               |              |             |                 |

| Sample  | Wt. % of Ogrinal<br>Sample | Biotite |     |      | Chlorite |     |      |   | Quartz |     | Amphibol | e   | Plagioclase |     |
|---------|----------------------------|---------|-----|------|----------|-----|------|---|--------|-----|----------|-----|-------------|-----|
|         | <2µm                       | % A     | % B | Crys | % A      | % B | Crys | Υ | % A    | % B | % A      | % B | % A         | % B |
| SKC-MS2 | 3,1                        | 31,5    | 1,0 | М    | 34,2     | 1,0 | W    | 1 | 0,0    | 0,0 | 24,3     | 0,7 | 10,0        | 0,3 |

A = Weight % relevant size fraction B = Weight % bulk sample Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1) LR = Long-range Ordering (R3) Crystallinity: VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised







1.6.2020







Figure 69. MS2 - Pentlandite liberation, mineral association and modal mineral proportions (Appendix I)







.%0

40% • 50% 60% • 20% 80% • %06







Not exposed < x <= 10% <= 20% <= 30%

10% < x

%0

× v × × v × × × v ×

20% 30% 40% 50% 60%

0



<= 80% <== 90%

70%

80% 90%

< x < 100%

70%

II V II V

<= 50% 60%

<= 40%

80% < x <= 90%

90% < x < 100%

## 12.7 Mineral Characterization Summary – TZ1



Figure 72. Chemical Assay Summary – TZ1 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)







Figure 73. XRF Multi-element mineral analysis Summary – TZ1 (Method 180X – Appendix G)



Figure 74. XRD Whole rock Multi-element mineral analysis Summary – TZ1 (Appendix H)

|--|

| Sample  | Wt. % of Ogrinal<br>Sample | Biotite |     |      | Chlorite |     |      |   | Quartz |     |  | Amphibole | Plagioclase |     |     |
|---------|----------------------------|---------|-----|------|----------|-----|------|---|--------|-----|--|-----------|-------------|-----|-----|
|         | <2µm                       | % A     | % B | Crys | % A      | % B | Crys | Υ | % A    | % B |  | % A       | % B         | % A | % B |
| SKC-TZ1 | 2,5                        | 21,6    | 0,5 | М    | 35,0     | 0,9 | W    | 0 | 4,8    | 0,1 |  | 28,9      | 0,7         | 9,8 | 0,2 |

A = Weight % relevant size fraction B = Weight % bulk sample

Y = No. of Fe atoms in six octahedral sites

Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1)

LR = Long-range Ordering (R3)

Crystallinity:

VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised



TZ1 Average Grain Size (mm) SKC - TZ1 Average Modal Mineralogy 100 350 Amphiboles 150 100 50 200 250 00 80 ■ Chlorite ..... 60 Biotite Pyrrhotite 65.6 (%) 40 II Quartz Plagioclase Chalcopyrite 69.1 20 Other 0 -75µm -150+75µm -250+150µm Pentlandite 49.6 TZ1 (-250+150μm) Average Particle Surface Area (%) Pyrite 61.7 Pyrrhotite Chalcopyrite 5.36% Pentlandite Pyrite 30.73% 20.3 Talc Serpentine □ Talc Clinopyroxene Amphiboles Biotite Chlorite Serpentine 10.0 44.08% Quartz Plagioclase 4.97% □ K-feldspar Carbonates Clinopyroxene 7.6 MID Ilmenite ■ Magnetite 5.79% Apatite Other Silicates 7.59% Amphiboles 125.5 TZ1 (-150+75µm) Average Particle Surface Area (%) 99.2 Chlorite Pyrrhotite Chalcopyrite 5.05% Pentlandite Pyrite 32.59% 1000 □Talc Serpentine Biotite 94.6 ■ Clinopyroxene ■ Amphiboles 39.15% Chlorite Biotite 102.7 Quartz Quartz Plagioclase 5.33% Carbonates □ K-feldspar 4000 Plagioclase 87.9 Magnetite Ilmenite 8.63% Apatite Other Silicates 7.54% 48.5 K-feldspar TZ1 (-75µm) Average Particle Surface Area (%) Carbonates 30.1 Pyrrhotite Chalcopyrite 4.82% Pentlandite Pyrite 35.60% □Talc ■ Serpentine 19.6 Magnetite Clinopyroxene Amphiboles Chlorite Biotite 33.51% Ilmenite 9.9 Quartz Plagioclase 5.63% □ K-feldspar Carbonates IIID Apatite 25.4 Magnetite Ilmenite 7.46% Apatite Other Silicates

1.6.2020



10.61%

















1.6.2020





## 12.8 Mineral Characterization Summary – TZ2



Figure 79. Chemical Assay Summary – TZ2 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)





Figure 80. XRF Multi-element mineral analysis Summary – TZ2 (Method 180X – Appendix G)



Figure 81. XRD Whole rock Multi-element mineral analysis Summary – TZ2 (Appendix H)

| Table 12 |            | radi Multi alamant | alov minoral | analysis of    | 2 fraction  |             | 77 (Annondiv II) |
|----------|------------|--------------------|--------------|----------------|-------------|-------------|------------------|
| able 15. | VED MUIDIE | TOCK MULT-element  | ciay mineral | allalysis OI - | 2μπ πaction | Summary – i | zz (Appendix n)  |

| Sample  | Wt. % of Ogrinal<br>Sample | Biotite |     |      | Chlorite |     |      |   | Quartz |     |  | Amphibole | Plagioclase |     |     |
|---------|----------------------------|---------|-----|------|----------|-----|------|---|--------|-----|--|-----------|-------------|-----|-----|
|         | <2µm                       | % A     | % B | Crys | % A      | % B | Crys | Y | % A    | % B |  | % A       | % B         | % A | % B |
| SKC-TZ2 | 2,6                        | 21,4    | 0,6 | М    | 32,5     | 0,9 | W    | 1 | 3,8    | 0,1 |  | 33,1      | 0,9         | 9,2 | 0,2 |

A = Weight % relevant size fraction

B = Weight % bulk sample

Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1) LR = Long-range Ordering (R3) Crystallinity: VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised







Figure 82. Automated Mineralogy modal mineralogy, average grain size, surface mineralogy – TZ2 (Appendix I)



SKC-TZ2 (%) Sulphide Grains 14.95% 3.5 Pentlandite 3,0 Chalcopyrite 3.97% 2,5 Pyrrhotite (%) 2,0 1,5 3.67% 1,0 0.5 0,0 -75µm -150+75µm -250+150µm 72.37% Average Sulphide Mineral Size (µm) Particle Free Surface TZ2 Pentlandite Chalcopyrite Pyrrhotite (µm) (µm) (µm) TZ2 Pentlandite, Average Mineral -250+150μm 49,28 121,82 127,65 -150+75µm 78,70 64,28 86,37 Association (%) <u>27,52</u> -75µm 17,94 30,95 TZ2 Mass % of Pentlandite by Free Surface (%) Pyrrhotite ■ Chalcopyrite Pentlandite Pyrite □Talc Serpentine Not exposed ■ Clinopyroxene ■ Amphiboles Chlorite Biotite Quartz ■ Plagioclase 0% < x <= 10% ■ K-feldspar Other silicates Carbonates 10% < x <= 20% Magnetite ■ Ilmenite Apatite Mixtures Unclassified Free Surface 20% < x <= 30% Liberation Classes 30% < x <= 40% 40% < x <= 50% SKC-TZ2 Pentlandite Liberation by Free Surface 100 50% < x <= 60% Cumulative Yield (%) 80 60 60% < x <= 70% 40 72,81 Mass % of Pentlandite 20 70% < x <= 80% 0 Not exposed 0% < x <= 10% 40% 80% < x <= 20% <= 70% <= 30% 50% <== 90% < x < 100% 60% 80% < x <= 90% II V II V II V II V × v × × v × v × v × × 90% < x < 100% 20% 40% 10% 30% 50% 60% 80% 80% 70%

1.6.2020

Figure 83. TZ2 - Pentlandite liberation, mineral association and modal mineral proportions (Appendix I)





Figure 84. TZ2 - Chalcopyrite liberation, mineral association and modal mineral proportions (Appendix I)





Figure 85. TZ2 - Pyrrhotite liberation, mineral association and modal mineral proportions (Appendix I)



### 12.9 Mineral Characterization Summary – BAS1



Figure 86. Chemical Assay Summary – BAS1 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)









Figure 88. XRD Whole rock Multi-element mineral analysis Summary – BAS1 (Appendix H)

| Table 14. XRD Whole rock Multi-element clay miner | al analysis of -2µm fractior | i Summary – BAS1 (Appendix H |
|---------------------------------------------------|------------------------------|------------------------------|
|---------------------------------------------------|------------------------------|------------------------------|

| Sample   | Wt. % of Ogrinal<br>Sample | Biotite |     |      | Chlorite | Chlorite |      |   |     |     | Amphibole |     |     | Plagioclase |     |
|----------|----------------------------|---------|-----|------|----------|----------|------|---|-----|-----|-----------|-----|-----|-------------|-----|
|          | <2µm                       | % A     | % B | Crys | % A      | % B      | Crys | Υ | % A | % B |           | % A | % B | % A         | % B |
| SKC-BAS1 | 2,2                        | 47,9    | 1,1 | М    | 20,9     | 0,5      | W    | 0 | 2,4 | 0,1 |           | 9,7 | 0,2 | 19,1        | 0,4 |

A = Weight % relevant size fraction

Y = No. of Fe atoms in six octahedral sites

B = Weight % bulk sample

Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1) LR = Long-range Ordering (R3)

Crystallinity: VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised





Figure 89. Automated Mineralogy modal mineralogy, average grain size, surface mineralogy – BAS1 (Appendix I)





1.6.2020

Figure 90. BAS1 - Pentlandite liberation, mineral association and modal mineral proportions (Appendix I)



2.42%

*\_*− 1.00%

1.39%

1.84%

21.12%

2.16%

5.51%

1.6.2020



Average Sulphide Mineral Size (µm)

| BAS1       | Pentlandite | Chalcopyrite | Pyrrhotite |
|------------|-------------|--------------|------------|
|            | (μm)        | (μm)         | (μm)       |
| -250+150µm | 65,03       | 64,35        | 109,75     |
| -150+75µm  | 60,56       | 51,41        | 73,50      |
| -75µm      | 16,21       | 23,31        | 17,54      |



61.99%

Particle Free Surface

Figure 91. BAS1 - Chalcopyrite liberation, mineral association and modal mineral proportions (Appendix I)





Figure 92. BAS1 - Pyrrhotite liberation, mineral association and modal mineral proportions (Appendix I)



### 12.10 Mineral Characterization Summary – BAS2



Figure 93. Chemical Assay Summary – BAS2 (Methods 306M, 306P, 711P, 810L, 811L Appendix F)





Figure 94. XRF Multi-element mineral analysis Summary – BAS2 (Method 180X – Appendix G)



Figure 95. XRD Whole rock Multi-element mineral analysis Summary – BAS2 (Appendix H)

| Table 15. | XRD Whol | e rock Multi | -element c  | lav mineral  | analysis of | -2um | fraction Sumn | nary – BAS2 | (Appendix   | κH)     |
|-----------|----------|--------------|-------------|--------------|-------------|------|---------------|-------------|-------------|---------|
| 10010 10. |          |              | cicilient c | ady minicial | unury515 01 | 2 µ  | naction samm  | nuny 0/102  | - (Appendix | · · · / |

| Sample   | Wt. % of Ogrinal<br>Sample | Biotite |     |      | Chlorite |     |      |   | Quartz |     | Amphibole |     | Plagioclase |     |
|----------|----------------------------|---------|-----|------|----------|-----|------|---|--------|-----|-----------|-----|-------------|-----|
|          | <2µm                       | % A     | % B | Crys | % A      | % B | Crys | Υ | % A    | % B | % A       | % B | % A         | % B |
| SKC-BAS2 | 2,5                        | 11,9    | 0,3 | Μ    | 37,8     | 1,0 | W    | 1 | 3,2    | 0,1 | 37,9      | 1,0 | 9,2         | 0,2 |

A = Weight % relevant size fraction

Y = No. of Fe atoms in six octahedral sites

B = Weight % bulk sample

Mixed-layer Ordering: R I = Randomly Interstratified (R0) O = Ordered Interstratification (R1) LR = Long-range Ordering (R3) Crystallinity: VW = Very Well Crystallised W = Well Crystallised M = Moderately Crystallised P = Poorly Crystallised





Figure 96. Automated Mineralogy modal mineralogy, average grain size, surface mineralogy – BAS2 (Appendix I)



SKC-BAS2 (%) Sulphide Grains 4.0 Pentlandite Chalcopyrite 3.5 3.0 Pyrrhotite 2.5 9.57% (%) 2.0 3.45% 1.5 1.0 7.44% 0.5 0.0 1.59% -150+75µm -75µm -250+150um 1188 1.06% Average Sulphide Mineral Size (µm) 9.39% Pyrrhotite BAS2 Pentlandite Chalcopyrite 1.42% <u>(</u>μm) (µm) (µm) -250+150μm 58,26 112,49 62,79 58.71% 3.30% Particle -150+75µm 26,25 75,65 84,96 Free Surface 7,09 41,24 14,76 -75µm BAS2 Mass % of Pentlandite by BAS2 Pyrrhotite, Average Mineral Free Surface (%) Association (%) 120 120 120 120 Pyrrhotite ■ Chalcopyrite Pentlandite Not exposed Pyrite □ Talc ■ Serpentine 0% < x <= 10% ■ Clinopyroxene ■ Amphiboles Chlorite 10% < x <= 20% Biotite Quartz Plagioclase ■ K-feldspar Other silicates Carbonates 20% < x <= 30% Magnetite Ilmenite Apatite Liberation Classes 30% < x <= 40% Unclassified Free Surface Mixtures 40% < x <= 50% SKC-BAS2 Pentlandite Liberation by Free Surface 50% < x <= 60% 60% < x <= 70% 59,78 Mass % of Pentlandite 70% < x <= 80% Not exposed 30% < x <= 10% < x <= 40% < x <= 50% < x <= 60% 60% < x <= 70% %06 => x > < x < 100% 10% < x <= 20% <= 80% 80% < x <= 90% II V × v  $_{\rm V}^{\times}$ 90% < x < 100% 30% 40% 50% %0 20% 70% 80% 80%

1.6.2020













Figure 99. BAS2 - Pyrrhotite liberation, mineral association and modal mineral proportions (Appendix I)



### 13 **REFERENCES**

- 1. Anderson, K.F.E., et al., *Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, Southern Cameroon.* Ore Geology Reviews, 2014. **62**: p. 25-39.
- 2. Aylmore, M.G., et al., *Applications of advanced analytical and mass spectrometry techniques to the characterisation of micaceous lithium-bearing ores*. Minerals Engineering, 2018. **116**: p. 182-195.
- 3. Chang-Zhong L, Lingmin Z, Kaimin S, (2015). *Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud*, Chemosphere, Volume 131, Pages 171-177, ISSN 0045-6535
- 4. Fitton, G., (1997), X-Ray fluorescence spectrometry, in Gill, R. (ed.), Modern Analytical Geochemistry: An Introduction to Quantitative Chemical Analysis for Earth, Environmental and Material Scientists: Addison Wesley Longman, UK.
- 5. Hrstka, T., et al., (2018), *Automated mineralogy and petrology applications of TESCAN Integrated Mineral Analyzer (TIMA)*. Journal of Geosciences, 2018. **63**(1): p. 47-63.
- 6. Potts, P.J., (1987), A Handbook of Silicate Rock Analysis: Chapman and Hall.
- Jeans, C. (1998). MOORE, D. M. & REYNOLDS, R. C., Jr. 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. xviii 378 pp. Oxford, New York: Oxford University Press. Price £27.95 (spiral-bound paperback). ISBN 0 19 508713 5. Geological Magazine, 135(6), 819-842. doi:10.1017/S0016756898501501
- 8. Rollinson, H., (1993), Using Geochemical Data: Evaluation, Presentation, Interpretation: John Wiley, NY.
- 9. Ruffell A., Wiltshire P., (2004). *Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis.* Forensic Sci Int. 2004 Oct 4;145(1):13-23.
- 10. Tammishetti, V. & Rai, B., & Kumar, B., & Kumar, R., & Pradip, P., (2015). Quantitative Estimation of Mineral Phases from Chemical Assays and Powder X-Ray Diffraction Rietveld Analysis: A Case Study on Selective Flocculation of Iron Ore Slimes. Transactions of the Indian Institute of Metals. 69. 10.1007/s12666-015-0721-7.



## 14 APPENDIX A - BATCIRCLE PROJECT SUMMARY

BATCircle is a project developed and funded by Business Finland (<u>https://www.businessfinland.fi/</u>). This is a 21 million euro project with 23 consortium partners, and a duration of 24 months. The BATCircle project has been designed to be based around the concept of a Circular Ecosystem of Battery Metals in Finland. The concept includes both primary raw materials, downstream refining and recycling in batteries. Most relevant operators in the existing battery business at all stages of the regional value chain are involved with this project in some form.



Figure A1. The BATcircle Consortium

Offical BATcircle Project website: https://www.batcircle.fi/

#### 14.1 BATcircle Work Package Structure

This project consists of four technical work packages (WP1-WP4), one for business studies (WP5) one for project management (WP6) and one for European co-operation (WP7).

#### WP1 – Sustainable Primary Resources

The methods range from screening and efficient use of battery related multi-mineral resources

#### WP2 – Value Addition in Metals Production

Improved metallurgical processes (pyro, hydro, mechanical) for refining



#### WP3 – Recycling of Batteries

Recycling of battery metals as well as synthesis and characterization of advanced precursors

#### WP4 – Tailored Precursors and Active Electrode Materials

Active materials for lithium batteries. These technical tasks are supplemented by business studies aiming at identifying new business opportunities within the battery ecosystem and providing new tools for

#### WP5 – Business Potential

Strengthening the cooperation within the overall ecosystem

#### WP6 – Project management

#### WP7 – Development of the European BATcircle

#### 14.2 Work Package 1 Summary

Work Package 1 (WP1) is managed by GTK. The impact of the WP1 is to quantify the Finnish potential for development of battery minerals mining. A new way of characterising battery mineral deposits will be developed (geometallurgy developed fit for purpose in battery mineral systems). Then a theoretical future Finnish controlled battery ecosystem is to be developed in a series of strategic steps.

The key objectives of Work Package 1 is as follows:

- 1. Analyze known Finnish battery mineral deposits with special emphasis on cobalt and associated typically polymetallic deposits
- 2. Develop a more effective way of characterizing those battery commodities in context of process response, which leads to a more effective economic characterization. Geometallurgy is the chosen approach to do this.
- 3. A strategic development plan for the development of Finnish battery mineral resources in a complete battery ecosystem





Figure A2. Map of the BATCircle project to WP1.2 to this report



## 14.3 Work Package WP1.2 Structure and Deliverables

#### Table A1. Work Package WP1.2 Objectives

| WP Ob | jectives |          |            |         |           |            |        |       |           |           |     |          |       |            |
|-------|----------|----------|------------|---------|-----------|------------|--------|-------|-----------|-----------|-----|----------|-------|------------|
| •     | Analyse  | known    | Finnish    | battery | mineral   | deposits   | like   | with  | special   | emphasis  | on  | cobalt   | and   | associated |
|       | polymeta | llic dep | osits. Lit | hium an | d graphit | e deposits | s will | be pa | rt of the | work with | sma | aller we | ight. |            |

- Develop a more effective way of characterizing cobalt bearing battery commodities in context of process response, which leads to a more effective economic characterization. Geometallurgy is the chosen approach to do this. Also cobalt minerals flotation chemical environment is studied and preliminary hydrometallurgical process model will be built.
- A Strategic development plan for the development of Finnish battery mineral resources in a complete battery ecosystem.

#### Table A2. Work Package WP1.2 Deliverables

| Deliverables                                                                            | By    | Month |
|-----------------------------------------------------------------------------------------|-------|-------|
| D1.1.1. A database analysis of Finnish cobalt, lithium and graphite deposits as well    | GTK   | M12   |
| as technical and economic profiles about different type of deposits (study report).     |       |       |
| D1.2.1. A geometallurgical experimental and analytical procedure for cobalt related     | GTK   | M8    |
| battery minerals that allows for process characterisation domaining on drill core scale |       |       |
| samples to be validated with selected Case studies                                      |       |       |
| D1.2.2. A geometallurgical decision making methodology based on Case study              | GTK   | M20   |
| laboratory validation. This assists in beneficiation process path development of        |       |       |
| cobalt bearing battery minerals.                                                        |       |       |
| D1.2.3. Floatability model of Co-containing minerals based on bubble-particle           | Aalto | M20   |
| attachment probability                                                                  |       |       |
| D.1.2.4. Adjustable Process model                                                       | Aalto | M24   |
| D1.3.1. A Strategic development plan for the development of Finnish mineral             | GTK   | M24   |
| resources in a complete battery ecosystem                                               |       |       |

### Deliverable D1.2.1 is:

Michaux, S., P. (2020): How to Set Up and Develop a Geometallurgical Program, GTK Open Work File Report, ISBN 978-952-217-409-3

**Deliverable D1.2.2 is** the procedure applied to two case studies. This report is part of the SAP case study, Konttijärvi deposit series.

## 14.4 Work Package 1 Project consortium

- GTK
- Aalto University
- Arctic PlatinumFinnCobalt

- SAP
- Mawson

• FMG



#### 14.5 Work Package WP1.2

The title of WP1.2 is:

WP1.2 Develop a more effective way of characterizing those battery commodities in context of process response, which leads to a more effective economic characterization

Based on each deposit type geological and mineralogical characteristics and acquired raw material specification requirements, a concept or protocol for proper geometallurgical study is developed for each deposit type.

#### 14.6 Suhanko Arctic Platinum Oy

The Konttijärvi deposit is owned by Suhanko Arctic Platinum (SAP). SAP consists of three large project areas in Northern Finland: Suhanko, Narkaus and Penikat. There are large, untapped deposits of platinum, palladium and gold (PGE, Au) in the area with significant amounts of copper and nickel as a by-product. The deposits are located close to the ground surface and their parts extending to the rock surface continue under a thin ground cover for several kilometers.

SAP Website

https://suhanko.com/indexFI.html

#### 14.7 Konttijärvi deposit (SAP) BATCircle Geometallurgical Case Study

This geometallurgical approach will be applied to two case studies. One of those BATCircle WP1.2 case studies is the Konttijärvi deposit, owned by Suhanko Arctic Platinum (SAP).

- Economic minerals in order of importance Palladium (2g/t), Pt (0.5g/t), Cu (0.16%), Ni (0.08%), Au (0.1g/t), Co, Ag, Rhodium
- The platinum group elements (PGE) are the most valuable, palladium (Pd) in particular
- Both leaching and flotation have been considered as process paths
- Sulphide extraction to be considered is both copper (Cu) and nickel (Ni)



# 15 APPENDIX B – BATCIRCLE PROJECT WP1.2 SAMPLE LABELLING PROTOCOL

The following labeling protocol was adopted to keep track of what samples were and what has been done to them.

The owner of the case study deposit

| Suhanko Artic Platinum (SAP)                                          | S    |
|-----------------------------------------------------------------------|------|
| The name of the case study deposit                                    |      |
| • Konttijärvi                                                         | К    |
| Process separation methods                                            |      |
| <ul> <li>Characterization (to compare all sub-products to)</li> </ul> | С    |
| Flotation                                                             | F    |
| Leaching                                                              | L    |
| Gravity Separation                                                    | G    |
| Magnetic Separation                                                   | Μ    |
| Sample Reserve                                                        | S    |
| Orientation Sample rock type labels                                   |      |
| <ul> <li>Peridotite Marker 1 rock type</li> </ul>                     | PM1  |
| Peridotite Marker 2 rock type                                         | PM2  |
| Pyroxenite ore 1 rock type                                            | PX1  |
| Pyroxenite ore 2 rock type                                            | PX2  |
| <ul> <li>Marginal Series 1 rock type</li> </ul>                       | MS1  |
| <ul> <li>Marginal Series 2 rock type</li> </ul>                       | MS2  |
| <ul> <li>Transition Zone 1 rock type</li> </ul>                       | TZ1  |
| Transition Zone 1 rock type                                           | TZ2  |
| Basement rock type 1                                                  | BAS1 |
| Basement rock type 2                                                  | BAS2 |




Figure B1. BATCircle Project sample labelling protocol for process separation sub-samples for each Orientation Sample



Figure B2. BATCircle Project sample labelling protocol example for sample SK-PM1 to be sent to flotation – SKF-PM1



Figure B3. BATCircle Project sample labelling protocol example for sample SK-TZ2 to be sent to leaching – SKL-TZ2



# 16 APPENDIX C – SAMPLE PICTURES DRILL CORE IN TRAY

The following images are taken SAP Konttijärvi orientation samples while they were still in their core trays.



Figure C1. Sample PM1 as received still in core tray



Figure C2. Sample PM2 as received still in core tray





Figure C3. Sample PM2 as received still in core tray



Figure C4. Sample PX1 as received still in core tray





Figure C5. Sample PX1 as received still in core tray



Figure C6. Sample PX2 as received still in core tray





Figure C7. Sample PX2 as received still in core tray



Figure C8. Sample MS1 as received still in core tray





Figure C9. Sample MS2 as received still in core tray



Figure C10. Sample MS2 as received still in core tray





Figure C11. Sample TZ1 as received still in core tray



Figure C12. Sample TZ1 as received still in core tray





Figure C13. Sample TZ2 as received still in core tray



Figure C14. Sample BAS1 as received still in core tray





Figure C15. Sample BAS1 as received still in core tray



Figure C16. Sample BAS2 as received still in core tray





Figure C17. Sample BAS2 as received still in core tray



1.6.2020

## 17 APPENDIX D. KJV GEOLOGY LOGS FOR BATCIRCLE SAMPLES TAKEN

| Drill Hole_ID | Sample | Depth<br>From | Depth<br>To | Length | Stratigraphy           | Lithology       | Sulphide 1   | Sulphide                    | Sulphide | COMMENTS                                                                                               | Amount of Sulphides |
|---------------|--------|---------------|-------------|--------|------------------------|-----------------|--------------|-----------------------------|----------|--------------------------------------------------------------------------------------------------------|---------------------|
|               |        | (m)           | (m)         | (m)    | Unit                   | Classification  | Style        | GrainSize                   | Zone     |                                                                                                        |                     |
| KOJ/NMET-359  | PM1    | 49,00         | 56,64       | 7,64   | PERIDOTITE MARKER      | PERIDOTITE      | Patchy       | Fine-grained                | Po+Cp    |                                                                                                        | Strong              |
| KOJ/NMET-10N3 | PM2    | 64,90         | 70,00       | 5,10   | PERIDOTITE MARKER      | PERIDOTITE      | Patchy       | Fine-grained                | Cp+Po    |                                                                                                        | Strong              |
| KOJ/NMET-359  | PX1    | 56,64         | 57,26       | 0,62   | KONTTIJARVI PYROXENITE | PYROXENITE      | Patchy       | Fine-grained                | Po+Cp    |                                                                                                        | Strong              |
| KOJ/NMET-359  | PX1    | 57,26         | 62,00       | 4,74   | KONTTIJARVI PYROXENITE | PYROXENITE      | Patchy       | Fine-grained                | Po+Cp    |                                                                                                        | Strong              |
| KOJ/NMET-3S9  | PX1    | 62,00         | 66,00       | 4,00   | KONTTIJARVI PYROXENITE | PYROXENITE      | Patchy       | Fine-grained                | с<br>С   |                                                                                                        | Strong              |
| KOJ/NMET-359  | PX1    | 66,00         | 66,24       | 0,24   | KONTTIJARVI PYROXENITE | PYROXENITE      | Blebby       | Medium-<br>grained          | Cp+Po    | At the beginning Cp is dominant,<br>but Po increases significantly<br>towards end of the interval.     | Strong              |
| KOJ/NMET-359  | PX1    | 66,24         | 66,59       | 0,35   | KONTTIJARVI PYROXENITE | CHLORITE SCHIST | Blebby       | Medium-<br>grained          | Cp+Po    | At the beginning Cp is dominant,<br>but Po increases significantly<br>towards end of the interval.     | Strong              |
| KOJ/NMET-14N4 | PX2    | 17,45         | 21,20       | 3,75   | KONTTIJARVI PYROXENITE | PYROXENITE      |              |                             |          | Chlorite schist at the lower<br>contact.                                                               |                     |
| KOJ/NMET-14N4 | PX2    | 21,20         | 23,00       | 1,80   | KONTTIJARVI PYROXENITE | PYROXENITE      | Disseminated | Fine grained                | ъ<br>С   | Fine-grained rather weak<br>dissemination, but Bo bearing.<br>Chlorite schist at the lower<br>contact. | Moderate            |
| KOJ/NMET-14N4 | MS1    | 49,00         | 56,60       | 7,60   | MARGINAL SERIES        | GABBRO          | Patchy       | Medium to<br>coarse grained | Cp+Po    | Patchy, medium-coarse-grained.                                                                         | Moderate            |
| KOJ/NMET-14N4 | MS1    | 56,60         | 57,00       | 0,40   | MARGINAL SERIES        | GABBRO          |              |                             | b        | Sporadic Cp                                                                                            | Weak                |
| KOJ/NMET-5N3  | MS2    | 71,00         | 76,30       | 5,30   | MARGINAL SERIES        | GABBRO          | Blebby       | Coarse-grained              | e        | Trace of Po.                                                                                           | Strong              |
| KOJ/NMET-5N3  | MS2    | 78,50         | 78,80       | 0,30   | MARGINAL SERIES        | GABBRO          | Patchy       | Medium-<br>grained          | Cp+Po    |                                                                                                        | Strong              |
| KOJ/NMET-5N3  | MS2    | 78,80         | 79,15       | 0,35   | MARGINAL SERIES        | GABBRO          | Patchy       | Medium-<br>grained          | Cp+Po    |                                                                                                        | Strong              |
| KOJ/NMET-5N3  | MS2    | 79,15         | 82,88       | 3,73   | MARGINAL SERIES        | GABBRO          | Patchy       | Medium-<br>grained          | Cp+Po    |                                                                                                        | Strong              |

Table D1. KJV Geology logs – PM1, PM2, PX1, PX2, MS1, and MS2

Table D2. KJV Geology logs – TZ1, TZ2, BAS1 and BAS2



| Amount of<br>Sulphides |                | Strong                                                                                                                                                                                                                                                                                                         | Strong                                                                                                                                                                                                                                                                                                                                                                                    | Strong                                                                                                                                                                                                                                                                                                         | Strong                                                                                                               | Strong                                     | Strong                                     | Strong         |                                                                                                                                     |
|------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| COMMENTS               |                | Heterogeneous, fine-coarse-grained, felsic<br>basement like at the beginning, some parts have<br>clearly gneiss structure and some parts look<br>weakly hybrid gabbro. Origin of mafic material?<br>Mineralisation is here fine-grained dissemination<br>(basement type).Mostly fine-grained<br>dissemination. | Heterogeneous, fine-coarse-grained, felsic<br>basement like at the beginning, some parts have<br>clearly gneiss structure and some parts look<br>weakly hybrid gabbro. Origin of mafic material?<br>Mineralisation is here fine-grained dissemination<br>(basement type).Mostly fine-grained<br>dissemination.Albite? Occasional, discontinuous.<br>Brownish alteration seen in basement. | Heterogeneous, fine-coarse-grained, felsic<br>basement like at the beginning, some parts have<br>clearly gneiss structure and some parts look<br>weakly hybrid gabbro. Origin of mafic material?<br>Mineralisation is here fine-grained dissemination<br>(basement type).Mostly fine-grained<br>dissemination. | More BAS KVDR than TZ HGB looking randomly in<br>some parts. FRESH (rock and sulphides)FRESH<br>(rock and sulphides) | Contains assimilated/remelted GB and KVDR. | Contains assimilated/remelted GB and KVDR. |                | Amount of cp increases after 214 into good<br>dissemination. Felsic parts are epid+allb altered.<br>Brecciated by felsic fragments. |
| Sulphide               | Zone           | Cp+Po                                                                                                                                                                                                                                                                                                          | Cp+Po                                                                                                                                                                                                                                                                                                                                                                                     | Cp+Po                                                                                                                                                                                                                                                                                                          | Cp+Po                                                                                                                | Cp+Po                                      | Cp+Po                                      | Cp+Po          | cb                                                                                                                                  |
| Sulphide               | GrainSize      | Fine grained                                                                                                                                                                                                                                                                                                   | Fine grained                                                                                                                                                                                                                                                                                                                                                                              | Fine grained                                                                                                                                                                                                                                                                                                   | Medium-<br>grained                                                                                                   | Medium-<br>grained                         | Medium-<br>grained                         | Fine-grained   | Fine grained                                                                                                                        |
| Sulphide 1             | Style          | Disseminated                                                                                                                                                                                                                                                                                                   | Disseminated                                                                                                                                                                                                                                                                                                                                                                              | Disseminated                                                                                                                                                                                                                                                                                                   | Blebby                                                                                                               | Patchy                                     | Patchy                                     | Patchy         | Disseminated                                                                                                                        |
| Lithology              | Classification | AMPHIBOLE GNEISS                                                                                                                                                                                                                                                                                               | AMPHIBOLE GNEISS                                                                                                                                                                                                                                                                                                                                                                          | AMPHIBOLE GNEISS                                                                                                                                                                                                                                                                                               | HYBRID GABBRO                                                                                                        | QUARTZ DIORITE                             | QUARTZ DIORITE                             | QUARTZ DIORITE | AMPHIBOLE GNEISS                                                                                                                    |
| Stratigraphy           | Unit           | TRANSITION ZONE                                                                                                                                                                                                                                                                                                | TRANSITION ZONE                                                                                                                                                                                                                                                                                                                                                                           | TRANSITION ZONE                                                                                                                                                                                                                                                                                                | TRANSITION ZONE                                                                                                      | BASEMENT                                   | BASEMENT                                   | BASEMENT       | MAFIC BASEMENT                                                                                                                      |
| Length                 | (E             | 6,50                                                                                                                                                                                                                                                                                                           | 6,00                                                                                                                                                                                                                                                                                                                                                                                      | 0,50                                                                                                                                                                                                                                                                                                           | 10,36                                                                                                                | 0,77                                       | 2,63                                       | 6,72           | 7,00                                                                                                                                |
| Depth<br>To            | <u>ع</u>       | 53,00                                                                                                                                                                                                                                                                                                          | 59,00                                                                                                                                                                                                                                                                                                                                                                                     | 59,50                                                                                                                                                                                                                                                                                                          | 00'69                                                                                                                | <br>83,65                                  | 86,28                                      | 93,00          | 217                                                                                                                                 |
| Depth<br>From          | (E             | 46,50                                                                                                                                                                                                                                                                                                          | 53,00                                                                                                                                                                                                                                                                                                                                                                                     | 59,00                                                                                                                                                                                                                                                                                                          | 58,64                                                                                                                | 82,88                                      | 83,65                                      | 86,28          | 210                                                                                                                                 |
| Sample                 |                | TZ1                                                                                                                                                                                                                                                                                                            | TZ1                                                                                                                                                                                                                                                                                                                                                                                       | TZ1                                                                                                                                                                                                                                                                                                            | 122                                                                                                                  | BAS1                                       | BAS1                                       | BAS1           | BAS2                                                                                                                                |
| Drill Hole_ID          |                | KOJ/NMET-1356                                                                                                                                                                                                                                                                                                  | KOJ/NMET-1356                                                                                                                                                                                                                                                                                                                                                                             | KOJ/NMET-13S6                                                                                                                                                                                                                                                                                                  | KOJ/NMET-7N4                                                                                                         | KOJ/NMET-5N3                               | KOJ/NMET-5N3                               | KOJ/NMET-5N3   | KOJ-723                                                                                                                             |



## **18 APPENDIX E – SAMPLE PREPARATION**

Table E1. SAP Konttijärvi Orientation Sample preparation- crushing and sub-dividing

| h Chai | racterization<br>Sample | Leach Process<br>Separation | Magnetic Process<br>Separation | Flotation Process<br>Separation | Gravity Process<br>Separation | -3,35 Split<br>Reconciliation | -3,35 Split<br>Reconciliation |
|--------|-------------------------|-----------------------------|--------------------------------|---------------------------------|-------------------------------|-------------------------------|-------------------------------|
|        | (kg)                    | (kg)                        | (kg)                           | (kg)                            | (kg)                          | (kg)                          | (%)                           |
|        | 0,95                    | 4,00                        | 2,10                           |                                 | 7,6                           | 0,05                          | 0,34 %                        |
|        | 1,00                    | 5,00                        | 4,85                           | 5,00                            | 7,05                          | 0,10                          | 0,43 %                        |
|        | 0,95                    | 4,00                        |                                | 5,05                            | 6,80                          | 0,05                          | 0,30 %                        |
|        | 0,95                    | 5,00                        | 4,05                           | 5,05                            | 7,60                          | 0,20                          | 0,88 %                        |
|        | 1,05                    | 8,00                        | 7,70                           | 8,25                            | 9,10                          | 0,15                          | 0,44 %                        |
|        | 0,95                    | 5,00                        | 3,00                           | 5,00                            | 7,40                          | 0,05                          | 0,23 %                        |
|        | 1,00                    | 5,00                        | 5,10                           | 5,00                            | 9,20                          | 0,05                          | 0,20 %                        |
|        | 1,00                    | 5,00                        | 4,75                           | 5,00                            | 6,45                          | 0,10                          | 0,45 %                        |
|        | 0,95                    | 5,05                        | 4,65                           | 5,10                            | 7,55                          | 0,20                          | 0,85 %                        |
|        | 0,95                    | 5,00                        |                                | 5,05                            | 7,25                          | 0,00                          | 0,00 %                        |

 Table E2.1. Sample list SAP Konttijärvi Orientation Sample (-3.35mm crushed)



| Rock Type                     | Orientation | Task             | Sample Name | Mass |
|-------------------------------|-------------|------------------|-------------|------|
|                               |             |                  |             | (kg) |
| Peridotite Marker 1 rock type | PM1         | Characterization | SKC-PM1     | 0,95 |
| Peridotite Marker 2 rock type | PM2         | Characterization | SKC-PM2     | 1,00 |
| Pyroxenite ore 1 rock type    | PX1         | Characterization | SKC-PX1     | 0,95 |
| Pyroxenite ore 2 rock type    | PX2         | Characterization | SKC-PX2     | 0,95 |
| Marginal Series 1 rock type   | MS1         | Characterization | SKC-MS1     | 1,05 |
| Marginal Series 2 rock type   | MS2         | Characterization | SKC-MS2     | 0,95 |
| Transition Zone 1 rock type   | TZ1         | Characterization | SKC-TZ1     | 1,00 |
| Transition Zone 1 rock type   | TZ2         | Characterization | SKC-TZ2     | 1,00 |
| Basement rock type 1          | BAS1        | Characterization | SKC-BAS1    | 0,95 |
| Basement rock type 2          | BAS2        | Characterization | SKC-BAS2    | 0,95 |
|                               |             |                  |             |      |
| Peridotite Marker 1 rock type | PM1         | Flotation        | SKF-PM1     | -    |
| Peridotite Marker 2 rock type | PM2         | Flotation        | SKF-PM2     | 5,00 |
| Pyroxenite ore 1 rock type    | PX1         | Flotation        | SKF-PX1     | 5,05 |
| Pyroxenite ore 2 rock type    | PX2         | Flotation        | SKF-PX2     | 5,05 |
| Marginal Series 1 rock type   | MS1         | Flotation        | SKF-MS1     | 8,25 |
| Marginal Series 2 rock type   | MS2         | Flotation        | SKF-MS2     | 5,00 |
| Transition Zone 1 rock type   | TZ1         | Flotation        | SKF-TZ1     | 5,00 |
| Transition Zone 1 rock type   | TZ2         | Flotation        | SKF-TZ2     | 5,00 |
| Basement rock type 1          | BAS1        | Flotation        | SKF-BAS1    | 5,10 |
| Basement rock type 2          | BAS2        | Flotation        | SKF-BAS2    | 5,05 |
|                               |             |                  |             |      |
| Peridotite Marker 1 rock type | PM1         | Leaching         | SKL-PM1     | 4,00 |
| Peridotite Marker 2 rock type | PM2         | Leaching         | SKL-PM2     | 5,00 |
| Pyroxenite ore 1 rock type    | PX1         | Leaching         | SKL-PX1     | 4,00 |
| Pyroxenite ore 2 rock type    | PX2         | Leaching         | SKL-PX2     | 5,00 |
| Marginal Series 1 rock type   | MS1         | Leaching         | SKL-MS1     | 8,00 |
| Marginal Series 2 rock type   | MS2         | Leaching         | SKL-MS2     | 5,00 |
| Transition Zone 1 rock type   | TZ1         | Leaching         | SKL-TZ1     | 5,00 |
| Transition Zone 1 rock type   | TZ2         | Leaching         | SKL-TZ2     | 5,00 |
| Basement rock type 1          | BAS1        | Leaching         | SKL-BAS1    | 5,05 |
| Basement rock type 2          | BAS2        | Leaching         | SKL-BAS2    | 5,00 |



| Table F2 2 Sample list SAP  | Konttijärvi ( | Orientation Samn | la (_2 25mm     | crushed)  |
|-----------------------------|---------------|------------------|-----------------|-----------|
| Table EZ.Z. Sample list SAP | KUIILIJAIVIC  | Juentation Samp  | ie (-5.55iiiiii | crusileu) |

| Rock Type                     | Orientation<br>Sample Label | Task                 | Sample Name | Mass |
|-------------------------------|-----------------------------|----------------------|-------------|------|
|                               |                             |                      |             | (kg) |
| Peridotite Marker 1 rock type | PM1                         | Magnetic Separate    | SKM-PM1     | 2,10 |
| Peridotite Marker 2 rock type | PM2                         | Magnetic Separate    | SKM-PM2     | 4,85 |
| Pyroxenite ore 1 rock type    | PX1                         | Magnetic Separate    | SKM-PX1     | -    |
| Pyroxenite ore 2 rock type    | PX2                         | Magnetic Separate    | SKM-PX2     | 4,05 |
| Marginal Series 1 rock type   | MS1                         | Magnetic Separate    | SKM-MS1     | 7,70 |
| Marginal Series 2 rock type   | MS2                         | Magnetic Separate    | SKM-MS2     | 3,00 |
| Transition Zone 1 rock type   | TZ1                         | Magnetic Separate    | SKM-TZ1     | 5,10 |
| Transition Zone 1 rock type   | TZ2                         | Magnetic Separate    | SKM-TZ2     | 4,75 |
| Basement rock type 1          | BAS1                        | Magnetic Separate    | SKM-BAS1    | 4,65 |
| Basement rock type 2          | BAS2                        | Magnetic Separate    | SKM-BAS2    | -    |
|                               |                             |                      |             |      |
| Peridotite Marker 1 rock type | PM1                         | Gravity Separatation | SKGF-PM1    | 7,6  |
| Peridotite Marker 2 rock type | PM2                         | Gravity Separatation | SKGF-PM2    | 7,05 |
| Pyroxenite ore 1 rock type    | PX1                         | Gravity Separatation | SKGF-PX1    | 6,8  |
| Pyroxenite ore 2 rock type    | PX2                         | Gravity Separatation | SKGF-PX2    | 7,6  |
| Marginal Series 1 rock type   | MS1                         | Gravity Separatation | SKGF-MS1    | 9,1  |
| Marginal Series 2 rock type   | MS2                         | Gravity Separatation | SKGF-MS2    | 7,4  |
| Transition Zone 1 rock type   | TZ1                         | Gravity Separatation | SKGF-TZ1    | 9,2  |
| Transition Zone 1 rock type   | TZ2                         | Gravity Separatation | SKGF-TZ2    | 6,45 |
| Basement rock type 1          | BAS1                        | Gravity Separatation | SKGF-BAS1   | 7,55 |
| Basement rock type 2          | BAS2                        | Gravity Separatation | SKGF-BAS2   | 7,25 |



## **19 APPENDIX F – CHEMICAL ASSAY DATA**

The follow chemical assay measurements were taken by EuroFins Labtium Oy on the SAP Orientation Samples. Measurements were taken on a representative sub-sample. This was done to have a base line reference measurement that later process products could be compared to.

| Parameter | SKC-PM1 | Detection | Sample Label | SKC-PM1/1 | SKC-PM1/2 | SKC-PM1/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
|           | Average |           | EF Sample ID | S19101758 | S19101759 | S19101760 |
| Ag        | 0,800   | 0.002     | mg/kg        | 0,835     | 0,792     | 0,772     |
| Au        | 0,170   | 0.005     | mg/kg        | 0,196     | 0,156     | 0,157     |
| Pd        | 3,230   | 0.005     | mg/kg        | 3,43      | 3,14      | 3,12      |
| Pt        | 0,904   | 0.005     | mg/kg        | 0,921     | 0,915     | 0,877     |

Table F1.1. Fire Assay, Au, Ag, Pd, Pt determination by ICP-OES (Method 711P) – Sample PM1

Table F1.2. Fire Assay, Au, Ag, Pd, Pt determination by ICP-OES (Method 711P) – Sample PM2

| Parameter | SKC-PM2 | Detection | Sample Label | SKC-PM2/1 | SKC-PM2/2 | SKC-PM2/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
|           | Average | Lintit    | EF Sample ID | S19101761 | S19101762 | S19101763 |
| Ag        | 0,769   | 0.002     | mg/kg        | 0,762     | 0,755     | 0,789     |
| Au        | 0,126   | 0.005     | mg/kg        | 0,089     | 0,149     | 0,141     |
| Pd        | 1,590   | 0.005     | mg/kg        | 1,48      | 1,43      | 1,86      |
| Pt        | 0,327   | 0.005     | mg/kg        | 0,281     | 0,336     | 0,363     |

Table F1.3. Fire Assay, Au, Ag, Pd, Pt determination by ICP-OES (Method 711P) – Sample PX1

| Parameter | SKC-PX1 | Detection | Sample Label | SKC-PX1/1 | SKC-PX1/2 | SKC-PX1/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
|           | Average | Limit     | EF Sample ID | S19101764 | S19101765 | S19101766 |
| Ag        | 1,025   | 0.002     | mg/kg        | 0,872     | 1,08      | 0,969     |
| Au        | 0,146   | 0.005     | mg/kg        | 0,144     | 0,124     | 0,168     |
| Pd        | 2,210   | 0.005     | mg/kg        | 2,25      | 2,09      | 2,33      |
| Pt        | 0,574   | 0.005     | mg/kg        | 0,566     | 0,544     | 0,603     |



| Table F1.4. Fire Assay,                | Au, Ag, Pd, Pt deter | mination by ICP-OES ( | Method 711P) – Sample PX2 |
|----------------------------------------|----------------------|-----------------------|---------------------------|
| ······································ | ,,                   |                       |                           |

| Parameter | SKC-PX2 | Detection | Sample Label | SKC-PX2/1 | SKC-PX2/2 | SKC-PX2/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
|           | Average | Limit     | EF Sample ID | S19101767 | S19101768 | S19101769 |
| Ag        | 0,804   | 0.002     | mg/kg        | 0,821     | 0,827     | 0,78      |
| Au        | 0,172   | 0.005     | mg/kg        | 0,203     | 0,205     | 0,138     |
| Pd        | 1,930   | 0.005     | mg/kg        | 1,84      | 1,85      | 2,01      |
| Pt        | 0,542   | 0.005     | mg/kg        | 0,514     | 0,517     | 0,567     |

Table F1.5. Fire Assay, Au, Ag, Pd, Pt determination by ICP-OES (Method 711P) – Sample MS1

| Parameter  | SKC-MS1 | Detection | Sample Label | SKC-MS1/1 | SKC-MS1/2 | SKC-MS1/3 |
|------------|---------|-----------|--------------|-----------|-----------|-----------|
| T drameter | Average | Limit     | EF Sample ID | S19101770 | S19101771 | S19101772 |
| Ag         | 1,085   | 0.002     | mg/kg        | 1,15      | 1,01      | 1,16      |
| Au         | 0,097   | 0.005     | mg/kg        | 0,134     | 0,098     | 0,095     |
| Pd         | 1,540   | 0.005     | mg/kg        | 1,59      | 1,41      | 1,67      |
| Pt         | 0,368   | 0.005     | mg/kg        | 0,397     | 0,341     | 0,395     |

Table F1.6. Fire Assay, Au, Ag, Pd, Pt determination by ICP-OES (Method 711P) – Sample MS2

| Parameter | SKC-MS2 | Detection | Sample Label | SKC-MS2/1 | SKC-MS2/2 | SKC-MS2/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
|           | Average | Limit     | EF Sample ID | S19101773 | S19101774 | S19101775 |
| Ag        | 1,940   | 0.002     | mg/kg        | 2,19      | 1,99      | 1,89      |
| Au        | 0,147   | 0.005     | mg/kg        | 0,217     | 0,148     | 0,145     |
| Pd        | 2,355   | 0.005     | mg/kg        | 2,98      | 2,57      | 2,14      |
| Pt        | 0,649   | 0.005     | mg/kg        | 0,722     | 0,69      | 0,607     |

Table F1.7. Fire Assay, Au, Ag, Pd, Pt determination by ICP-OES (Method 711P) – Sample TZ1

| Parameter | SKC-TZ1 | Detection<br>Limit | Sample Label | SKC-TZ1/1 | SKC-TZ1/2 | SKC-TZ1/3 |
|-----------|---------|--------------------|--------------|-----------|-----------|-----------|
|           | Average |                    | EF Sample ID | S19101776 | S19101777 | S19101778 |
| Ag        | 1,435   | 0.002              | mg/kg        | 1,43      | 1,45      | 1,42      |
| Au        | 0,118   | 0.005              | mg/kg        | 0,125     | 0,124     | 0,112     |
| Pd        | 1,605   | 0.005              | mg/kg        | 1,67      | 1,65      | 1,56      |
| Pt        | 0,411   | 0.005              | mg/kg        | 0,432     | 0,429     | 0,393     |



| Parameter | SKC-TZ2 | Detection | Sample Label | SKC-TZ2/1 | SKC-TZ2/2 | SKC-TZ2/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
|           | Average | Limit     | EF Sample ID | S19101779 | S19101780 | S19101781 |
| Ag        | 1,225   | 0.002     | mg/kg        | 1,25      | 1,22      | 1,23      |
| Au        | 0,085   | 0.005     | mg/kg        | 0,077     | 0,093     | 0,077     |
| Pd        | 1,605   | 0.005     | mg/kg        | 1,39      | 1,75      | 1,46      |
| Pt        | 0,387   | 0.005     | mg/kg        | 0,36      | 0,437     | 0,337     |

Table F1.9. Fire Assay, Au, Ag, Pd, Pt determination by ICP-OES (Method 711P) – Sample BAS1

| Parameter | SKC-BAS1 | Detection | Sample Label | SKC-BAS1/1 | SKC-BAS1/2 | SKC-BAS1/3 |
|-----------|----------|-----------|--------------|------------|------------|------------|
|           | Average  | Limit     | EF Sample ID | S19101782  | S19101783  | S19101784  |
| Ag        | 2,325    | 0.002     | mg/kg        | 2,41       | 2,34       | 2,31       |
| Au        | 0,116    | 0.005     | mg/kg        | 0,123      | 0,116      | 0,115      |
| Pd        | 1,840    | 0.005     | mg/kg        | 2,02       | 1,88       | 1,8        |
| Pt        | 0,375    | 0.005     | mg/kg        | 0,465      | 0,384      | 0,366      |

Table F1.10. Fire Assay, Au, Ag, Pd, Pt determination by ICP-OES (Method 711P) – Sample BAS2

| Parameter | SKC-BAS2 | Detection | Sample Label | SKC-BAS2/1 | SKC-BAS2/2 | SKC-BAS2/3 |
|-----------|----------|-----------|--------------|------------|------------|------------|
|           | Average  | Limit     | EF Sample ID | S19101785  | S19101786  | S19101787  |
| Ag        | 1,470    | 0.002     | mg/kg        | 1,35       | 1,35       | 1,59       |
| Au        | 0,161    | 0.005     | mg/kg        | 0,158      | 0,16       | 0,162      |
| Pd        | 2,275    | 0.005     | mg/kg        | 2,23       | 2,26       | 2,29       |
| Pt        | 0,534    | 0.005     | mg/kg        | 0,526      | 0,541      | 0,527      |



| Table F2.1. Four-acid digestion | and Multi-element analysis by | ICP-MS-technique (Metho | od 306M) – Sample PM1 |
|---------------------------------|-------------------------------|-------------------------|-----------------------|
| 0                               | 1 1                           |                         | , ,                   |

| Parameter | arameter SKC-PM1 |       | Sample Label | SKC-PM1/1 | SKC-PM1/1<br>(2) | SKC-PM1/2 | SKC-PM1/3 |
|-----------|------------------|-------|--------------|-----------|------------------|-----------|-----------|
|           | Average          | Limit | EF Sample ID | S19101758 | S19101758        | S19101759 | S19101760 |
| Ag        | 0,34             | 0.1   | mg/kg        | 0,39      | 0,3              | 0,36      | 0,3       |
| As        | 2,20             | 0.1   | mg/kg        | 2,18      | 2,02             | 3,16      | 1,44      |
| Bi        | 0,19             | 0.1   | mg/kg        | 0,23      | 0,21             | 0,17      | 0,14      |
| Cd        | 0,37             | 0.1   | mg/kg        | 0,41      | 0,41             | 0,34      | 0,33      |
| Ce        | 2,22             | 0.1   | mg/kg        | 2,94      | 1,78             | 2,11      | 2,05      |
| Dy        | 0,40             | 0.1   | mg/kg        | 0,41      | 0,39             | 0,4       | 0,4       |
| Er        | 0,25             | 0.05  | mg/kg        | 0,25      | 0,25             | 0,25      | 0,25      |
| Eu        |                  | 0.05  | mg/kg        | <0.05     | <0.05            | <0.05     | <0.05     |
| Gd        | 0,39             | 0.05  | mg/kg        | 0,4       | 0,38             | 0,39      | 0,39      |
| Hf        |                  | 0.5   | mg/kg        | <0.5      | <0.5             | <0.5      | <0.5      |
| Ho        | 0,08             | 0.01  | mg/kg        | 0,09      | 0,08             | 0,08      | 0,08      |
| La        | 0,87             | 0.1   | mg/kg        | 1,18      | 0,67             | 0,82      | 0,81      |
| Lu        | 0,04             | 0.01  | mg/kg        | 0,04      | 0,04             | 0,04      | 0,04      |
| Nb        | 3,14             | 1     | mg/kg        | 3,05      | 3,4              | 2,6       | 3,5       |
| Nd        | 1,35             | 0.2   | mg/kg        | 1,62      | 1,17             | 1,33      | 1,29      |
| Pr        | 0,31             | 0.1   | mg/kg        | 0,38      | 0,25             | 0,3       | 0,29      |
| Sb        | 0,27             | 0.2   | mg/kg        | 0,38      | 0,25             | 0,23      | 0,23      |
| Sm        | 0,36             | 0.01  | mg/kg        | 0,39      | 0,33             | 0,35      | 0,35      |
| Sn        |                  | 2     | mg/kg        | <2        | <2               | <2        | <2        |
| Та        | 0,75             | 0.2   | mg/kg        | 0,74      | 0,8              | 0,61      | 0,84      |
| Tb        | 0,06             | 0.01  | mg/kg        | 0,06      | 0,06             | 0,06      | 0,06      |
| Th        |                  | 0.5   | mg/kg        | <0.5      | <0.5             | <0.5      | <0.5      |
| TI        |                  | 0.5   | mg/kg        | <0.5      | <0.5             | <0.5      | <0.5      |
| Tm        | 0,04             | 0.01  | mg/kg        | 0,04      | 0,04             | 0,04      | 0,04      |
| U         |                  | 0.2   | mg/kg        | <0.2      | <0.2             | <0.2      | <0.2      |
| Y         | 2,19             | 0.1   | mg/kg        | 2,2       | 2,14             | 2,21      | 2,19      |
| Yb        | 0,25             | 0.1   | mg/kg        | 0,25      | 0,24             | 0,25      | 0,25      |



| Doromotor | SKC-PM2 | Detection | Sample Label | SKC-PM2/1 | SKC-PM2/2 | SKC-PM2/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
| Parameter | Average | Limit     | EF Sample ID | S19101761 | S19101762 | S19101763 |
| Ag        | 0,37    | 0.1       | mg/kg        | 0,4       | 0,29      | 0,42      |
| As        | 1,02    | 0.1       | mg/kg        | 1,1       | 1,02      | 0,93      |
| Bi        | 0,22    | 0.1       | mg/kg        | 0,24      | 0,27      | 0,16      |
| Cd        | 0,27    | 0.1       | mg/kg        | 0,27      | 0,29      | 0,25      |
| Ce        | 3,35    | 0.1       | mg/kg        | 4,05      | 2,61      | 3,39      |
| Dy        | 0,29    | 0.1       | mg/kg        | 0,29      | 0,28      | 0,29      |
| Er        | 0,19    | 0.05      | mg/kg        | 0,18      | 0,19      | 0,19      |
| Eu        |         | 0.05      | mg/kg        | <0.05     | <0.05     | <0.05     |
| Gd        | 0,35    | 0.05      | mg/kg        | 0,38      | 0,33      | 0,34      |
| Hf        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Ho        | 0,06    | 0.01      | mg/kg        | 0,06      | 0,06      | 0,06      |
| La        | 1,53    | 0.1       | mg/kg        | 1,83      | 1,18      | 1,58      |
| Lu        | 0,04    | 0.01      | mg/kg        | 0,04      | 0,04      | 0,04      |
| Nb        | 1,43    | 1         | mg/kg        | 1,33      | 1,88      | 1,08      |
| Nd        | 1,71    | 0.2       | mg/kg        | 2,09      | 1,38      | 1,67      |
| Pr        | 0,41    | 0.1       | mg/kg        | 0,5       | 0,33      | 0,41      |
| Sb        |         | 0.2       | mg/kg        | <0.2      | <0.2      | <0.2      |
| Sm        | 0,36    | 0.01      | mg/kg        | 0,43      | 0,31      | 0,34      |
| Sn        |         | 2         | mg/kg        | <2        | <2        | <2        |
| Та        | 0,32    | 0.2       | mg/kg        | 0,29      | 0,43      | 0,25      |
| Tb        | 0,05    | 0.01      | mg/kg        | 0,05      | 0,06      | 0,05      |
| Th        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| TI        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Tm        | 0,03    | 0.01      | mg/kg        | 0,03      | 0,03      | 0,03      |
| U         |         | 0.2       | mg/kg        | <0.2      | <0.2      | <0.2      |
| Y         | 1,43    | 0.1       | mg/kg        | 1,43      | 1,43      | 1,44      |
| Yb        | 0,23    | 0.1       | mg/kg        | 0,23      | 0,24      | 0,23      |

Table F2.2. Four-acid digestion and Multi-element analysis by ICP-MS-technique (Method 306M) – Sample PM2



| Paramotor | SKC-PX1 | Detection | Sample Label | SKC-PX1/1 | SKC-PX1/2 | SKC-PX1/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
| Parameter | Average | Limit     | EF Sample ID | S19101764 | S19101765 | S19101766 |
| Ag        | 0,47    | 0.1       | mg/kg        | 0,6       | 0,39      | 0,43      |
| As        | 1,35    | 0.1       | mg/kg        | 1,64      | 1,07      | 1,34      |
| Bi        | 0,18    | 0.1       | mg/kg        | 0,22      | 0,16      | 0,16      |
| Cd        | 0,33    | 0.1       | mg/kg        | 0,33      | 0,33      | 0,32      |
| Ce        | 3,50    | 0.1       | mg/kg        | 2,79      | 4,3       | 3,41      |
| Dy        | 0,55    | 0.1       | mg/kg        | 0,56      | 0,54      | 0,55      |
| Er        | 0,35    | 0.05      | mg/kg        | 0,36      | 0,35      | 0,35      |
| Eu        | 0,06    | 0.05      | mg/kg        | 0,05      | 0,06      | 0,06      |
| Gd        | 0,53    | 0.05      | mg/kg        | 0,51      | 0,53      | 0,54      |
| Hf        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Ho        | 0,12    | 0.01      | mg/kg        | 0,12      | 0,11      | 0,12      |
| La        | 1,55    | 0.1       | mg/kg        | 1,22      | 1,98      | 1,45      |
| Lu        | 0,05    | 0.01      | mg/kg        | 0,05      | 0,05      | 0,05      |
| Nb        | 1,50    | 1         | mg/kg        | 1,55      | 1,45      | <1        |
| Nd        | 1,95    | 0.2       | mg/kg        | 1,69      | 2,22      | 1,95      |
| Pr        | 0,45    | 0.1       | mg/kg        | 0,38      | 0,52      | 0,45      |
| Sb        | 0,42    | 0.2       | mg/kg        | 0,82      | 0,23      | 0,21      |
| Sm        | 0,49    | 0.01      | mg/kg        | 0,45      | 0,51      | 0,51      |
| Sn        |         | 2         | mg/kg        | <2        | <2        | <2        |
| Та        | 0,32    | 0.2       | mg/kg        | 0,33      | 0,3       | <0.2      |
| Tb        | 0,08    | 0.01      | mg/kg        | 0,08      | 0,08      | 0,09      |
| Th        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| TI        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Tm        | 0,05    | 0.01      | mg/kg        | 0,05      | 0,05      | 0,05      |
| U         |         | 0.2       | mg/kg        | <0.2      | <0.2      | <0.2      |
| Y         | 3,03    | 0.1       | mg/kg        | 3         | 2,99      | 3,11      |
| Yb        | 0,35    | 0.1       | mg/kg        | 0,36      | 0,35      | 0,35      |

Table F2.3. Four-acid digestion and Multi-element analysis by ICP-MS-technique (Method 306M) – Sample PX1



| Table F2.4. Four-acid digestion and Multi-element analysis by ICP-I | P-MS-technique (Method 306M) – Sample PX2 |
|---------------------------------------------------------------------|-------------------------------------------|
|---------------------------------------------------------------------|-------------------------------------------|

| Paramotor | SKC-PX2 | Detection | Sample Label | SKC-PX2/1 | SKC-PX2/2 | SKC-PX2/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
| Falameter | Average | Limit     | EF Sample ID | S19101767 | S19101768 | S19101769 |
| Ag        | 0,35    | 0.1       | mg/kg        | 0,35      | 0,33      | 0,37      |
| As        | 0,26    | 0.1       | mg/kg        | 0,26      | 0,27      | 0,25      |
| Bi        | 0,15    | 0.1       | mg/kg        | 0,15      | 0,13      | 0,16      |
| Cd        | 0,21    | 0.1       | mg/kg        | 0,21      | 0,21      | 0,21      |
| Ce        | 8,67    | 0.1       | mg/kg        | 9,1       | 8,31      | 8,59      |
| Dy        | 1,38    | 0.1       | mg/kg        | 1,38      | 1,39      | 1,37      |
| Er        | 1,02    | 0.05      | mg/kg        | 1,02      | 1,02      | 1,02      |
| Eu        | 0,17    | 0.05      | mg/kg        | 0,17      | 0,17      | 0,17      |
| Gd        | 1,20    | 0.05      | mg/kg        | 1,22      | 1,19      | 1,18      |
| Hf        | 0,85    | 0.5       | mg/kg        | 0,89      | 0,82      | 0,84      |
| Ho        | 0,30    | 0.01      | mg/kg        | 0,31      | 0,3       | 0,3       |
| La        | 3,78    | 0.1       | mg/kg        | 3,95      | 3,64      | 3,76      |
| Lu        | 0,20    | 0.01      | mg/kg        | 0,2       | 0,2       | 0,19      |
| Nb        |         | 1         | mg/kg        | <1        | <1        | <1        |
| Nd        | 4,62    | 0.2       | mg/kg        | 4,82      | 4,44      | 4,6       |
| Pr        | 1,11    | 0.1       | mg/kg        | 1,16      | 1,06      | 1,1       |
| Sb        |         | 0.2       | mg/kg        | <0.2      | <0.2      | <0.2      |
| Sm        | 1,15    | 0.01      | mg/kg        | 1,17      | 1,13      | 1,15      |
| Sn        |         | 2         | mg/kg        | <2        | <2        | <2        |
| Та        |         | 0.2       | mg/kg        | <0.2      | <0.2      | <0.2      |
| Tb        | 0,20    | 0.01      | mg/kg        | 0,2       | 0,2       | 0,2       |
| Th        | 1,95    | 0.5       | mg/kg        | 2,04      | 1,89      | 1,92      |
| TI        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Tm        | 0,17    | 0.01      | mg/kg        | 0,17      | 0,17      | 0,17      |
| U         | 1,12    | 0.2       | mg/kg        | 1,22      | 1,02      | 1,11      |
| Y         | 8,95    | 0.1       | mg/kg        | 8,97      | 8,95      | 8,92      |
| Yb        | 1,27    | 0.1       | mg/kg        | 1,27      | 1,26      | 1,28      |



|           | SKC-MS1 | Detection | Sample Label | SKC-MS1/1 | SKC-MS1/2 | SKC-MS1/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
| Farameter | Average | Limit     | EF Sample ID | S19101770 | S19101771 | S19101772 |
| Ag        | 0,80    | 0.1       | mg/kg        | 0,8       | 0,81      | 0,79      |
| As        | 1,13    | 0.1       | mg/kg        | 1,26      | 1,07      | 1,07      |
| Bi        | 0,33    | 0.1       | mg/kg        | 0,33      | 0,33      | 0,32      |
| Cd        | 0,59    | 0.1       | mg/kg        | 0,58      | 0,6       | 0,58      |
| Ce        | 11,63   | 0.1       | mg/kg        | 11,6      | 11,8      | 11,5      |
| Dy        | 2,13    | 0.1       | mg/kg        | 2,09      | 2,18      | 2,12      |
| Er        | 1,27    | 0.05      | mg/kg        | 1,24      | 1,29      | 1,27      |
| Eu        | 0,55    | 0.05      | mg/kg        | 0,55      | 0,56      | 0,55      |
| Gd        | 2,21    | 0.05      | mg/kg        | 2,2       | 2,22      | 2,22      |
| Hf        | 0,63    | 0.5       | mg/kg        | 0,62      | 0,65      | 0,63      |
| Ho        | 0,43    | 0.01      | mg/kg        | 0,42      | 0,44      | 0,43      |
| La        | 4,82    | 0.1       | mg/kg        | 4,82      | 4,88      | 4,77      |
| Lu        | 0,17    | 0.01      | mg/kg        | 0,17      | 0,17      | 0,17      |
| Nb        | 1,84    | 1         | mg/kg        | 2,05      | 1,73      | 1,75      |
| Nd        | 7,97    | 0.2       | mg/kg        | 7,91      | 8,09      | 7,91      |
| Pr        | 1,67    | 0.1       | mg/kg        | 1,66      | 1,7       | 1,64      |
| Sb        |         | 0.2       | mg/kg        | <0.2      | <0.2      | <0.2      |
| Sm        | 2,16    | 0.01      | mg/kg        | 2,14      | 2,18      | 2,15      |
| Sn        |         | 2         | mg/kg        | <2        | <2        | <2        |
| Та        | 0,30    | 0.2       | mg/kg        | 0,35      | 0,27      | 0,29      |
| Tb        | 0,34    | 0.01      | mg/kg        | 0,34      | 0,35      | 0,34      |
| Th        | 0,98    | 0.5       | mg/kg        | 0,98      | 1         | 0,97      |
| TI        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Tm        | 0,18    | 0.01      | mg/kg        | 0,18      | 0,18      | 0,18      |
| U         | 0,61    | 0.2       | mg/kg        | 0,6       | 0,62      | 0,6       |
| Y         | 11,23   | 0.1       | mg/kg        | 11,1      | 11,4      | 11,2      |
| Yb        | 1,18    | 0.1       | mg/kg        | 1,17      | 1,2       | 1,17      |

Table F2.5. Four-acid digestion and Multi-element analysis by ICP-MS-technique (Method 306M) – Sample MS1



| Table F2.6. Four-acid digestion and Multi-elem | ent analysis by ICP-MS-technique | (Method 306M) – Sample MS2 |
|------------------------------------------------|----------------------------------|----------------------------|
|------------------------------------------------|----------------------------------|----------------------------|

| Paramotor | SKC-MS2 Detection |       | Sample Label | SKC-MS2/1 | SKC-MS2/2 | SKC-MS2/3 |
|-----------|-------------------|-------|--------------|-----------|-----------|-----------|
| Parameter | Average           | Limit | EF Sample ID | S19101773 | S19101774 | S19101775 |
| Ag        | 1,66              | 0.1   | mg/kg        | 2,01      | 1,5       | 1,47      |
| As        | 1,04              | 0.1   | mg/kg        | 1,15      | 1,15      | 0,83      |
| Bi        | 0,20              | 0.1   | mg/kg        | 0,25      | 0,18      | 0,18      |
| Cd        | 0,57              | 0.1   | mg/kg        | 0,56      | 0,58      | 0,56      |
| Ce        | 10,13             | 0.1   | mg/kg        | 10,1      | 10        | 10,3      |
| Dy        | 0,55              | 0.1   | mg/kg        | 0,55      | 0,54      | 0,56      |
| Er        | 0,34              | 0.05  | mg/kg        | 0,34      | 0,34      | 0,34      |
| Eu        | 0,66              | 0.05  | mg/kg        | 0,66      | 0,66      | 0,67      |
| Gd        | 0,69              | 0.05  | mg/kg        | 0,69      | 0,68      | 0,69      |
| Hf        |                   | 0.5   | mg/kg        | <0.5      | <0.5      | <0.5      |
| Но        | 0,11              | 0.01  | mg/kg        | 0,11      | 0,11      | 0,11      |
| La        | 5,16              | 0.1   | mg/kg        | 5,14      | 5,15      | 5,19      |
| Lu        | 0,05              | 0.01  | mg/kg        | 0,05      | 0,05      | 0,05      |
| Nb        | 1,87              | 1     | mg/kg        | 1,87      | 1,96      | 1,78      |
| Nd        | 4,48              | 0.2   | mg/kg        | 4,49      | 4,41      | 4,55      |
| Pr        | 1,16              | 0.1   | mg/kg        | 1,16      | 1,16      | 1,17      |
| Sb        | 0,22              | 0.2   | mg/kg        | 0,22      | <0.2      | <0.2      |
| Sm        | 0,77              | 0.01  | mg/kg        | 0,76      | 0,77      | 0,77      |
| Sn        |                   | 2     | mg/kg        | <2        | <2        | <2        |
| Та        | 0,42              | 0.2   | mg/kg        | 0,39      | 0,42      | 0,46      |
| Tb        | 0,09              | 0.01  | mg/kg        | 0,09      | 0,09      | 0,1       |
| Th        | 0,74              | 0.5   | mg/kg        | 0,73      | 0,7       | 0,78      |
| TI        |                   | 0.5   | mg/kg        | <0.5      | <0.5      | <0.5      |
| Tm        | 0,05              | 0.01  | mg/kg        | 0,05      | 0,05      | 0,05      |
| U         | 0,23              | 0.2   | mg/kg        | 0,23      | 0,22      | 0,23      |
| Y         | 2,96              | 0.1   | mg/kg        | 2,95      | 2,95      | 2,97      |
| Yb        | 0,32              | 0.1   | mg/kg        | 0,33      | 0,32      | 0,32      |



| Doromotor | SKC-TZ1 | Detection | Sample Label | SKC-TZ1/1 | SKC-TZ1/2 | SKC-TZ1/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
|           | Average | Limit     | EF Sample ID | S19101776 | S19101777 | S19101778 |
| Ag        | 1,01    | 0.1       | mg/kg        | 1,02      | 1         | 1,02      |
| As        | 0,68    | 0.1       | mg/kg        | 0,69      | 0,62      | 0,74      |
| Bi        | 0,24    | 0.1       | mg/kg        | 0,24      | 0,19      | 0,28      |
| Cd        | 0,61    | 0.1       | mg/kg        | 0,62      | 0,61      | 0,59      |
| Ce        | 10,07   | 0.1       | mg/kg        | 10,3      | 10        | 9,92      |
| Dy        | 1,10    | 0.1       | mg/kg        | 1,12      | 1,1       | 1,09      |
| Er        | 0,66    | 0.05      | mg/kg        | 0,67      | 0,66      | 0,65      |
| Eu        | 0,61    | 0.05      | mg/kg        | 0,62      | 0,61      | 0,6       |
| Gd        | 1,21    | 0.05      | mg/kg        | 1,23      | 1,2       | 1,19      |
| Hf        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Но        | 0,22    | 0.01      | mg/kg        | 0,23      | 0,22      | 0,22      |
| La        | 5,17    | 0.1       | mg/kg        | 5,34      | 5,12      | 5,06      |
| Lu        | 0,10    | 0.01      | mg/kg        | 0,1       | 0,1       | 0,1       |
| Nb        | 1,64    | 1         | mg/kg        | 1,75      | 1,58      | 1,59      |
| Nd        | 5,34    | 0.2       | mg/kg        | 5,51      | 5,26      | 5,24      |
| Pr        | 1,22    | 0.1       | mg/kg        | 1,25      | 1,22      | 1,2       |
| Sb        |         | 0.2       | mg/kg        | <0.2      | <0.2      | <0.2      |
| Sm        | 1,21    | 0.01      | mg/kg        | 1,24      | 1,19      | 1,2       |
| Sn        |         | 2         | mg/kg        | <2        | <2        | <2        |
| Та        | 0,36    | 0.2       | mg/kg        | 0,38      | 0,35      | 0,34      |
| Tb        | 0,18    | 0.01      | mg/kg        | 0,18      | 0,18      | 0,18      |
| Th        | 0,81    | 0.5       | mg/kg        | 0,82      | 0,8       | 0,81      |
| TI        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Tm        | 0,10    | 0.01      | mg/kg        | 0,1       | 0,1       | 0,1       |
| U         | 0,34    | 0.2       | mg/kg        | 0,36      | 0,33      | 0,34      |
| Y         | 5,88    | 0.1       | mg/kg        | 6,03      | 5,83      | 5,78      |
| Yb        | 0,65    | 0.1       | mg/kg        | 0,65      | 0,65      | 0,65      |



| Table F2.8. Four-acid digestion and Multi-elem | ent analysis by ICP-MS-technique | (Method 306M) – Sample TZ2 |
|------------------------------------------------|----------------------------------|----------------------------|
|------------------------------------------------|----------------------------------|----------------------------|

| Parameter | SKC-TZ2 | Detection | Sample Label | SKC-TZ2/1 | SKC-TZ2/2 | SKC-TZ2/3 |
|-----------|---------|-----------|--------------|-----------|-----------|-----------|
|           | Average | Limit     | EF Sample ID | S19101779 | S19101780 | S19101781 |
| Ag        | 0,90    | 0.1       | mg/kg        | 0,89      | 0,86      | 0,94      |
| As        | 0,64    | 0.1       | mg/kg        | 0,66      | 0,5       | 0,75      |
| Bi        | 0,20    | 0.1       | mg/kg        | 0,19      | 0,18      | 0,22      |
| Cd        | 0,46    | 0.1       | mg/kg        | 0,45      | 0,46      | 0,46      |
| Ce        | 8,55    | 0.1       | mg/kg        | 8,45      | 8,53      | 8,67      |
| Dy        | 0,76    | 0.1       | mg/kg        | 0,75      | 0,75      | 0,77      |
| Er        | 0,46    | 0.05      | mg/kg        | 0,45      | 0,46      | 0,47      |
| Eu        | 0,43    | 0.05      | mg/kg        | 0,42      | 0,43      | 0,43      |
| Gd        | 0,81    | 0.05      | mg/kg        | 0,8       | 0,82      | 0,81      |
| Hf        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Но        | 0,15    | 0.01      | mg/kg        | 0,15      | 0,15      | 0,16      |
| La        | 4,15    | 0.1       | mg/kg        | 4,12      | 4,12      | 4,22      |
| Lu        | 0,06    | 0.01      | mg/kg        | 0,06      | 0,06      | 0,07      |
| Nb        | 1,38    | 1         | mg/kg        | 1,47      | 1,34      | 1,32      |
| Nd        | 4,16    | 0.2       | mg/kg        | 4,09      | 4,15      | 4,25      |
| Pr        | 1,02    | 0.1       | mg/kg        | 1,01      | 1,03      | 1,03      |
| Sb        |         | 0.2       | mg/kg        | <0.2      | <0.2      | <0.2      |
| Sm        | 0,83    | 0.01      | mg/kg        | 0,84      | 0,83      | 0,82      |
| Sn        |         | 2         | mg/kg        | <2        | <2        | <2        |
| Та        | 0,28    | 0.2       | mg/kg        | 0,3       | 0,28      | 0,26      |
| Tb        | 0,12    | 0.01      | mg/kg        | 0,12      | 0,12      | 0,12      |
| Th        | 0,53    | 0.5       | mg/kg        | 0,54      | 0,52      | 0,53      |
| TI        |         | 0.5       | mg/kg        | <0.5      | <0.5      | <0.5      |
| Tm        | 0,07    | 0.01      | mg/kg        | 0,07      | 0,07      | 0,07      |
| U         |         | 0.2       | mg/kg        | <0.2      | <0.2      | <0.2      |
| Y         | 3,93    | 0.1       | mg/kg        | 3,9       | 3,92      | 3,96      |
| Yb        | 0,44    | 0.1       | mg/kg        | 0,43      | 0,44      | 0,44      |



| Table F2.9. Four-acid digestion and Multi-elem | ent analysis by ICP-MS-technique | e (Method 306M) – Sample BAS1 |
|------------------------------------------------|----------------------------------|-------------------------------|
|------------------------------------------------|----------------------------------|-------------------------------|

| Doromotor | SKC-BAS1 | Detection | Sample Label | SKC-BAS1/1 | SKC-BAS1/2 | SKC-BAS1/3 |
|-----------|----------|-----------|--------------|------------|------------|------------|
|           | Average  | Limit     | EF Sample ID | S19101782  | S19101783  | S19101784  |
| Ag        | 2,19     | 0.1       | mg/kg        | 2,16       | 2,2        | 2,2        |
| As        | 1,22     | 0.1       | mg/kg        | 1,44       | 1,07       | 1,14       |
| Bi        | 0,23     | 0.1       | mg/kg        | 0,24       | 0,23       | 0,23       |
| Cd        | 2,05     | 0.1       | mg/kg        | 2,09       | 2          | 2,05       |
| Ce        | 15,13    | 0.1       | mg/kg        | 15,1       | 15         | 15,3       |
| Dy        | 0,46     | 0.1       | mg/kg        | 0,46       | 0,46       | 0,47       |
| Er        | 0,26     | 0.05      | mg/kg        | 0,26       | 0,26       | 0,26       |
| Eu        | 0,69     | 0.05      | mg/kg        | 0,68       | 0,69       | 0,7        |
| Gd        | 0,75     | 0.05      | mg/kg        | 0,73       | 0,76       | 0,77       |
| Hf        |          | 0.5       | mg/kg        | <0.5       | <0.5       | <0.5       |
| Но        | 0,09     | 0.01      | mg/kg        | 0,09       | 0,09       | 0,09       |
| La        | 7,63     | 0.1       | mg/kg        | 7,62       | 7,56       | 7,72       |
| Lu        | 0,03     | 0.01      | mg/kg        | 0,03       | 0,03       | 0,04       |
| Nb        | 1,52     | 1         | mg/kg        | 1,52       | 1,53       | 1,52       |
| Nd        | 6,55     | 0.2       | mg/kg        | 6,54       | 6,48       | 6,63       |
| Pr        | 1,71     | 0.1       | mg/kg        | 1,7        | 1,7        | 1,74       |
| Sb        | 0,30     | 0.2       | mg/kg        | 0,28       | 0,35       | 0,26       |
| Sm        | 0,97     | 0.01      | mg/kg        | 0,96       | 0,96       | 0,99       |
| Sn        |          | 2         | mg/kg        | <2         | <2         | <2         |
| Та        | 0,40     | 0.2       | mg/kg        | 0,37       | 0,47       | 0,36       |
| Tb        | 0,09     | 0.01      | mg/kg        | 0,09       | 0,09       | 0,09       |
| Th        | 0,62     | 0.5       | mg/kg        | 0,62       | 0,62       | 0,63       |
| TI        |          | 0.5       | mg/kg        | <0.5       | <0.5       | <0.5       |
| Tm        | 0,04     | 0.01      | mg/kg        | 0,04       | 0,04       | 0,04       |
| U         |          | 0.2       | mg/kg        | <0.2       | <0.2       | <0.2       |
| Y         | 2,26     | 0.1       | mg/kg        | 2,22       | 2,29       | 2,27       |
| Yb        | 0,24     | 0.1       | mg/kg        | 0,23       | 0,24       | 0,24       |



| Doromotor | SKC-BAS2 | Detection | Sample Label | SKC-BAS2/1 | SKC-BAS2/2 | SKC-BAS2/3 |
|-----------|----------|-----------|--------------|------------|------------|------------|
| Parameter | Average  | Limit     | EF Sample ID | S19101785  | S19101786  | S19101787  |
| Ag        | 0,99     | 0.1       | mg/kg        | 0,99       | 0,99       | 1          |
| As        | 0,55     | 0.1       | mg/kg        | 0,56       | 0,53       | 0,57       |
| Bi        | 0,37     | 0.1       | mg/kg        | 0,35       | 0,46       | 0,3        |
| Cd        | 0,50     | 0.1       | mg/kg        | 0,51       | 0,5        | 0,5        |
| Ce        | 7,65     | 0.1       | mg/kg        | 7,66       | 7,6        | 7,68       |
| Dy        | 1,38     | 0.1       | mg/kg        | 1,38       | 1,37       | 1,39       |
| Er        | 0,87     | 0.05      | mg/kg        | 0,87       | 0,87       | 0,87       |
| Eu        | 0,66     | 0.05      | mg/kg        | 0,67       | 0,65       | 0,67       |
| Gd        | 1,30     | 0.05      | mg/kg        | 1,3        | 1,31       | 1,28       |
| Hf        |          | 0.5       | mg/kg        | <0.5       | <0.5       | <0.5       |
| Но        | 0,29     | 0.01      | mg/kg        | 0,29       | 0,29       | 0,29       |
| La        | 3,98     | 0.1       | mg/kg        | 3,99       | 3,95       | 4          |
| Lu        | 0,13     | 0.01      | mg/kg        | 0,13       | 0,13       | 0,13       |
| Nb        | 1,12     | 1         | mg/kg        | 1,15       | <1         | 1,08       |
| Nd        | 4,30     | 0.2       | mg/kg        | 4,31       | 4,27       | 4,31       |
| Pr        | 0,95     | 0.1       | mg/kg        | 0,95       | 0,95       | 0,95       |
| Sb        | 0,24     | 0.2       | mg/kg        | 0,2        | 0,24       | 0,28       |
| Sm        | 1,11     | 0.01      | mg/kg        | 1,13       | 1,11       | 1,09       |
| Sn        |          | 2         | mg/kg        | <2         | <2         | <2         |
| Та        | 0,23     | 0.2       | mg/kg        | 0,26       | 0,21       | 0,23       |
| Tb        | 0,21     | 0.01      | mg/kg        | 0,21       | 0,21       | 0,21       |
| Th        |          | 0.5       | mg/kg        | <0.5       | <0.5       | <0.5       |
| TI        |          | 0.5       | mg/kg        | <0.5       | <0.5       | <0.5       |
| Tm        | 0,13     | 0.01      | mg/kg        | 0,13       | 0,13       | 0,13       |
| U         |          | 0.2       | mg/kg        | <0.2       | <0.2       | <0.2       |
| Y         | 7,17     | 0.1       | mg/kg        | 7,16       | 7,15       | 7,19       |
| Yb        | 0,86     | 0.1       | mg/kg        | 0,86       | 0,87       | 0,86       |



| Parameter  | Detection | Sample Label | SKC-PM1   | SKC-PM1/1 | SKC-PM1/1 (2) | SKC-PM1/2 | SKC-PM1/3 |
|------------|-----------|--------------|-----------|-----------|---------------|-----------|-----------|
| T drameter | Limit     | EF Sample ID | Average   | S19101758 | S19101758     | S19101759 | S19101760 |
| AI         | 50        | mg/kg        | 32425,00  | 32600     | 32100         | 32600     | 32400     |
| Ва         | 2         | mg/kg        |           | <2        | <2            | <2        | <2        |
| Be         | 0.5       | mg/kg        |           | <0.5      | <0.5          | <0.5      | <0.5      |
| Ca         | 50        | mg/kg        | 35975,00  | 36400     | 35600         | 35900     | 36000     |
| Со         | 2         | mg/kg        | 121,50    | 123       | 119           | 121       | 123       |
| Cr         | 2         | mg/kg        | 445,00    | 441       | 439           | 461       | 439       |
| Cu         | 2         | mg/kg        | 1157,50   | 1160      | 1160          | 1180      | 1130      |
| Fe         | 50        | mg/kg        | 83850,00  | 83700     | 82600         | 84600     | 84500     |
| К          | 100       | mg/kg        |           | <100      | <100          | <100      | <100      |
| Li         | 2         | mg/kg        | 3,00      | <2        | 4             | <2        | 2         |
| Mg         | 50        | mg/kg        | 145500,00 | 146000    | 144000        | 146000    | 146000    |
| Mn         | 2         | mg/kg        | 1215,00   | 1250      | 1220          | 1150      | 1240      |
| Мо         | 2         | mg/kg        | 2,50      | 2,5       | <2            | <2        | <2        |
| Na         | 50        | mg/kg        | 69,50     | 72        | 63            | 73        | 70        |
| Ni         | 2         | mg/kg        | 1567,50   | 1570      | 1530          | 1590      | 1580      |
| Р          | 50        | mg/kg        | 53,00     | 52        | 56            | <50       | 51        |
| Pb         | 10        | mg/kg        |           | <10       | <10           | <10       | <10       |
| Rb         | 2         | mg/kg        |           | <2        | <2            | <2        | <2        |
| S          | 50        | mg/kg        | 4422,50   | 4380      | 4350          | 4480      | 4480      |
| Sc         | 1         | mg/kg        | 16,73     | 16,8      | 16,6          | 17        | 16,5      |
| Sr         | 1         | mg/kg        | 10,48     | 10,8      | 10,9          | 10,2      | 10        |
| Ti         | 2         | mg/kg        | 660,00    | 673       | 677           | 647       | 643       |
| V          | 2         | mg/kg        | 55,60     | 56,1      | 56,1          | 54,4      | 55,8      |
| Zn         | 2         | mg/kg        | 76,00     | 75        | 81            | 75        | 73        |
| Zr         | 2         | mg/kg        | 5,38      | 5,2       | 5,4           | 5,5       | 5,4       |



| Table F3.2. Four-acid digestion and Multi-eleme | nt analysis by ICP-OES-techniq | ue (Method 306P) – Sample PM2 |
|-------------------------------------------------|--------------------------------|-------------------------------|
|-------------------------------------------------|--------------------------------|-------------------------------|

| Parameter  | Detection | Sample Label | SKC-PM2   | SKC-PM2/1 | SKC-PM2/2 | SKC-PM2/3 |
|------------|-----------|--------------|-----------|-----------|-----------|-----------|
| T diameter | Limit     | EF Sample ID | Average   | S19101761 | S19101762 | S19101763 |
| AI         | 50        | mg/kg        | 22833,33  | 22600     | 22800     | 23100     |
| Ba         | 2         | mg/kg        |           | <2        | <2        | <2        |
| Be         | 0.5       | mg/kg        |           | <0.5      | <0.5      | <0.5      |
| Ca         | 50        | mg/kg        | 14266,67  | 14100     | 14500     | 14200     |
| Со         | 2         | mg/kg        | 154,33    | 153       | 154       | 156       |
| Cr         | 2         | mg/kg        | 152,00    | 150       | 154       | 152       |
| Cu         | 2         | mg/kg        | 1220,00   | 1220      | 1240      | 1200      |
| Fe         | 50        | mg/kg        | 101666,67 | 101000    | 102000    | 102000    |
| К          | 100       | mg/kg        |           | <100      | <100      | <100      |
| Li         | 2         | mg/kg        | 3,67      | 3         | 4         | 4         |
| Mg         | 50        | mg/kg        | 162333,33 | 162000    | 163000    | 162000    |
| Mn         | 2         | mg/kg        | 1203,33   | 1160      | 1200      | 1250      |
| Мо         | 2         | mg/kg        | 2,20      | 2,2       | <2        | <2        |
| Na         | 50        | mg/kg        | 118,00    | 51        | 51        | 252       |
| Ni         | 2         | mg/kg        | 2293,33   | 2290      | 2260      | 2330      |
| Р          | 50        | mg/kg        | 70,00     | 60        | 70        | 80        |
| Pb         | 10        | mg/kg        |           | <10       | <10       | <10       |
| Rb         | 2         | mg/kg        |           | <2        | <2        | <2        |
| S          | 50        | mg/kg        | 5430,00   | 5430      | 5420      | 5440      |
| Sc         | 1         | mg/kg        | 11,20     | 11,1      | 11,2      | 11,3      |
| Sr         | 1         | mg/kg        | 9,67      | 9,5       | 9,8       | 9,7       |
| Ti         | 2         | mg/kg        | 729,00    | 696       | 741       | 750       |
| V          | 2         | mg/kg        | 50,47     | 48,7      | 51,2      | 51,5      |
| Zn         | 2         | mg/kg        | 79,33     | 76        | 82        | 80        |
| Zr         | 2         | mg/kg        | 4,40      | 5,5       | 3,3       | 4,4       |



| Table F3.3. Four-acid digestion and Multi- | element analysis by ICP-OES-techni | que (Method 306P) – Sample PX1 |
|--------------------------------------------|------------------------------------|--------------------------------|
|--------------------------------------------|------------------------------------|--------------------------------|

| Parameter   | Detection | Sample Label | SKC-PX1   | SKC-PX1/1 | SKC-PX1/2 | SKC-PX1/3 |
|-------------|-----------|--------------|-----------|-----------|-----------|-----------|
| i didinotor | Limit     | EF Sample ID | Average   | S19101764 | S19101765 | S19101766 |
| AI          | 50        | mg/kg        | 33033,33  | 32700     | 33100     | 33300     |
| Ba          | 2         | mg/kg        |           | <2        | <2        | <2        |
| Be          | 0.5       | mg/kg        |           | <0.5      | <0.5      | <0.5      |
| Ca          | 50        | mg/kg        | 52700,00  | 52400     | 52800     | 52900     |
| Со          | 2         | mg/kg        | 108,33    | 107       | 108       | 110       |
| Cr          | 2         | mg/kg        | 604,00    | 600       | 594       | 618       |
| Cu          | 2         | mg/kg        | 1190,00   | 1180      | 1200      | 1190      |
| Fe          | 50        | mg/kg        | 79166,67  | 78000     | 79000     | 80500     |
| К           | 100       | mg/kg        |           | <100      | <100      | <100      |
| Li          | 2         | mg/kg        | 8,00      | 8         | 8         | 8         |
| Mg          | 50        | mg/kg        | 135000,00 | 133000    | 135000    | 137000    |
| Mn          | 2         | mg/kg        | 1350,00   | 1370      | 1380      | 1300      |
| Мо          | 2         | mg/kg        |           | <2        | <2        | <2        |
| Na          | 50        | mg/kg        | 167,67    | 174       | 162       | 167       |
| Ni          | 2         | mg/kg        | 1380,00   | 1360      | 1370      | 1410      |
| Р           | 50        | mg/kg        | 57,67     | 53        | 65        | 55        |
| Pb          | 10        | mg/kg        |           | <10       | <10       | <10       |
| Rb          | 2         | mg/kg        |           | <2        | <2        | <2        |
| S           | 50        | mg/kg        | 3833,33   | 3820      | 3780      | 3900      |
| Sc          | 1         | mg/kg        | 20,57     | 20,3      | 20,6      | 20,8      |
| Sr          | 1         | mg/kg        | 4,70      | 4,8       | 4,7       | 4,6       |
| Ti          | 2         | mg/kg        | 826,33    | 780       | 848       | 851       |
| V           | 2         | mg/kg        | 63,73     | 61,9      | 64        | 65,3      |
| Zn          | 2         | mg/kg        | 85,67     | 85        | 86        | 86        |
| Zr          | 2         | mg/kg        | 9,13      | 8,8       | 8,6       | 10        |



| Table F3.4. Four-acid digestion and Multi-eleme | nt analysis by ICP-OES-technique | e (Method 306P) – Sample PX2 |
|-------------------------------------------------|----------------------------------|------------------------------|
|-------------------------------------------------|----------------------------------|------------------------------|

| Parameter   | Detection | Sample Label | SKC-PX2   | SKC-PX2/1 | SKC-PX2/2 | SKC-PX2/3 |
|-------------|-----------|--------------|-----------|-----------|-----------|-----------|
| i didinotor | Limit     | EF Sample ID | Average   | S19101767 | S19101768 | S19101769 |
| AI          | 50        | mg/kg        | 27866,67  | 28100     | 27900     | 27600     |
| Ba          | 2         | mg/kg        |           | <2        | 2         | 3         |
| Be          | 0.5       | mg/kg        |           | <0.5      | <0.5      | <0.5      |
| Ca          | 50        | mg/kg        | 65866,67  | 66400     | 66200     | 65000     |
| Со          | 2         | mg/kg        | 80,53     | 80,4      | 80        | 81,2      |
| Cr          | 2         | mg/kg        | 638,67    | 626       | 658       | 632       |
| Cu          | 2         | mg/kg        | 433,33    | 430       | 432       | 438       |
| Fe          | 50        | mg/kg        | 74266,67  | 74100     | 75900     | 72800     |
| К           | 100       | mg/kg        |           | <100      | <100      | <100      |
| Li          | 2         | mg/kg        | 5,67      | 7         | 5         | 5         |
| Mg          | 50        | mg/kg        | 119333,33 | 120000    | 120000    | 118000    |
| Mn          | 2         | mg/kg        | 1913,33   | 1910      | 1870      | 1960      |
| Мо          | 2         | mg/kg        |           | <2        | <2        | <2        |
| Na          | 50        | mg/kg        | 460,00    | 460       | 461       | 459       |
| Ni          | 2         | mg/kg        | 935,33    | 941       | 939       | 926       |
| Р           | 50        | mg/kg        |           | <50       | <50       | <50       |
| Pb          | 10        | mg/kg        |           | <10       | <10       | <10       |
| Rb          | 2         | mg/kg        |           | <2        | <2        | <2        |
| S           | 50        | mg/kg        | 238,67    | 233       | 241       | 242       |
| Sc          | 1         | mg/kg        | 29,03     | 29,1      | 29,4      | 28,6      |
| Sr          | 1         | mg/kg        | 8,57      | 8,9       | 8,4       | 8,4       |
| Ti          | 2         | mg/kg        | 1143,33   | 1110      | 1160      | 1160      |
| V           | 2         | mg/kg        | 82,10     | 82,6      | 82,5      | 81,2      |
| Zn          | 2         | mg/kg        | 111,00    | 113       | 111       | 109       |
| Zr          | 2         | mg/kg        | 27,50     | 29,2      | 26,8      | 26,5      |



| Table F3.5. Four-acid digestion and Multi-eleme | ent analysis by ICP-OES-technique | e (Method 306P) – Sample MS1 |
|-------------------------------------------------|-----------------------------------|------------------------------|
|-------------------------------------------------|-----------------------------------|------------------------------|

| Parameter    | Detection | Sample Label | SKC-MS1  | SKC-MS1/1 | SKC-MS1/2 | SKC-MS1/3 |
|--------------|-----------|--------------|----------|-----------|-----------|-----------|
| T didinicioi | Limit     | EF Sample ID | Average  | S19101770 | S19101771 | S19101772 |
| AI           | 50        | mg/kg        | 37066,67 | 37600     | 37000     | 36600     |
| Ba           | 2         | mg/kg        | 108,67   | 108       | 111       | 107       |
| Be           | 0.5       | mg/kg        |          | <0.5      | <0.5      | <0.5      |
| Са           | 50        | mg/kg        | 68800,00 | 69500     | 68700     | 68200     |
| Со           | 2         | mg/kg        | 78,63    | 77,5      | 80,9      | 77,5      |
| Cr           | 2         | mg/kg        | 667,67   | 665       | 674       | 664       |
| Cu           | 2         | mg/kg        | 1770,00  | 1790      | 1780      | 1740      |
| Fe           | 50        | mg/kg        | 77833,33 | 78200     | 78600     | 76700     |
| К            | 100       | mg/kg        | 2686,67  | 2700      | 2720      | 2640      |
| Li           | 2         | mg/kg        | 21,67    | 23        | 22        | 20        |
| Mg           | 50        | mg/kg        | 81333,33 | 82500     | 81700     | 79800     |
| Mn           | 2         | mg/kg        | 1720,00  | 1740      | 1720      | 1700      |
| Мо           | 2         | mg/kg        |          | <2        | <2        | <2        |
| Na           | 50        | mg/kg        | 7913,33  | 8020      | 7880      | 7840      |
| Ni           | 2         | mg/kg        | 1296,67  | 1280      | 1320      | 1290      |
| Р            | 50        | mg/kg        | 123,00   | 121       | 129       | 119       |
| Pb           | 10        | mg/kg        |          | <10       | <10       | <10       |
| Rb           | 2         | mg/kg        | 11,33    | 11        | 11        | 12        |
| S            | 50        | mg/kg        | 5713,33  | 5630      | 5880      | 5630      |
| Sc           | 1         | mg/kg        | 43,63    | 44        | 43,6      | 43,3      |
| Sr           | 1         | mg/kg        | 117,33   | 119       | 117       | 116       |
| Ti           | 2         | mg/kg        | 1703,33  | 1700      | 1710      | 1700      |
| V            | 2         | mg/kg        | 132,67   | 135       | 133       | 130       |
| Zn           | 2         | mg/kg        | 103,67   | 104       | 105       | 102       |
| Zr           | 2         | mg/kg        | 18,20    | 17,9      | 19,2      | 17,5      |



| Parameter | Detection | Sample Label | SKC-MS2  | SKC-MS2/1 | SKC-MS2/2 | SKC-MS2/3 |
|-----------|-----------|--------------|----------|-----------|-----------|-----------|
|           | Limit     | EF Sample ID | Average  | S19101773 | S19101774 | S19101775 |
| AI        | 50        | mg/kg        | 96800,00 | 97000     | 96800     | 96600     |
| Ba        | 2         | mg/kg        | 345,67   | 346       | 347       | 344       |
| Be        | 0.5       | mg/kg        | 0,50     | <0.5      | 0,5       | 0,5       |
| Ca        | 50        | mg/kg        | 46233,33 | 46300     | 46300     | 46100     |
| Co        | 2         | mg/kg        | 57,67    | 56,9      | 57,3      | 58,8      |
| Cr        | 2         | mg/kg        | 319,33   | 322       | 318       | 318       |
| Cu        | 2         | mg/kg        | 2016,67  | 2010      | 2020      | 2020      |
| Fe        | 50        | mg/kg        | 47333,33 | 47100     | 47600     | 47300     |
| К         | 100       | mg/kg        | 9676,67  | 9650      | 9740      | 9640      |
| Li        | 2         | mg/kg        | 47,00    | 44        | 49        | 48        |
| Mg        | 50        | mg/kg        | 50966,67 | 50700     | 51100     | 51100     |
| Mn        | 2         | mg/kg        | 680,00   | 694       | 690       | 656       |
| Мо        | 2         | mg/kg        |          | <2        | <2        | <2        |
| Na        | 50        | mg/kg        | 27566,67 | 27600     | 27600     | 27500     |
| Ni        | 2         | mg/kg        | 1296,67  | 1290      | 1300      | 1300      |
| Р         | 50        | mg/kg        | 113,33   | 119       | 104       | 117       |
| Pb        | 10        | mg/kg        | 12,67    | 10        | 16        | 12        |
| Rb        | 2         | mg/kg        | 44,00    | 44        | 45        | 43        |
| S         | 50        | mg/kg        | 3990,00  | 4000      | 3940      | 4030      |
| Sc        | 1         | mg/kg        | 12,90    | 12,9      | 12,9      | 12,9      |
| Sr        | 1         | mg/kg        | 470,67   | 470       | 472       | 470       |
| Ti        | 2         | mg/kg        | 887,67   | 885       | 893       | 885       |
| V         | 2         | mg/kg        | 48,60    | 48,7      | 47,7      | 49,4      |
| Zn        | 2         | mg/kg        | 76,67    | 76        | 77        | 77        |
| Zr        | 2         | mg/kg        | 13,07    | 14,8      | 11,5      | 12,9      |



| Table F3.7. Four-acid digestion and Multi-ele | ment analysis by ICP-OES-technique | e (Method 306P) – Sample TZ1 |
|-----------------------------------------------|------------------------------------|------------------------------|
|-----------------------------------------------|------------------------------------|------------------------------|

| Parameter | Detection<br>Limit | Sample Label | SKC-TZ1  | SKC-TZ1/1 | SKC-TZ1/2 | SKC-TZ1/2 (2) | SKC-TZ1/3 |
|-----------|--------------------|--------------|----------|-----------|-----------|---------------|-----------|
|           |                    | EF Sample ID | Average  | S19101776 | S19101777 | S19101777     | S19101778 |
| AI        | 50                 | mg/kg        | 85100,00 | 85100     | 85500     | 85000         | 84800     |
| Ba        | 2                  | mg/kg        | 231,75   | 229       | 233       | 232           | 233       |
| Be        | 0.5                | mg/kg        | 0,50     | 0,5       | 0,5       | <0.5          | 0,5       |
| Ca        | 50                 | mg/kg        | 59850,00 | 59700     | 60300     | 59800         | 59600     |
| Со        | 2                  | mg/kg        | 61,35    | 60,1      | 60,3      | 61,9          | 63,1      |
| Cr        | 2                  | mg/kg        | 243,50   | 229       | 248       | 249           | 248       |
| Cu        | 2                  | mg/kg        | 2125,00  | 2090      | 2120      | 2120          | 2170      |
| Fe        | 50                 | mg/kg        | 56125,00 | 55800     | 55800     | 56200         | 56700     |
| К         | 100                | mg/kg        | 4957,50  | 4870      | 4980      | 4950          | 5030      |
| Li        | 2                  | mg/kg        | 24,75    | 26        | 24        | 24            | 25        |
| Mg        | 50                 | mg/kg        | 43075,00 | 42700     | 42900     | 43100         | 43600     |
| Mn        | 2                  | mg/kg        | 823,00   | 712       | 667       | 931           | 982       |
| Мо        | 2                  | mg/kg        |          | <2        | <2        | <2            | <2        |
| Na        | 50                 | mg/kg        | 22225,00 | 22300     | 22400     | 22300         | 21900     |
| Ni        | 2                  | mg/kg        | 1170,00  | 1150      | 1160      | 1160          | 1210      |
| Р         | 50                 | mg/kg        | 105,75   | 100       | 99        | 110           | 114       |
| Pb        | 10                 | mg/kg        | 11,00    | 10        | <10       | <10           | 12        |
| Rb        | 2                  | mg/kg        | 13,50    | 14        | 13        | 13            | 14        |
| S         | 50                 | mg/kg        | 5970,00  | 5820      | 5990      | 5940          | 6130      |
| Sc        | 1                  | mg/kg        | 21,70    | 21,5      | 21,7      | 21,8          | 21,8      |
| Sr        | 1                  | mg/kg        | 497,25   | 500       | 502       | 500           | 487       |
| Ti        | 2                  | mg/kg        | 1357,50  | 1340      | 1370      | 1360          | 1360      |
| V         | 2                  | mg/kg        | 79,35    | 77,5      | 76,6      | 80,3          | 83        |
| Zn        | 2                  | mg/kg        | 75,25    | 76        | 75        | 74            | 76        |
| Zr        | 2                  | mg/kg        | 11,88    | 12,1      | 11,5      | 12            | 11,9      |



| Table F3.8. Four-acid digestion and M | lti-element analysis by ICP-OES-t | echnique (Method 306P) – Sample Tz | Ζ2 |
|---------------------------------------|-----------------------------------|------------------------------------|----|
|---------------------------------------|-----------------------------------|------------------------------------|----|

| Parameter  | Detection | Sample Label | SKC-TZ2  | SKC-TZ2/1 | SKC-TZ2/2 | SKC-TZ2/3 |
|------------|-----------|--------------|----------|-----------|-----------|-----------|
| i alametei | Limit     | EF Sample ID | Average  | S19101779 | S19101780 | S19101781 |
| AI         | 50        | mg/kg        | 87466,67 | 87000     | 88000     | 87400     |
| Ba         | 2         | mg/kg        | 208,67   | 209       | 209       | 208       |
| Be         | 0.5       | mg/kg        |          | <0.5      | <0.5      | <0.5      |
| Ca         | 50        | mg/kg        | 61366,67 | 61000     | 61700     | 61400     |
| Со         | 2         | mg/kg        | 66,67    | 68,2      | 65,3      | 66,5      |
| Cr         | 2         | mg/kg        | 453,67   | 459       | 449       | 453       |
| Cu         | 2         | mg/kg        | 1480,00  | 1470      | 1470      | 1500      |
| Fe         | 50        | mg/kg        | 55800,00 | 55600     | 55700     | 56100     |
| К          | 100       | mg/kg        | 6563,33  | 6620      | 6570      | 6500      |
| Li         | 2         | mg/kg        | 34,67    | 36        | 33        | 35        |
| Mg         | 50        | mg/kg        | 55066,67 | 55000     | 55100     | 55100     |
| Mn         | 2         | mg/kg        | 746,67   | 749       | 709       | 782       |
| Мо         | 2         | mg/kg        |          | <2        | <2        | <2        |
| Na         | 50        | mg/kg        | 18100,00 | 18000     | 18200     | 18100     |
| Ni         | 2         | mg/kg        | 942,00   | 951       | 932       | 943       |
| Р          | 50        | mg/kg        | 103,33   | 107       | 103       | 100       |
| Pb         | 10        | mg/kg        |          | <10       | <10       | <10       |
| Rb         | 2         | mg/kg        | 28,33    | 29        | 29        | 27        |
| S          | 50        | mg/kg        | 7326,67  | 7250      | 7270      | 7460      |
| Sc         | 1         | mg/kg        | 21,80    | 21,6      | 21,8      | 22        |
| Sr         | 1         | mg/kg        | 493,67   | 492       | 496       | 493       |
| Ti         | 2         | mg/kg        | 1216,67  | 1230      | 1210      | 1210      |
| V          | 2         | mg/kg        | 77,03    | 77,1      | 76,2      | 77,8      |
| Zn         | 2         | mg/kg        | 68,33    | 68        | 68        | 69        |
| Zr         | 2         | mg/kg        | 8,73     | 7,7       | 9,8       | 8,7       |


| Table F3.9. Four-acid digestion and Multi-eleme | ent analysis by ICP-OES-techniq | ue (Method 306P) – Sample BAS1 |
|-------------------------------------------------|---------------------------------|--------------------------------|
|-------------------------------------------------|---------------------------------|--------------------------------|

| Parameter | Detection | Sample Label | SKC-BAS1  | SKC-BAS1/1 | SKC-BAS1/2 | SKC-BAS1/3 |
|-----------|-----------|--------------|-----------|------------|------------|------------|
|           | Limit     | EF Sample ID | Average   | S19101782  | S19101783  | S19101784  |
| AI        | 50        | mg/kg        | 109333,33 | 109000     | 107000     | 112000     |
| Ba        | 2         | mg/kg        | 451,00    | 448        | 439        | 466        |
| Be        | 0.5       | mg/kg        | 0,55      | 0,5        | <0.5       | 0,6        |
| Ca        | 50        | mg/kg        | 37033,33  | 36900      | 36300      | 37900      |
| Со        | 2         | mg/kg        | 79,80     | 79,5       | 78         | 81,9       |
| Cr        | 2         | mg/kg        | 166,33    | 160        | 163        | 176        |
| Cu        | 2         | mg/kg        | 1670,00   | 1670       | 1620       | 1720       |
| Fe        | 50        | mg/kg        | 44366,67  | 44000      | 43400      | 45700      |
| К         | 100       | mg/kg        | 12700,00  | 12600      | 12400      | 13100      |
| Li        | 2         | mg/kg        | 47,67     | 47         | 47         | 49         |
| Mg        | 50        | mg/kg        | 27066,67  | 26800      | 26400      | 28000      |
| Mn        | 2         | mg/kg        | 545,33    | 543        | 530        | 563        |
| Мо        | 2         | mg/kg        | 2,15      | <2         | 2,1        | 2,2        |
| Na        | 50        | mg/kg        | 39233,33  | 39200      | 38500      | 40000      |
| Ni        | 2         | mg/kg        | 1726,67   | 1720       | 1670       | 1790       |
| Р         | 50        | mg/kg        | 170,33    | 166        | 169        | 176        |
| Pb        | 10        | mg/kg        | 101,00    | 99         | 99         | 105        |
| Rb        | 2         | mg/kg        | 53,67     | 54         | 53         | 54         |
| S         | 50        | mg/kg        | 9213,33   | 9240       | 8980       | 9420       |
| Sc        | 1         | mg/kg        | 6,63      | 6,6        | 6,5        | 6,8        |
| Sr        | 1         | mg/kg        | 654,67    | 654        | 642        | 668        |
| Ti        | 2         | mg/kg        | 942,33    | 930        | 919        | 978        |
| V         | 2         | mg/kg        | 33,93     | 34,6       | 33,1       | 34,1       |
| Zn        | 2         | mg/kg        | 399,00    | 395        | 383        | 419        |
| Zr        | 2         | mg/kg        | 10,40     | 9,6        | 10,6       | 11         |



| Parameter   | Detection | Sample Label | SKC-BAS2 | SKC-BAS2/1 | SKC-BAS2/2 | SKC-BAS2/3 |
|-------------|-----------|--------------|----------|------------|------------|------------|
| i didinotoi | Limit     | EF Sample ID | Average  | S19101785  | S19101786  | S19101787  |
| AI          | 50        | mg/kg        | 88800,00 | 88600      | 89400      | 88400      |
| Ba          | 2         | mg/kg        | 196,00   | 192        | 196        | 200        |
| Be          | 0.5       | mg/kg        | 0,50     | 0,5        | <0.5       | <0.5       |
| Ca          | 50        | mg/kg        | 55600,00 | 55100      | 55700      | 56000      |
| Со          | 2         | mg/kg        | 51,03    | 48,9       | 52,9       | 51,3       |
| Cr          | 2         | mg/kg        | 348,00   | 343        | 350        | 351        |
| Cu          | 2         | mg/kg        | 5026,67  | 4950       | 5070       | 5060       |
| Fe          | 50        | mg/kg        | 68566,67 | 68000      | 69500      | 68200      |
| К           | 100       | mg/kg        | 4420,00  | 4350       | 4440       | 4470       |
| Li          | 2         | mg/kg        | 34,33    | 34         | 35         | 34         |
| Mg          | 50        | mg/kg        | 48000,00 | 47500      | 48700      | 47800      |
| Mn          | 2         | mg/kg        | 891,00   | 845        | 915        | 913        |
| Мо          | 2         | mg/kg        |          | <2         | <2         | <2         |
| Na          | 50        | mg/kg        | 25733,33 | 25600      | 25700      | 25900      |
| Ni          | 2         | mg/kg        | 582,67   | 575        | 591        | 582        |
| Р           | 50        | mg/kg        | 83,00    | 87         | 80         | 82         |
| Pb          | 10        | mg/kg        |          | <10        | <10        | <10        |
| Rb          | 2         | mg/kg        | 19,33    | 19         | 21         | 18         |
| S           | 50        | mg/kg        | 6963,33  | 6840       | 7030       | 7020       |
| Sc          | 1         | mg/kg        | 23,93    | 23,6       | 24         | 24,2       |
| Sr          | 1         | mg/kg        | 395,00   | 392        | 392        | 401        |
| Ti          | 2         | mg/kg        | 1930,00  | 1900       | 1940       | 1950       |
| V           | 2         | mg/kg        | 121,33   | 120        | 123        | 121        |
| Zn          | 2         | mg/kg        | 106,67   | 113        | 104        | 103        |
| Zr          | 2         | mg/kg        | 6,43     | 6,2        | 6,6        | 6,5        |



| Analytical method | Analysis of Sulphur by |          | Analysis of Carbon by |                      |
|-------------------|------------------------|----------|-----------------------|----------------------|
| description       | combustion technique   |          | combustion technique  |                      |
| Analytical method | 810L                   |          | 811L                  | EuroFins             |
| Parameter         | S                      |          | С                     | Labtium              |
| Detection Limit   | 0.05                   |          | 0.03                  | Sample ID            |
| Sample Label      | (%)                    |          | (%)                   |                      |
| SKC-PM1/1         | 0,388                  |          | 1,146                 | S19101758            |
| SKC-PM1/2         | 0,441                  |          | 1,186                 | S19101759            |
| SKC-PM1/3         | 0,425                  |          | 1,169                 | S19101760            |
| Average           | 0,42                   |          | 1,17                  |                      |
|                   |                        |          |                       |                      |
| SKC-PM2/1         | 0,487                  |          | 2,45                  | S19101761            |
| SKC-PM2/2         | 0,481                  |          | 2,463                 | S19101762            |
| SKC-PM2/3         | 0,545                  |          | 2,524                 | S19101763            |
| Average           | 0,50                   |          | 2,48                  |                      |
| 0                 | ,                      |          |                       |                      |
| SKC-PX1/1         | 0,35                   |          | 0,0511                | S19101764            |
| SKC-PX1/2         | 0,311                  |          | 0,0602                | S19101765            |
| SKC-PX1/3         | 0.35                   |          | 0,0567                | S19101766            |
| Average           | 0.34                   |          | 0.06                  |                      |
|                   |                        |          |                       |                      |
| SKC-PX2/1         | < 0.05                 |          | 0.0364                | S19101767            |
| SKC-PX2/2         | < 0.05                 |          | 0.032                 | S19101768            |
| SKC-PX2/3         | 0.0543                 |          | 0.0411                | S19101769            |
| Average           | 0.05                   |          | 0.04                  |                      |
| Tronago           | 0,00                   |          | 0,01                  |                      |
| SKC-MS1/1         | 0.524                  |          | 0.0416                | S19101770            |
| SKC-MS1/2         | 0.458                  |          | 0.0432                | S19101771            |
| SKC-MS1/3         | 0,497                  |          | 0,0402                | S19101772            |
|                   | 0,401                  |          | 0,0417                | 010101772            |
| Average           | 0,45                   |          | 0,04                  |                      |
| SKC-MS2/1         | 0.37                   | _        | <0.03                 | S19101773            |
| SKC-MS2/2         | 0,39                   |          | 0.0331                | S19101774            |
| SKC-MS2/2         | 0 347                  |          | <0.03                 | S19101775            |
|                   | 0,37                   |          | 0.00                  | 010101710            |
| Avelage           | 0,01                   |          | 0,00                  |                      |
| SKC-T71/1         | 0 479                  |          | <0.03                 | S19101776            |
| SKC-T71/2         | 0,519                  |          | 0.0329                | S19101777            |
| SKC-T71/3         | 0,513                  |          | 0,0020                | S10101778            |
|                   | 0,000                  |          | 0,0000                | 513101770            |
| Average           | 0,55                   |          | 0,05                  |                      |
| SKC-T72/1         | 0.663                  |          | <0.03                 | \$10101770           |
| SKC-T72/2         | 0,646                  |          | <0.00                 | S19101780            |
| SKC-T72/3         | 0,040                  |          | 0.0301                | S10101781            |
|                   | 0,044                  |          | 0,0301                | 319101701            |
| Average           | 0,00                   |          | 0,05                  |                      |
| SKC-BAS1/1        | n 948                  | Η        | 0.0403                | S19101782            |
| SKC-BAS1/1        | 0,340                  |          | 0,0400                | S101/02<br>S10101702 |
| SKC-BAS1/2        | 0,900                  |          | 0,0374                | S19101703            |
| SILC-DAS 1/3      | 0,004                  |          | 0,0349                | 319101704            |
| Average           | 0,90                   | $\vdash$ | 0,04                  |                      |
|                   | 0.040                  | Η        | 0.00                  | 040404705            |
| SKC-BAS2/1        | 0,613                  |          | <0.03                 | S19101785            |
| SKC-BAS2/2        | 0,519                  |          | <0.03                 | S19101786            |
| SKC-BAS2/3        | 0,639                  |          | <0.03                 | S19101787            |
| Average           | 0,59                   |          |                       |                      |

# Table F4. Determination of Sulphur by sulphur analyzer (Method Eltra 810L) andDetermination of carbon by carbon analyzer (Method Eltra 811L)



# 20 APPENDIX G – X-RAY FLUORESCENCE XRF DATA

A sub-sample of each of the SAP Konttijärvi Orientation samples were characterized with XRF at X-Ray Mineral Services Ltd (United Kingdom).

Table G1.1. Multi-element analysis by XRF

| Sample   | V     | Cr    | Со    | Ni    | Cu    | Zn    | Ga    | Ge    | As    | Se    | Rb    | Sr    | Y     | Zr    |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Campio   | (ppm) |
| SKC-PM1  | 65    | 746   | 77    | 1420  | 1000  | 80    | 6     | 4     | ND    | 3     | 5     | ND    | ND    | 29    |
| SKC-PM2  | 66    | 378   | 94    | 2210  | 1110  | 88    | 5     | ND    | ND    | 2     | 11    | ND    | 5     | 31    |
| SKC-PX1  | 70    | 914   | 80    | 1260  | 1040  | 89    | 6     | ND    | ND    | 3     | 3     | ND    | 6     | 32    |
| SKC-PX2  | 92    | 1250  | 89    | 956   | 363   | 114   | 7     | ND    | ND    | ND    | 5     | ND    | 9     | 44    |
| SKC-MS1  | 117   | 850   | 53    | 1220  | 1740  | 113   | 11    | 3     | ND    | 4     | 12    | 114   | 11    | 41    |
| SKC-MS2  | 38    | 449   | ND    | 1190  | 1870  | 87    | 17    | ND    | ND    | 4     | 39    | 465   | ND    | 43    |
| SKC-TZ1  | 81    | 347   | ND    | 1060  | 2110  | 85    | 20    | 2     | ND    | 3     | 12    | 489   | 7     | 42    |
| SKC-TZ2  | 85    | 601   | 25    | 810   | 1440  | 80    | 16    | ND    | ND    | 3     | 26    | 479   | ND    | 37    |
| SKC-BAS1 | 38    | 262   | 10    | 1490  | 1610  | 400   | 29    | ND    | 9     | 4     | 48    | 649   | ND    | 45    |
| SKC-BAS2 | 117   | 484   | ND    | 517   | 4870  | 128   | 19    | ND    | ND    | 4     | 19    | 375   | 7     | 30    |

Note: ND = Not determined (abundance < LOD (limit of detection), see below)

| Element | V  | Cr | Со | Ni | Cu | Zn | Ga | Ge | As | Se | Rb | Sr | Y | Zr |
|---------|----|----|----|----|----|----|----|----|----|----|----|----|---|----|
| LOD     | 37 | 39 | 10 | 11 | 10 | 7  | 3  | 2  | 5  | 2  | 3  | 30 | 5 | 5  |

#### Table G1.1. Multi-element analysis by XRF

| Sample   | Nb    | Мо    | Sn    | Sb    | Cs    | Ba    | La    | Ce    | Nd    | Hf    | Pb    | Th    | U     |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | (ppm) |
| SKC-PM1  | ND    |
| SKC-PM2  | ND    | 5     | 5     | ND    |
| SKC-PX1  | ND    |
| SKC-PX2  | ND    | 9     | 7     | ND    | ND    | ND    | ND    |
| SKC-MS1  | ND    | ND    | ND    | ND    | ND    | 110   | 8     | 16    | ND    | ND    | 11    | ND    | ND    |
| SKC-MS2  | ND    | ND    | ND    | ND    | ND    | 346   | ND    | 17    | ND    | ND    | 24    | ND    | ND    |
| SKC-TZ1  | ND    | ND    | ND    | ND    | ND    | 229   | ND    | 13    | ND    | ND    | 19    | ND    | ND    |
| SKC-TZ2  | ND    | ND    | ND    | ND    | ND    | 206   | ND    | 10    | ND    | ND    | 15    | ND    | ND    |
| SKC-BAS1 | ND    | ND    | ND    | ND    | ND    | 446   | 6     | 22    | 6     | ND    | 106   | ND    | ND    |
| SKC-BAS2 | ND    | ND    | ND    | ND    | ND    | 183   | ND    | ND    | 6     | ND    | 13    | ND    | ND    |

Note: ND = Not determined (abundance < LOD (limit of detection), see below)

| Element | Nb | Мо | Sn | Sb | Cs | Ва | La | Ce | Nd | Hf | Pb | Th | U |
|---------|----|----|----|----|----|----|----|----|----|----|----|----|---|
| LOD     | 5  | 20 | 2  | 2  | 3  | 56 | 6  | 9  | 2  | 4  | 5  | 2  | 2 |



The following XRF measurements were taken by EuroFins Labtium Oy on the SAP Orientation Samples. Measurements were taken on a representative sub-sample. This was done to have a base line reference measurement that later process products could be compared to.

| Parameter                      | Detection | Sample Label | SKC-PM1/1 | SKC-PM1/2 | SKC-PM1/3 |
|--------------------------------|-----------|--------------|-----------|-----------|-----------|
| Falanielei                     | Limit     | EF Sample ID | S19101758 | S19101759 | S19101760 |
| SiO <sub>2</sub>               | 0.1       | %            | 44,1      | 44,2      | 43,9      |
| TiO <sub>2</sub>               | 0.005     | %            | 0,11      | 0,11      | 0,11      |
| $AI_2O_3$                      | 0.006     | %            | 7         | 7,06      | 7,06      |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,095     | 0,096     | 0,099     |
| $V_2O_3$                       | 0.002     | %            | 0,009     | 0,01      | 0,01      |
| FeO                            | 0.01      | %            | 11,9      | 11,9      | 11,8      |
| MnO                            | 0.01      | %            | 0,16      | 0,16      | 0,15      |
| MgO                            | 0.05      | %            | 25,9      | 26        | 25,8      |
| CaO                            | 0.01      | %            | 5,53      | 5,49      | 5,5       |
| Rb2O                           | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| SrO                            | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| BaO                            | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Na <sub>2</sub> O              | 0.01      | %            | 0,01      | 0,01      | 0,01      |
| K2O                            | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,002     | 0,002     | 0,002     |
| $P_2O_5$                       | 0.01      | %            | 0,039     | 0,028     | 0,023     |
| OxSumm                         |           | %            | 96,7      | 97        | 96,3      |

| <b>.</b> . | Detection | Sample Label | SKC-PM1/1 | SKC-PM1/2 | SKC-PM1/3 |
|------------|-----------|--------------|-----------|-----------|-----------|
| Parameter  | Limit     | EF Sample ID | S19101758 | S19101759 | S19101760 |
| Cu         | 0.0005    | %            | 0,13      | 0,13      | 0,12      |
| Ni         | 0.001     | %            | 0,17      | 0,17      | 0,17      |
| Со         | 0.01      | %            | 0,021     | 0,017     | 0,015     |
| Zn         | 0.001     | %            | 0,008     | 0,009     | 0,009     |
| Pb         | 0.005     | %            | 0,005     | 0,005     | <0.005    |
| Ag         | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| S          | 0.005     | %            | 0,44      | 0,42      | 0,42      |
| As         | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| Sb         | 0.01      | %            | 0,012     | 0,011     | 0,013     |
| Bi         | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Te         | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| Y          | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| Nb         | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| Мо         | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Sn         | 0.001     | %            | 0,003     | 0,003     | 0,003     |
| W          | 0.002     | %            | <0.002    | <0.002    | <0.002    |
|            |           |              |           |           |           |

<0.007

< 0.007

<0.007

0.007

%

CI

Sample Label

SKC-PM1/1 SKC-PM1/2

SKC-PM1/3

#### Table G2.1. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample PM1



## Table G2.2. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample PM1

| Demonstra | Detection | Sample<br>Label | SKC-PM1/1 | SKC-PM1/2 | SKC-PM1/3 |
|-----------|-----------|-----------------|-----------|-----------|-----------|
| Parameter | Limit     | EF Sample<br>ID | S19101758 | S19101759 | S19101760 |
| Th        | 0.001     | %               | 0,002     | 0,002     | <0.001    |
| U         | 0.01      | %               | <0.01     | <0.01     | <0.01     |
| Cs        | 0.002     | %               | 0,002     | 0,002     | 0,002     |
| La        | 0.001     | %               | 0,002     | 0,002     | 0,003     |
| Ce        | 0.001     | %               | 0,002     | 0,001     | <0.001    |
| Та        | 0.002     | %               | <0.002    | 0,002     | <0.002    |
| LOI       |           | %               | 0         | 0         | 0         |
| Ga        | 0.003     | %               | <0.003    | <0.003    | <0.003    |
| Si        | 0.05      | %               | 20,6      | 20,7      | 20,5      |
| Ti        | 0.003     | %               | 0,068     | 0,066     | 0,067     |
| Cr        | 0.001     | %               | 0,065     | 0,066     | 0,067     |
| V         | 0.001     | %               | 0,006     | 0,007     | 0,007     |
| Fe        | 0.005     | %               | 9,28      | 9,28      | 9,2       |
| Mn        | 0.008     | %               | 0,12      | 0,12      | 0,12      |
| Mg        | 0.03      | %               | 15,6      | 15,7      | 15,6      |
| Са        | 0.004     | %               | 3,95      | 3,92      | 3,93      |
| Ва        | 0.004     | %               | <0.004    | <0.004    | <0.004    |
| С         | 0.01      | %               | 1,15      | 1,19      | 1,17      |



#### Table G2.3. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample PM2

| Parameter                      | Detection | Sample Label | SKC-PM2/1 | SKC-PM2/2 | SKC-PM2/3 |           | Detection | Sample Label | SKC-PM2/1 | SKC-PM2/2 | SKC-PM2/3 |
|--------------------------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter                      | Limit     | EF Sample ID | S19101761 | S19101762 | S19101763 | Parameter | Limit     | EF Sample ID | S19101761 | S19101762 | S19101763 |
| SiO <sub>2</sub>               | 0.1       | %            | 44,4      | 45,1      | 44,9      | Cu        | 0.0005    | %            | 0,14      | 0,13      | 0,14      |
| TiO <sub>2</sub>               | 0.005     | %            | 0,12      | 0,11      | 0,11      | Ni        | 0.001     | %            | 0,26      | 0,25      | 0,26      |
| Al <sub>2</sub> O <sub>3</sub> | 0.006     | %            | 4,32      | 4,31      | 4,23      | Co        | 0.01      | %            | 0,021     | 0,022     | 0,018     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,032     | 0,03      | 0,03      | Zn        | 0.001     | %            | 0,01      | 0,008     | 0,009     |
| $V_2O_3$                       | 0.002     | %            | 0,009     | 0,008     | 0,008     | Pb        | 0.005     | %            | 0,006     | 0,005     | <0.005    |
| FeO                            | 0.01      | %            | 14,3      | 13,7      | 13,8      | Ag        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| MnO                            | 0.01      | %            | 0,16      | 0,16      | 0,17      | S         | 0.005     | %            | 0,47      | 0,42      | 0,42      |
| MgO                            | 0.05      | %            | 29,6      | 29,6      | 29,6      | As        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| CaO                            | 0.01      | %            | 2,26      | 2,24      | 2,34      | Sb        | 0.01      | %            | 0,012     | 0,012     | 0,013     |
| Rb2O                           | 0.002     | %            | <0.002    | <0.002    | <0.002    | Bi        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| SrO                            | 0.01      | %            | <0.01     | <0.01     | <0.01     | Те        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| BaO                            | 0.01      | %            | <0.01     | <0.01     | <0.01     | Y         | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| Na <sub>2</sub> O              | 0.01      | %            | 0,01      | <0.01     | <0.01     | Nb        | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| K2O                            | 0.01      | %            | <0.01     | <0.01     | <0.01     | Мо        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,003     | 0,003     | 0,003     | Sn        | 0.001     | %            | 0,003     | 0,003     | 0,004     |
| P <sub>2</sub> O <sub>5</sub>  | 0.01      | %            | 0,019     | 0,018     | 0,018     | W         | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| OxSumm                         |           | %            | 98,5      | 98,5      | 98,5      | CI        | 0.007     | %            | <0.007    | <0.007    | <0.007    |



## Table G2.4. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample PM2

| -         |           |              |           |           |           |
|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter | Detection | Sample Label | SKC-PM2/1 | SKC-PM2/2 | SKC-PM2/3 |
| Falameter | Limit     | EF Sample ID | S19101761 | S19101762 | S19101763 |
| Th        | 0.001     | %            | 0,002     | <0.001    | <0.001    |
| U         | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Cs        | 0.002     | %            | 0,002     | <0.002    | 0,002     |
| La        | 0.001     | %            | 0,001     | 0,004     | 0,003     |
| Ce        | 0.001     | %            | 0,001     | 0,002     | <0.001    |
| Та        | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| LOI       |           | %            | 0         | 0         | 0         |
| Ga        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| Si        | 0.05      | %            | 20,8      | 21,1      | 21        |
| Ti        | 0.003     | %            | 0,073     | 0,068     | 0,067     |
| Cr        | 0.001     | %            | 0,022     | 0,02      | 0,02      |
| V         | 0.001     | %            | 0,006     | 0,006     | 0,006     |
| Fe        | 0.005     | %            | 11,1      | 10,7      | 10,8      |
| Mn        | 0.008     | %            | 0,13      | 0,13      | 0,13      |
| Mg        | 0.03      | %            | 17,8      | 17,8      | 17,8      |
| Са        | 0.004     | %            | 1,61      | 1,6       | 1,67      |
| Ва        | 0.004     | %            | 0,004     | <0.004    | 0,004     |
| с         | 0.01      | %            | 2,45      | 2,46      | 2,52      |



#### Table G2.5. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample PX1

| Parameter                      | Detection | Sample Label | SKC-PX1/1 | SKC-PX1/2 | SKC-PX1/3 | Descente  | Detection | Sample Label | SKC-PX1/1 | SKC-PX1/2 | SKC-PX1/3 |
|--------------------------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter                      | Limit     | EF Sample ID | S19101764 | S19101765 | S19101766 | Parameter | Limit     | EF Sample ID | S19101764 | S19101765 | S19101766 |
| SiO <sub>2</sub>               | 0.1       | %            | 47,4      | 47,6      | 47,4      | Cu        | 0.0005    | %            | 0,12      | 0,13      | 0,13      |
| TiO <sub>2</sub>               | 0.005     | %            | 0,14      | 0,14      | 0,13      | Ni        | 0.001     | %            | 0,14      | 0,15      | 0,15      |
| Al <sub>2</sub> O <sub>3</sub> | 0.006     | %            | 6,49      | 6,6       | 6,7       | Со        | 0.01      | %            | 0,019     | 0,016     | 0,015     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,123     | 0,126     | 0,125     | Zn        | 0.001     | %            | 0,009     | 0,008     | 0,009     |
| V <sub>2</sub> O <sub>3</sub>  | 0.002     | %            | 0,011     | 0,012     | 0,01      | Pb        | 0.005     | %            | <0.005    | 0,005     | <0.005    |
| FeO                            | 0.01      | %            | 10,6      | 10,7      | 10,7      | Ag        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| MnO                            | 0.01      | %            | 0,16      | 0,16      | 0,16      | S         | 0.005     | %            | 0,4       | 0,4       | 0,39      |
| MgO                            | 0.05      | %            | 22,5      | 22,7      | 22,8      | As        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| CaO                            | 0.01      | %            | 7,73      | 7,82      | 7,73      | Sb        | 0.01      | %            | 0,012     | 0,011     | 0,012     |
| Rb2O                           | 0.002     | %            | <0.002    | <0.002    | <0.002    | Bi        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| SrO                            | 0.01      | %            | <0.01     | <0.01     | <0.01     | Те        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| BaO                            | 0.01      | %            | <0.01     | <0.01     | <0.01     | Y         | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| Na <sub>2</sub> O              | 0.01      | %            | 0,02      | 0,02      | 0,02      | Nb        | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| K2O                            | 0.01      | %            | <0.01     | <0.01     | <0.01     | Мо        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,002     | 0,003     | 0,003     | Sn        | 0.001     | %            | 0,003     | 0,003     | 0,003     |
| P <sub>2</sub> O <sub>5</sub>  | 0.01      | %            | 0,018     | 0,018     | 0,018     | W         | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| OxSumm                         |           | %            | 95,8      | 96,6      | 96,4      | CI        | 0.007     | %            | <0.007    | <0.007    | <0.007    |



#### Table G2.6. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample PX1

| Paramotor | Detection | Sample Label | SKC-PX1/1 | SKC-PX1/2 | SKC-PX1/3 |
|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter | Limit     | EF Sample ID | S19101764 | S19101765 | S19101766 |
| Th        | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| U         | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Cs        | 0.002     | %            | <0.002    | 0,002     | <0.002    |
| La        | 0.001     | %            | 0,001     | 0,002     | 0,003     |
| Ce        | 0.001     | %            | 0,002     | 0,001     | <0.001    |
| Та        | 0.002     | %            | 0,002     | <0.002    | <0.002    |
| LOI       |           | %            | 0         | 0         | 0         |
| Ga        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| Si        | 0.05      | %            | 22,1      | 22,3      | 22,2      |
| Ti        | 0.003     | %            | 0,081     | 0,083     | 0,079     |
| Cr        | 0.001     | %            | 0,084     | 0,086     | 0,086     |
| V         | 0.001     | %            | 0,007     | 0,008     | 0,007     |
| Fe        | 0.005     | %            | 8,23      | 8,3       | 8,29      |
| Mn        | 0.008     | %            | 0,13      | 0,13      | 0,13      |
| Mg        | 0.03      | %            | 13,5      | 13,7      | 13,8      |
| Са        | 0.004     | %            | 5,52      | 5,59      | 5,52      |
| Ва        | 0.004     | %            | 0,004     | <0.004    | <0.004    |
| C 0.01    |           | %            | 0,051     | 0,06      | 0,057     |



#### Table G2.7. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample PX2

|                                | Detection | Sample Label | SKC-PX2/1 | SKC-PX2/2 | SKC-PX2/3 |           | Detection | Sample Label | SKC-PX2/1 | SKC-PX2/2 | SKC-PX2/3 |
|--------------------------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter                      | Limit     | EF Sample ID | S19101767 | S19101768 | S19101769 | Parameter | Limit     | EF Sample ID | S19101767 | S19101768 | S19101769 |
| SiO <sub>2</sub>               | 0.1       | %            | 49,6      | 49,1      | 49        | Cu        | 0.0005    | %            | 0,042     | 0,043     | 0,043     |
| TiO <sub>2</sub>               | 0.005     | %            | 0,22      | 0,23      | 0,23      | Ni        | 0.001     | %            | 0,1       | 0,1       | 0,1       |
| Al <sub>2</sub> O <sub>3</sub> | 0.006     | %            | 5,29      | 5,43      | 5,46      | Co        | 0.01      | %            | 0,018     | 0,013     | 0,011     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,176     | 0,175     | 0,178     | Zn        | 0.001     | %            | 0,012     | 0,012     | 0,012     |
| $V_2O_3$                       | 0.002     | %            | 0,017     | 0,017     | 0,016     | Pb        | 0.005     | %            | 0,005     | <0.005    | <0.005    |
| FeO                            | 0.01      | %            | 11,7      | 11,6      | 11,6      | Ag        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| MnO                            | 0.01      | %            | 0,29      | 0,29      | 0,29      | s         | 0.005     | %            | 0,041     | 0,039     | 0,039     |
| MgO                            | 0.05      | %            | 19,7      | 19,7      | 19,6      | As        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| CaO                            | 0.01      | %            | 9,64      | 9,52      | 9,55      | Sb        | 0.01      | %            | 0,012     | 0,012     | 0,013     |
| Rb2O                           | 0.002     | %            | <0.002    | <0.002    | <0.002    | Bi        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| SrO                            | 0.01      | %            | <0.01     | <0.01     | <0.01     | Те        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| BaO                            | 0.01      | %            | <0.01     | <0.01     | <0.01     | Y         | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| Na <sub>2</sub> O              | 0.01      | %            | 0,06      | 0,06      | 0,06      | Nb        | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| K2O                            | 0.01      | %            | <0.01     | <0.01     | <0.01     | Мо        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,006     | 0,005     | 0,005     | Sn        | 0.001     | %            | 0,003     | 0,003     | 0,003     |
| P <sub>2</sub> O <sub>5</sub>  | 0.01      | %            | 0,022     | 0,023     | 0,021     | W         | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| OxSumm                         |           | %            | 97,1      | 96,4      | 96,4      | CI        | 0.007     | %            | <0.007    | <0.007    | <0.007    |



## Table G2.8. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample PX2

| Devenueter | Detection | Sample Label | SKC-PX2/1 | SKC-PX2/2 | SKC-PX2/3 |
|------------|-----------|--------------|-----------|-----------|-----------|
| Parameter  | Limit     | EF Sample ID | S19101767 | S19101768 | S19101769 |
| Th         | 0.001     | %            | 0,001     | 0,002     | 0,001     |
| U          | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Cs         | 0.002     | %            | 0,002     | <0.002    | <0.002    |
| La         | 0.001     | %            | 0,003     | 0,004     | 0,003     |
| Ce         | 0.001     | %            | 0,002     | 0,002     | 0,003     |
| Та         | 0.002     | %            | 0,003     | <0.002    | <0.002    |
| LOI        |           | %            | 0         | 0         | 0         |
| Ga         | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| Si         | 0.05      | %            | 23,2      | 23        | 22,9      |
| Ti         | 0.003     | %            | 0,13      | 0,14      | 0,14      |
| Cr         | 0.001     | %            | 0,12      | 0,12      | 0,12      |
| V          | 0.001     | %            | 0,012     | 0,012     | 0,011     |
| Fe         | 0.005     | %            | 9,11      | 9         | 9,02      |
| Mn         | 0.008     | %            | 0,23      | 0,23      | 0,23      |
| Mg         | 0.03      | %            | 11,9      | 11,9      | 11,8      |
| Са         | 0.004     | %            | 6,88      | 6,8       | 6,82      |
| Ва         | 0.004     | %            | <0.004    | <0.004    | <0.004    |
| С          | 0.01      | %            | 0,036     | 0,032     | 0,041     |



#### Table G2.9. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample MS1

| _                              | Detection | Sample Label | SKC-MS1/1 | SKC-MS1/2 | SKC-MS1/3 | <b>D</b>  | Detection | Sample Label | SKC-MS1/1 | SKC-MS1/2 | SKC-MS1/3 |
|--------------------------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter                      | Limit     | EF Sample ID | S19101770 | S19101771 | S19101772 | Parameter | Limit     | EF Sample ID | S19101770 | S19101771 | S19101772 |
| SiO <sub>2</sub>               | 0.1       | %            | 54,4      | 54,2      | 53,8      | Cu        | 0.0005    | %            | 0,19      | 0,18      | 0,18      |
| TiO2                           | 0.005     | %            | 0,3       | 0,3       | 0,3       | Ni        | 0.001     | %            | 0,14      | 0,13      | 0,13      |
| Al <sub>2</sub> O <sub>3</sub> | 0.006     | %            | 7,17      | 7,19      | 7,15      | Co        | 0.01      | %            | 0,014     | 0,011     | 0,012     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,125     | 0,125     | 0,125     | Zn        | 0.001     | %            | 0,011     | 0,011     | 0,011     |
| V <sub>2</sub> O <sub>3</sub>  | 0.002     | %            | 0,021     | 0,022     | 0,022     | Pb        | 0.005     | %            | 0,005     | 0,005     | 0,005     |
| FeO                            | 0.01      | %            | 10,4      | 10,2      | 10,2      | Ag        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| MnO                            | 0.01      | %            | 0,2       | 0,2       | 0,2       | S         | 0.005     | %            | 0,64      | 0,62      | 0,62      |
| MgO                            | 0.05      | %            | 13,8      | 13,7      | 13,7      | As        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| CaO                            | 0.01      | %            | 10,1      | 10,1      | 10        | Sb        | 0.01      | %            | 0,011     | 0,011     | 0,012     |
| Rb2O                           | 0.002     | %            | <0.002    | <0.002    | <0.002    | Bi        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| SrO                            | 0.01      | %            | 0,013     | 0,012     | 0,012     | Те        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| BaO                            | 0.01      | %            | 0,016     | 0,014     | 0,016     | Y         | 0.001     | %            | <0.001    | 0,001     | <0.001    |
| Na <sub>2</sub> O              | 0.01      | %            | 1,09      | 1,08      | 1,07      | Nb        | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| K2O                            | 0.01      | %            | 0,31      | 0,3       | 0,31      | Мо        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,005     | 0,005     | 0,006     | Sn        | 0.001     | %            | 0,003     | 0,003     | 0,003     |
| P <sub>2</sub> O <sub>5</sub>  | 0.01      | %            | 0,034     | 0,035     | 0,035     | W         | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| OxSumm                         |           | %            | 98,8      | 98,3      | 97,8      | CI        | 0.007     | %            | <0.007    | <0.007    | <0.007    |



### Table G2.10. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample MS1

|              | 1         |              |           |           |           |
|--------------|-----------|--------------|-----------|-----------|-----------|
| Parameter    | Detection | Sample Label | SKC-MS1/1 | SKC-MS1/2 | SKC-MS1/3 |
| i didilletei | Limit     | EF Sample ID | S19101770 | S19101771 | S19101772 |
| Th           | 0.001     | %            | 0,002     | <0.001    | 0,001     |
| U            | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Cs           | 0.002     | %            | 0,003     | 0,003     | <0.002    |
| La           | 0.001     | %            | 0,003     | 0,002     | 0,004     |
| Ce           | 0.001     | %            | 0,002     | 0,001     | 0,002     |
| Та           | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| LOI          |           | %            | 0         | 0         | 0         |
| Ga           | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| Si           | 0.05      | %            | 25,4      | 25,3      | 25,2      |
| Ti           | 0.003     | %            | 0,18      | 0,18      | 0,18      |
| Cr           | 0.001     | %            | 0,086     | 0,086     | 0,085     |
| v            | 0.001     | %            | 0,014     | 0,015     | 0,015     |
| Fe           | 0.005     | %            | 8,06      | 7,94      | 7,94      |
| Mn           | 0.008     | %            | 0,16      | 0,16      | 0,15      |
| Mg           | 0.03      | %            | 8,33      | 8,26      | 8,26      |
| Са           | 0.004     | %            | 7,24      | 7,19      | 7,14      |
| Ва           | 0.004     | %            | 0,015     | 0,013     | 0,014     |
| С            | C 0.01 %  |              | 0,042     | 0,043     | 0,042     |



#### Table G2.11. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample MS2

|                                | Detection | Sample Label | SKC-MS2/1 | SKC-MS2/2 | SKC-MS2/3 |           | Detection | Sample Label | SKC-MS2/1 | SKC-MS2/2 | SKC-MS2/3 |
|--------------------------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter                      | Limit     | EF Sample ID | S19101773 | S19101774 | S19101775 | Parameter | Limit     | EF Sample ID | S19101773 | S19101774 | S19101775 |
| SiO <sub>2</sub>               | 0.1       | %            | 52,4      | 52,5      | 52,7      | Cu        | 0.0005    | %            | 0,21      | 0,21      | 0,21      |
| TiO <sub>2</sub>               | 0.005     | %            | 0,17      | 0,17      | 0,18      | Ni        | 0.001     | %            | 0,14      | 0,14      | 0,14      |
| Al <sub>2</sub> O <sub>3</sub> | 0.006     | %            | 18,4      | 18,4      | 18,5      | Co        | 0.01      | %            | 0,011     | 0,011     | 0,01      |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,072     | 0,071     | 0,074     | Zn        | 0.001     | %            | 0,007     | 0,007     | 0,008     |
| V <sub>2</sub> O <sub>3</sub>  | 0.002     | %            | 0,009     | 0,009     | 0,009     | Pb        | 0.005     | %            | 0,007     | 0,007     | 0,007     |
| FeO                            | 0.01      | %            | 6,29      | 6,33      | 6,24      | Ag        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| MnO                            | 0.01      | %            | 0,094     | 0,094     | 0,091     | S         | 0.005     | %            | 0,45      | 0,45      | 0,44      |
| MgO                            | 0.05      | %            | 9,33      | 9,22      | 9,06      | As        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| CaO                            | 0.01      | %            | 6,96      | 6,9       | 6,94      | Sb        | 0.01      | %            | 0,01      | 0,01      | 0,011     |
| Rb2O                           | 0.002     | %            | 0,002     | 0,002     | 0,002     | Bi        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| SrO                            | 0.01      | %            | 0,054     | 0,052     | 0,054     | Te        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| BaO                            | 0.01      | %            | 0,045     | 0,044     | 0,045     | Y         | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| Na <sub>2</sub> O              | 0.01      | %            | 3,46      | 3,52      | 3,52      | Nb        | 0.001     | %            | <0.001    | <0.001    | 0,001     |
| K2O                            | 0.01      | %            | 1,22      | 1,2       | 1,21      | Мо        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,005     | 0,005     | 0,005     | Sn        | 0.001     | %            | 0,003     | 0,002     | 0,003     |
| P <sub>2</sub> O <sub>5</sub>  | 0.01      | %            | 0,035     | 0,035     | 0,031     | W         | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| OxSumm                         |           | %            | 99,3      | 99,3      | 99,3      | CI        | 0.007     | %            | <0.007    | <0.007    | <0.007    |



#### Table G2.12. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample MS2

| Doromotor | Detection | Sample Label | SKC-MS2/1 | SKC-MS2/2 | SKC-MS2/3 |
|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter | Limit     | EF Sample ID | S19101773 | S19101774 | S19101775 |
| Th        | 0.001     | %            | <0.001    | 0,001     | <0.001    |
| U         | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Cs        | 0.002     | %            | 0,002     | <0.002    | 0,002     |
| La        | 0.001     | %            | 0,002     | 0,004     | 0,003     |
| Ce        | 0.001     | %            | 0,001     | 0,001     | 0,001     |
| Та        | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| LOI       |           | %            | 0         | 0         | 0         |
| Ga        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| Si        | 0.05      | %            | 24,5      | 24,6      | 24,6      |
| Ti        | 0.003     | %            | 0,11      | 0,1       | 0,11      |
| Cr        | 0.001     | %            | 0,049     | 0,049     | 0,05      |
| V         | 0.001     | %            | 0,006     | 0,006     | 0,006     |
| Fe        | 0.005     | %            | 4,89      | 4,92      | 4,85      |
| Mn        | 0.008     | %            | 0,073     | 0,073     | 0,071     |
| Mg        | 0.03      | %            | 5,63      | 5,56      | 5,47      |
| Са        | 0.004     | %            | 4,97      | 4,93      | 4,96      |
| Ва        | 0.004     | %            | 0,04      | 0,039     | 0,041     |
| С         | 0.01      | %            | 0,025     | 0,033     | 0,023     |



#### Table G2.13. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample TZ1

| Parameter Det                  | Detection | Sample Label | SKC-TZ1/1 | SKC-TZ1/2 | SKC-TZ1/3 | Demonstra | Detection | Sample Label | SKC-TZ1/1 | SKC-TZ1/2 | SKC-TZ1/3 |
|--------------------------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter                      | Limit     | EF Sample ID | S19101776 | S19101777 | S19101778 | Parameter | Limit     | EF Sample ID | S19101776 | S19101777 | S19101778 |
| SiO <sub>2</sub>               | 0.1       | %            | 54,6      | 54,5      | 54,6      | Cu        | 0.0005    | %            | 0,21      | 0,22      | 0,21      |
| TiO2                           | 0.005     | %            | 0,23      | 0,24      | 0,23      | Ni        | 0.001     | %            | 0,12      | 0,12      | 0,12      |
| Al <sub>2</sub> O <sub>3</sub> | 0.006     | %            | 16,3      | 16,2      | 16,3      | Co        | 0.01      | %            | 0,011     | <0.01     | <0.01     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,049     | 0,05      | 0,049     | Zn        | 0.001     | %            | 0,008     | 0,008     | 0,007     |
| V <sub>2</sub> O <sub>3</sub>  | 0.002     | %            | 0,013     | 0,013     | 0,014     | Pb        | 0.005     | %            | 0,006     | 0,007     | 0,006     |
| FeO                            | 0.01      | %            | 7,14      | 7,3       | 7,23      | Ag        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| MnO                            | 0.01      | %            | 0,11      | 0,11      | 0,11      | S         | 0.005     | %            | 0,65      | 0,66      | 0,64      |
| MgO                            | 0.05      | %            | 7,4       | 7,56      | 7,45      | As        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| CaO                            | 0.01      | %            | 8,73      | 8,66      | 8,7       | Sb        | 0.01      | %            | 0,011     | 0,011     | 0,01      |
| Rb2O                           | 0.002     | %            | <0.002    | <0.002    | <0.002    | Bi        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| SrO                            | 0.01      | %            | 0,056     | 0,054     | 0,056     | Те        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| BaO                            | 0.01      | %            | 0,03      | 0,029     | 0,026     | Y         | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| Na <sub>2</sub> O              | 0.01      | %            | 3,09      | 3,02      | 3,06      | Nb        | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| K2O                            | 0.01      | %            | 0,57      | 0,58      | 0,57      | Мо        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,006     | 0,005     | 0,005     | Sn        | 0.001     | %            | 0,003     | 0,003     | 0,003     |
| P <sub>2</sub> O <sub>5</sub>  | 0.01      | %            | 0,029     | 0,03      | 0,027     | w         | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| OxSumm                         |           | %            | 99,2      | 99,2      | 99,2      | CI        | 0.007     | %            | <0.007    | <0.007    | <0.007    |



#### Table G2.14. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample TZ1

| Deremeter | Detection | Sample Label | SKC-TZ1/1 | SKC-TZ1/2 | SKC-TZ1/3 |
|-----------|-----------|--------------|-----------|-----------|-----------|
| Falameter | Limit     | EF Sample ID | S19101776 | S19101777 | S19101778 |
| Th        | 0.001     | %            | 0,001     | <0.001    | 0,001     |
| U         | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Cs        | 0.002     | %            | <0.002    | 0,002     | 0,003     |
| La        | 0.001     | %            | 0,002     | 0,003     | 0,005     |
| Ce        | 0.001     | %            | 0,001     | 0,002     | 0,001     |
| Та        | 0.002     | %            | 0,002     | 0,002     | 0,002     |
| LOI       |           | %            | 0         | 0         | 0         |
| Ga        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| Si        | 0.05      | %            | 25,5      | 25,5      | 25,5      |
| Ti        | 0.003     | %            | 0,14      | 0,14      | 0,14      |
| Cr        | 0.001     | %            | 0,033     | 0,034     | 0,033     |
| V         | 0.001     | %            | 0,009     | 0,009     | 0,009     |
| Fe        | 0.005     | %            | 5,55      | 5,68      | 5,62      |
| Mn        | 0.008     | %            | 0,085     | 0,085     | 0,084     |
| Mg        | 0.03      | %            | 4,46      | 4,56      | 4,5       |
| Са        | 0.004     | %            | 6,23      | 6,19      | 6,21      |
| Ва        | 0.004     | %            | 0,027     | 0,026     | 0,023     |
| С         | 0.01      | %            | 0,028     | 0,033     | 0,033     |



#### Table G2.15. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample TZ2

| _                              | Detection | Sample Label | SKC-TZ2/1 | SKC-TZ2/2 | SKC-TZ2/3 | Duranta   | Detection | Sample Label | SKC-TZ2/1 | SKC-TZ2/2 | SKC-TZ2/3 |
|--------------------------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|
| Parameter                      | Limit     | EF Sample ID | S19101779 | S19101780 | S19101781 | Parameter | Limit     | EF Sample ID | S19101779 | S19101780 | S19101781 |
| SiO <sub>2</sub>               | 0.1       | %            | 52,4      | 52,3      | 52,1      | Cu        | 0.0005    | %            | 0,15      | 0,15      | 0,16      |
| TiO <sub>2</sub>               | 0.005     | %            | 0,22      | 0,22      | 0,23      | Ni        | 0.001     | %            | 0,095     | 0,092     | 0,099     |
| Al <sub>2</sub> O <sub>3</sub> | 0.006     | %            | 16,7      | 16,8      | 16,6      | Co        | 0.01      | %            | 0,015     | 0,011     | <0.01     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,089     | 0,087     | 0,093     | Zn        | 0.001     | %            | 0,008     | 0,007     | 0,007     |
| V <sub>2</sub> O <sub>3</sub>  | 0.002     | %            | 0,014     | 0,014     | 0,012     | Pb        | 0.005     | %            | 0,006     | 0,005     | 0,005     |
| FeO                            | 0.01      | %            | 7,23      | 7,18      | 7,46      | Ag        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| MnO                            | 0.01      | %            | 0,1       | 0,1       | 0,11      | S         | 0.005     | %            | 0,8       | 0,79      | 0,81      |
| MgO                            | 0.05      | %            | 9,38      | 9,4       | 9,69      | As        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| CaO                            | 0.01      | %            | 8,92      | 8,99      | 8,9       | Sb        | 0.01      | %            | 0,01      | 0,01      | 0,01      |
| Rb2O                           | 0.002     | %            | <0.002    | <0.002    | <0.002    | Bi        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| SrO                            | 0.01      | %            | 0,054     | 0,057     | 0,054     | Те        | 0.005     | %            | <0.005    | <0.005    | <0.005    |
| BaO                            | 0.01      | %            | 0,027     | 0,024     | 0,026     | Y         | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| Na <sub>2</sub> O              | 0.01      | %            | 2,43      | 2,42      | 2,32      | Nb        | 0.001     | %            | <0.001    | <0.001    | <0.001    |
| K2O                            | 0.01      | %            | 0,76      | 0,77      | 0,78      | Мо        | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,004     | 0,004     | 0,004     | Sn        | 0.001     | %            | 0,003     | 0,003     | 0,003     |
| P <sub>2</sub> O <sub>5</sub>  | 0.01      | %            | 0,028     | 0,029     | 0,028     | W         | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| OxSumm                         |           | %            | 99,2      | 99,2      | 99,2      | CI        | 0.007     | %            | <0.007    | <0.007    | <0.007    |



#### Table G2.16. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample TZ2

| Doromotor | Detection | Sample Label | SKC-TZ2/1 | SKC-TZ2/2 | SKC-TZ2/3 |
|-----------|-----------|--------------|-----------|-----------|-----------|
| Farameter | Limit     | EF Sample ID | S19101779 | S19101780 | S19101781 |
| Th        | 0.001     | %            | <0.001    | <0.001    | 0,001     |
| U         | 0.01      | %            | <0.01     | <0.01     | <0.01     |
| Cs        | 0.002     | %            | <0.002    | <0.002    | <0.002    |
| La        | 0.001     | %            | 0,002     | 0,003     | 0,004     |
| Ce        | 0.001     | %            | 0,001     | 0,001     | 0,001     |
| Та        | 0.002     | %            | <0.002    | 0,002     | <0.002    |
| LOI       |           | %            | 0         | 0         | 0         |
| Ga        | 0.003     | %            | <0.003    | <0.003    | <0.003    |
| Si        | 0.05      | %            | 24,5      | 24,5      | 24,4      |
| Ti        | 0.003     | %            | 0,13      | 0,13      | 0,14      |
| Cr        | 0.001     | %            | 0,061     | 0,06      | 0,063     |
| V         | 0.001     | %            | 0,009     | 0,009     | 0,008     |
| Fe        | 0.005     | %            | 5,62      | 5,59      | 5,8       |
| Mn        | 0.008     | %            | 0,08      | 0,079     | 0,082     |
| Mg        | 0.03      | %            | 5,66      | 5,67      | 5,85      |
| Са        | 0.004     | %            | 6,37      | 6,42      | 6,35      |
| Ва        | 0.004     | %            | 0,024     | 0,021     | 0,024     |
| С         | 0.01      | %            | 0,03      | 0,029     | 0,03      |



#### Table G2.17. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample BAS1

|                                | Detection | Sample Label | SKC-BAS1/1 | SKC-BAS1/2 | SKC-BAS1/3 | Deservation | Detection | Sample Label | SKC-BAS1/1 | SKC-BAS1/2 | SKC-BAS1/3 |
|--------------------------------|-----------|--------------|------------|------------|------------|-------------|-----------|--------------|------------|------------|------------|
| Parameter                      | Limit     | EF Sample ID | S19101782  | S19101783  | S19101784  | Parameter   | Limit     | EF Sample ID | S19101782  | S19101783  | S19101784  |
| SiO <sub>2</sub>               | 0.1       | %            | 54,5       | 54,7       | 54,5       | Cu          | 0.0005    | %            | 0,17       | 0,17       | 0,17       |
| TiO <sub>2</sub>               | 0.005     | %            | 0,18       | 0,17       | 0,17       | Ni          | 0.001     | %            | 0,18       | 0,17       | 0,17       |
| Al <sub>2</sub> O <sub>3</sub> | 0.006     | %            | 20,4       | 20,4       | 20,4       | Co          | 0.01      | %            | 0,016      | 0,014      | 0,012      |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,039      | 0,037      | 0,039      | Zn          | 0.001     | %            | 0,039      | 0,04       | 0,039      |
| V <sub>2</sub> O <sub>3</sub>  | 0.002     | %            | 0,007      | 0,007      | 0,007      | Pb          | 0.005     | %            | 0,018      | 0,018      | 0,018      |
| FeO                            | 0.01      | %            | 5,81       | 5,7        | 5,76       | Ag          | 0.005     | %            | <0.005     | <0.005     | <0.005     |
| MnO                            | 0.01      | %            | 0,06       | 0,058      | 0,061      | S           | 0.005     | %            | 1,03       | 1,03       | 1          |
| MgO                            | 0.05      | %            | 5,03       | 4,88       | 5,11       | As          | 0.003     | %            | <0.003     | <0.003     | <0.003     |
| CaO                            | 0.01      | %            | 5,43       | 5,4        | 5,42       | Sb          | 0.01      | %            | 0,01       | 0,011      | 0,011      |
| Rb2O                           | 0.002     | %            | 0,004      | 0,004      | 0,003      | Ві          | 0.01      | %            | <0.01      | <0.01      | <0.01      |
| SrO                            | 0.01      | %            | 0,073      | 0,073      | 0,073      | Те          | 0.005     | %            | <0.005     | <0.005     | <0.005     |
| BaO                            | 0.01      | %            | 0,051      | 0,05       | 0,055      | Y           | 0.001     | %            | <0.001     | <0.001     | <0.001     |
| Na <sub>2</sub> O              | 0.01      | %            | 5,04       | 5,11       | 4,99       | Nb          | 0.001     | %            | <0.001     | <0.001     | <0.001     |
| K2O                            | 0.01      | %            | 1,55       | 1,56       | 1,58       | Мо          | 0.01      | %            | <0.01      | <0.01      | <0.01      |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,006      | 0,005      | 0,005      | Sn          | 0.001     | %            | 0,003      | 0,003      | 0,003      |
| P <sub>2</sub> O <sub>5</sub>  | 0.01      | %            | 0,046      | 0,045      | 0,047      | w           | 0.002     | %            | <0.002     | <0.002     | <0.002     |
| OxSumm                         |           | %            | 99,3       | 99,4       | 99,3       | CI          | 0.007     | %            | <0.007     | <0.007     | <0.007     |



#### Table G2.18. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample BAS1

| Deremeter | Detection | Sample Label | SKC-BAS1/1 | SKC-BAS1/2 | SKC-BAS1/3 |  |
|-----------|-----------|--------------|------------|------------|------------|--|
| Parameter | Limit     | EF Sample ID | S19101782  | S19101783  | S19101784  |  |
| Th        | 0.001     | %            | <0.001     | 0,001      | <0.001     |  |
| U         | 0.01      | %            | <0.01      | <0.01      | <0.01      |  |
| Cs        | 0.002     | %            | <0.002     | 0,003      | <0.002     |  |
| La        | 0.001     | %            | 0,004      | 0,002      | 0,003      |  |
| Ce        | 0.001     | %            | 0,001      | 0,003      | 0,002      |  |
| Та        | 0.002     | %            | <0.002     | <0.002     | 0,002      |  |
| LOI       |           | %            | 0          | 0          | 0          |  |
| Ga        | 0.003     | %            | <0.003     | <0.003     | <0.003     |  |
| Si        | 0.05      | %            | 25,5       | 25,6       | 25,5       |  |
| Ti        | 0.003     | %            | 0,11       | 0,1        | 0,11       |  |
| Cr        | 0.001     | %            | 0,026      | 0,025      | 0,027      |  |
| V         | 0.001     | %            | 0,005      | 0,005      | 0,005      |  |
| Fe        | 0.005     | %            | 4,52       | 4,43       | 4,48       |  |
| Mn        | 0.008     | %            | 0,046      | 0,045      | 0,047      |  |
| Mg        | 0.03      | %            | 3,03       | 2,95       | 3,08       |  |
| Са        | 0.004     | %            | 3,88       | 3,86       | 3,87       |  |
| Ва        | 0.004     | %            | 0,046      | 0,045      | 0,05       |  |
| С         | 0.01      | %            | 0,04       | 0,037      | 0,035      |  |



#### Table G2.19. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample BAS2

|                                | Detection | Sample Label | SKC-BAS2/1 | SKC-BAS2/2 | SKC-BAS2/3 | _         | Detection | Sample Label | SKC-BAS2/1 | SKC-BAS2/2 | SKC-BAS2/3 |
|--------------------------------|-----------|--------------|------------|------------|------------|-----------|-----------|--------------|------------|------------|------------|
| Parameter                      | Limit     | EF Sample ID | S19101785  | S19101786  | S19101787  | Parameter | Limit     | EF Sample ID | S19101785  | S19101786  | S19101787  |
| SiO <sub>2</sub>               | 0.1       | %            | 50,3       | 51,6       | 50         | Cu        | 0.0005    | %            | 0,5        | 0,52       | 0,51       |
| TiO <sub>2</sub>               | 0.005     | %            | 0,33       | 0,34       | 0,33       | Ni        | 0.001     | %            | 0,059      | 0,061      | 0,061      |
| Al <sub>2</sub> O <sub>3</sub> | 0.006     | %            | 16,2       | 16,5       | 16,1       | Co        | 0.01      | %            | 0,017      | 0,012      | <0.01      |
| Cr <sub>2</sub> O <sub>3</sub> | 0.002     | %            | 0,064      | 0,065      | 0,065      | Zn        | 0.001     | %            | 0,011      | 0,011      | 0,01       |
| V <sub>2</sub> O <sub>3</sub>  | 0.002     | %            | 0,02       | 0,02       | 0,019      | Pb        | 0.005     | %            | 0,005      | 0,005      | 0,006      |
| FeO                            | 0.01      | %            | 8,7        | 9,01       | 8,74       | Ag        | 0.005     | %            | <0.005     | <0.005     | <0.005     |
| MnO                            | 0.01      | %            | 0,14       | 0,14       | 0,14       | S         | 0.005     | %            | 0,75       | 0,8        | 0,77       |
| MgO                            | 0.05      | %            | 8,05       | 8,23       | 8,07       | As        | 0.003     | %            | <0.003     | <0.003     | <0.003     |
| CaO                            | 0.01      | %            | 7,7        | 7,91       | 7,67       | Sb        | 0.01      | %            | 0,011      | 0,011      | 0,011      |
| Rb2O                           | 0.002     | %            | <0.002     | <0.002     | <0.002     | Bi        | 0.01      | %            | <0.01      | <0.01      | <0.01      |
| SrO                            | 0.01      | %            | 0,042      | 0,044      | 0,041      | Те        | 0.005     | %            | <0.005     | <0.005     | <0.005     |
| BaO                            | 0.01      | %            | 0,024      | 0,021      | 0,023      | Y         | 0.001     | %            | <0.001     | <0.001     | <0.001     |
| Na <sub>2</sub> O              | 0.01      | %            | 3,27       | 3,35       | 3,22       | Nb        | 0.001     | %            | <0.001     | <0.001     | <0.001     |
| K2O                            | 0.01      | %            | 0,5        | 0,5        | 0,49       | Мо        | 0.01      | %            | <0.01      | <0.01      | <0.01      |
| ZrO <sub>2</sub>               | 0.001     | %            | 0,004      | 0,004      | 0,004      | Sn        | 0.001     | %            | 0,003      | 0,003      | 0,002      |
| P <sub>2</sub> O <sub>5</sub>  | 0.01      | %            | 0,021      | 0,023      | 0,022      | w         | 0.002     | %            | <0.002     | <0.002     | <0.002     |
| OxSumm                         |           | %            | 96,6       | 99         | 96,2       | CI        | 0.007     | %            | <0.007     | <0.007     | <0.007     |



#### Table G2.20. Multi-element analysis by XRF on a Pellet (MP10) (Method 180X) - Sample BAS2

| Doromotor | Detection | Sample Label | SKC-BAS2/1 | SKC-BAS2/2 | SKC-BAS2/3 |  |
|-----------|-----------|--------------|------------|------------|------------|--|
| Falameter | Limit     | EF Sample ID | S19101785  | S19101786  | S19101787  |  |
| Th        | 0.001     | %            | 0,001      | 0,002      | <0.001     |  |
| U         | 0.01      | %            | <0.01      | <0.01      | <0.01      |  |
| Cs        | 0.002     | %            | 0,003      | 0,002      | 0,002      |  |
| La        | 0.001     | %            | 0,002      | 0,002      | 0,001      |  |
| Се        | 0.001     | %            | 0,001      | 0,003      | 0,002      |  |
| Та        | 0.002     | %            | <0.002     | <0.002     | <0.002     |  |
| LOI       |           | %            | 0          | 0          | 0          |  |
| Ga        | 0.003     | %            | <0.003     | <0.003     | <0.003     |  |
| Si        | 0.05      | %            | 23,5       | 24,1       | 23,4       |  |
| Ti        | 0.003     | %            | 0,2        | 0,2        | 0,2        |  |
| Cr        | 0.001     | %            | 0,044      | 0,045      | 0,045      |  |
| V         | 0.001     | %            | 0,014      | 0,013      | 0,013      |  |
| Fe        | 0.005     | %            | 6,77       | 7,01       | 6,8        |  |
| Mn        | 0.008     | %            | 0,11       | 0,11       | 0,11       |  |
| Mg        | 0.03      | %            | 4,86       | 4,96       | 4,87       |  |
| Са        | 0.004     | %            | 5,5        | 5,65       | 5,48       |  |
| Ва        | 0.004     | %            | 0,021      | 0,018      | 0,02       |  |
| С         | 0.01      | %            | 0,027      | 0,029      | 0,027      |  |



# 21 APPENDIX H – X-RAY DIFFRACTION XRD DATA

A sub-sample of each of the SAP Konttijärvi Orientation samples was characterized with XRD at X-ray Mineral Services Ltd (United Kingdom). Detection limit is approximately 2%.

| Sample          | SKC-PM1 | SKC-PM2 | SKC-PX1 | SKC-PX2 | SKC-MS1 | SKC-MS2 | SKC-TZ1 | SKC-TZ2 | SKC-BAS1 | SKC-BAS2 |
|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|
| Illite/Smectite | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Biotite         | 0.0     | 0.0     | 0.0     | 0.0     | 3.0     | 13.9    | 4.6     | 6.4     | 7.0      | 4.7      |
| Muscovite       | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Kaolinite       | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Chlorite        | 42.2    | 31.3    | 34.2    | 24.5    | 6.3     | 14.0    | 6.7     | 10.0    | 5.0      | 8.9      |
| Quartz          | TR      | TR      | TR      | TR      | 8.2     | 4.2     | 10.3    | 7.5     | 5.7      | 5.4      |
| Amphibole 1     | 26.4    | 0.0     | 57.0    | 75.5    | 72.2    | 22.4    | 37.2    | 38.1    | 10.1     | 41.1     |
| Amphibole 2     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| K Feldspar      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Plagioclase 1   | 0.0     | 0.0     | 0.0     | 0.0     | 9.1     | 44.5    | 38.1    | 36.3    | 72.2     | 38.9     |
| Plagioclase 2   | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Calcite         | 0.0     | TR      | 0.0     | 0.0     | 1.2     | 1.0     | 1.7     | 1.1     | TR       | 0.6      |
| Dolomite        | 5.0     | 6.4     | 0.0     | 0.0     | 0.0     | TR      | 1.4     | 0.6     | TR       | 0.5      |
| Magnesite       | 0.0     | 12.6    | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Magnetite       | TR      | 4.3     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Talc            | 26.4    | 45.4    | 8.9     | 0.0     | 0.0     | TR      | 0.0     | 0.0     | 0.0      | 0.0      |
| Cordierite      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Pyrrhotite      | 0.0     | 0.0     | 0.0     | 0.0     | TR      | TR      | TR      | TR      | TR       | 0.0      |
| Pyrite          | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Ilmenite        | 0.0     | 0.0     | 0.0     | TR      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Total           | 100     | 100     | 100     | 100     | 100     | 100     | 100     | 100     | 100      | 100      |

Table H1. Bulk Mineral Characterization by X-ray Diffraction Analysis - Size Fraction: Whole Rock

Notes:

1. Plagioclase 1 is probably andesine

2. Chlorite is clinochlore

3. Amphibole 1 is probably actinolite

4. Samples SKC-PM1 and SKM-PM1 contain a second species of amphibole that could not be quantified separately (probably cummingtonite)

5. Traces of graphite possibly present in samples SKC-MS1, MS2, TZ1, TZ2, BAS1 and BAS2



#### Table H2. Bulk Mineral Characterization by X-ray Diffraction Analysis - Size Fraction : <2 micron clay

|                 |      | SKC-PM1 | SKC-PM2 | SKC-PX1 | SKC-PX2 | SKC-MS1 | SKC-MS2 | SKC-TZ1 | SKC-TZ2 | SKC-BAS1 | SKC-BAS2 |
|-----------------|------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|
| Wt. %           | <2um | 6.5     | 6.4     | 4.7     | 5.0     | 2.9     | 3.1     | 2.5     | 2.6     | 2.2      | 2.5      |
| Illite/smectite | % A  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|                 | % B  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Biotite         | % A  | 0.0     | 0.0     | 0.0     | 0.0     | TR      | 31.5    | 21.6    | 21.4    | 47.9     | 11.9     |
|                 | % B  | 0.0     | 0.0     | 0.0     | 0.0     | TR      | 1.0     | 0.5     | 0.6     | 11       | 03       |
|                 | Cruc | 0.0     | 0.0     | 0.0     | 0.0     | D       | 1.0     | 0.5     | 0.0     | 1.1<br>M | 0.0      |
|                 | Crys | -       | -       | -       | -       | P       | IVI     | IVI     | IVI     | IVI      | IVI      |
| Kaolinite       | % A  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|                 | % B  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|                 | Crys | -       | -       | -       | -       | -       | -       | -       | -       | -        | -        |
| Chlorite        | % A  | 67.4    | 37.4    | 67.3    | 43.3    | 57.4    | 34.2    | 35.0    | 32.5    | 20.9     | 37.8     |
|                 | % B  | 4.4     | 2.4     | 3.2     | 2.2     | 1.7     | 1.0     | 0.9     | 0.9     | 0.5      | 1.0      |
|                 | Crys | w       | w       | w       | w       | w       | w       | w       | w       | w        | w        |
|                 | Y    | 0       | 0       | 0       | 1       | 1       | 1       | 0       | 1       | 0        | 1        |
| Quartz          | % A  | 0.0     | 0.0     | 0.0     | 0.0     | 3.1     | 0.0     | 4.8     | 3.8     | 2.4      | 3.2      |
|                 | % B  | 0.0     | 0.0     | 0.0     | 0.0     | 0.1     | 0.0     | 0.1     | 0.1     | 0.1      | 0.1      |
| Talc            | % A  | 20.4    | 62.6    | 6.3     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|                 | % B  | 1.3     | 4.0     | 0.3     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
| Amphibole       | % A  | 12.2    | 0.0     | 26.3    | 56.7    | 39.5    | 24.3    | 28.9    | 33.1    | 9.7      | 37.9     |
|                 | % B  | 0.8     | 0.0     | 1.2     | 2.8     | 1.1     | 0.7     | 0.7     | 0.9     | 0.2      | 1.0      |
| Plagioclase     | % A  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 10.0    | 9.8     | 9.2     | 19.1     | 9.2      |
|                 | % B  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.3     | 0.2     | 0.2     | 0.4      | 0.2      |

A = Weight % <2micron fraction

B = Weight % bulk sample

Y = No. of Fe atoms in six octahedral sites

Crystallinity:

VW = Very Well Crystallised

W = Well Crystallised

M = Moderately Crystallised

P = Poorly Crystallised



## SKC-PM1

The following diffractograms show the mineral identification for each sample using PANalytical HighScore Plus (v.4) software. The whole rock XRD plot shows the mineralogy from  $4.5-40^{\circ}$  (2 $\theta$ ). The graphical output from the Rietveld quantitative analysis program Autoquan is also given for each sample.





Figure H2. Rietveld analysis (Autoquan BGMN software) of sample SKC-PM1. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=4.20% Rexp=0.66%).

## SKC-PM2





Figure H3. X-ray Diffraction pattern of sample SKC-PM2.



Figure H4. Rietveld analysis (Autoquan BGMN software) of sample SKC-PM2. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=4.64% Rexp=0.63%).







Figure H5. X-ray Diffraction pattern of sample SKC-PX1.



Figure H6. Rietveld analysis (Autoquan BGMN software) of sample SKC-PX1. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=3.75% Rexp=0.71%).







Figure H8. Rietveld analysis (Autoquan BGMN software) of sample SKC-PX2. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=3.29% Rexp=0.73%).







Figure H9. X-ray Diffraction pattern of sample SKC-MS1.



Figure H10. Rietveld analysis (Autoquan BGMN software) of sample SKC-MS1. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=2.49% Rexp=0.72%).







Figure H11. X-ray Diffraction pattern of sample SKC-MS2.



Figure H12. Rietveld analysis (Autoquan BGMN software) of sample SKC-MS2. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=2.72% Rexp=0.75%).









Figure H14. Rietveld analysis (Autoquan BGMN software) of sample SKC-TZ1. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=2.36% Rexp=0.72%).







Figure H15. X-ray Diffraction pattern of sample SKC-TZ2.



Figure H16. Rietveld analysis (Autoquan BGMN software) of sample SKC-TZ2. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=2.19% Rexp=0.73%).



## SKC-BAS1



Figure H17. X-ray Diffraction pattern of sample SKC-BAS1.



Figure H18. Rietveld analysis (Autoquan BGMN software) of sample SKC-BAS1. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=3.55% Rexp=0.73%).







Figure H20. X-ray Diffraction pattern of sample SKC-BAS2.



Figure H21. Rietveld analysis (Autoquan BGMN software) of sample SKC-BAS2. Dotted blue trace is the observed pattern; green trace is the calculated pattern. The red trace illustrates the difference between the observed and calculated patterns (Rwp=2.31% Rexp=0.71%).


# 22 APPENDIX I – AUTOMATED MINERALOGY DATA

Table I1.1. Modal mineralogy's of PM1 and PM2 samples, Weight Percent (wt%) (SEM Automated Mineralogy)

| Sample                       |       | SI            | KC-PM1         |        | SKC-PM2 |               |                |        |  |
|------------------------------|-------|---------------|----------------|--------|---------|---------------|----------------|--------|--|
| Mineral                      | -75µm | -<br>150+75µm | -<br>250+150µm | Head   | -75µm   | -<br>150+75µm | -<br>250+150µm | Head   |  |
| Pyrrhotite                   | 0.6   | 0.8           | 0.8            | 0.7    | 0.3     | 1.2           | 1.2            | 0.7    |  |
| Chalcopyrite                 | 0.3   | 0.3           | 0.3            | 0.3    | 0.3     | 0.4           | 0.4            | 0.3    |  |
| Pentlandite                  | 0.4   | 0.2           | 0.2            | 0.3    | 0.3     | 0.5           | 0.4            | 0.4    |  |
| Pyrite                       | 0.0   | 0.0           | 0.0            | 0.0    | 0.0     | 0.0           | 0.0            | 0.0    |  |
| Talc                         | 16.9  | 11.6          | 9.2            | 13.9   | 49.6    | 33.7          | 24.7           | 40.3   |  |
| Serpentine                   | 4.7   | 5.5           | 4.9            | 4.9    | 0.3     | 0.4           | 0.6            | 0.4    |  |
| Clinopyroxene                | 0.2   | 0.1           | 0.1            | 0.1    | 0.0     | 0.0           | 0.0            | 0.0    |  |
| Amphiboles                   | 25.9  | 28.1          | 27.9           | 26.8   | 0.4     | 0.3           | 0.3            | 0.4    |  |
| Chlorite                     | 43.2  | 42.2          | 45.8           | 43.6   | 33.4    | 34.0          | 37.1           | 34.4   |  |
| Biotite                      | 0.2   | 0.2           | 0.2            | 0.2    | 0.1     | 0.1           | 0.1            | 0.1    |  |
| Quartz                       | 0.0   | 0.0           | 0.0            | 0.0    | 0.0     | 0.0           | 0.0            | 0.0    |  |
| Plagioclase                  | 0.0   | 0.0           | 0.0            | 0.0    | 0.1     | 0.1           | 0.0            | 0.1    |  |
| K-feldspar                   | 0.0   | 0.0           | 0.0            | 0.0    | 0.0     | 0.0           | 0.0            | 0.0    |  |
| Other silicates              | 0.0   | 0.0           | 0.0            | 0.0    | 0.0     | 0.0           | 0.0            | 0.0    |  |
| Carbonates                   | 5.4   | 8.9           | 8.5            | 6.9    | 10.2    | 21.4          | 27.8           | 16.8   |  |
| Magnetite                    | 0.9   | 1.3           | 1.4            | 1.1    | 3.5     | 6.7           | 6.0            | 4.8    |  |
| Ilmenite                     | 0.1   | 0.2           | 0.2            | 0.1    | 0.2     | 0.3           | 0.3            | 0.2    |  |
| Apatite                      | 0.2   | 0.0           | 0.0            | 0.1    | 0.1     | 0.1           | 0.1            | 0.1    |  |
| Mixtures                     | 0.9   | 0.5           | 0.4            | 0.7    | 1.0     | 0.5           | 0.7            | 0.8    |  |
| Unclassified                 | 0.1   | 0.1           | 0.1            | 0.1    | 0.2     | 0.2           | 0.2            | 0.2    |  |
| Total                        | 100.0 | 100.0         | 100.0          | 100.0  | 100.0   | 100.0         | 100.0          | 100.0  |  |
|                              |       |               |                |        |         |               |                |        |  |
| Amount of measured particles | 30019 | 44486         | 30681          | 105186 | 29414   | 55892         | 31792          | 117098 |  |

| Table I1.2. Modal mineralogy's of PX1 and PX2 samples | b, Weight Percent (wt%) (SEM Automated Mineralogy) |
|-------------------------------------------------------|----------------------------------------------------|
|-------------------------------------------------------|----------------------------------------------------|

| Sample                       |       | S         | KC-PX1         |        | SKC-PX2 |           |                |   |  |
|------------------------------|-------|-----------|----------------|--------|---------|-----------|----------------|---|--|
| Mineral                      | -75µm | -150+75µm | -<br>250+150µm | Head   | -75µm   | -150+75µm | -<br>250+150µm |   |  |
| Pyrrhotite                   | 0.2   | 0.7       | 0.6            | 0.4    | 0.0     | 0.0       | 0.0            |   |  |
| Chalcopyrite                 | 0.5   | 0.4       | 0.3            | 0.4    | 0.0     | 0.1       | 0.1            |   |  |
| Pentlandite                  | 0.1   | 0.2       | 0.1            | 0.1    | 0.0     | 0.0       | 0.0            |   |  |
| Pyrite                       | 0.0   | 0.0       | 0.0            | 0.0    | 0.0     | 0.0       | 0.0            |   |  |
| Talc                         | 1.3   | 0.9       | 1.0            | 1.1    | 0.0     | 0.0       | 0.0            |   |  |
| Serpentine                   | 0.8   | 0.6       | 0.7            | 0.7    | 0.0     | 0.0       | 0.0            |   |  |
| Clinopyroxene                | 0.4   | 0.2       | 0.1            | 0.3    | 0.1     | 0.0       | 0.0            |   |  |
| Amphiboles                   | 54.1  | 68.5      | 70.0           | 60.9   | 70.2    | 83.4      | 86.1           |   |  |
| Chlorite                     | 40.3  | 27.3      | 26.0           | 34.2   | 25.4    | 13.1      | 10.6           |   |  |
| Biotite                      | 0.4   | 0.4       | 0.3            | 0.4    | 0.9     | 1.9       | 1.9            |   |  |
| Quartz                       | 0.0   | 0.0       | 0.0            | 0.0    | 0.0     | 0.1       | 0.0            |   |  |
| Plagioclase                  | 0.0   | 0.0       | 0.0            | 0.0    | 0.1     | 0.1       | 0.2            |   |  |
| K-feldspar                   | 0.0   | 0.0       | 0.0            | 0.0    | 0.0     | 0.0       | 0.0            |   |  |
| Other silicates              | 0.0   | 0.0       | 0.0            | 0.0    | 0.0     | 0.0       | 0.0            | Γ |  |
| Carbonates                   | 0.1   | 0.3       | 0.3            | 0.2    | 0.0     | 0.0       | 0.0            |   |  |
| Magnetite                    | 0.0   | 0.1       | 0.1            | 0.0    | 0.0     | 0.0       | 0.0            |   |  |
| Ilmenite                     | 0.2   | 0.2       | 0.3            | 0.2    | 0.2     | 0.5       | 0.6            |   |  |
| Apatite                      | 0.0   | 0.0       | 0.1            | 0.0    | 0.0     | 0.1       | 0.0            |   |  |
| Mixtures                     | 1.3   | 0.2       | 0.1            | 0.8    | 2.8     | 0.6       | 0.2            |   |  |
| Unclassified                 | 0.3   | 0.1       | 0.1            | 0.2    | 0.1     | 0.1       | 0.1            |   |  |
| Total                        | 100.0 | 100.0     | 100.0          | 100.0  | 100.0   | 100.0     | 100.0          |   |  |
|                              |       |           |                |        |         |           |                | L |  |
| Amount of measured particles | 30198 | 48153     | 27024          | 105375 | 30137   | 41735     | 29615          |   |  |



101487

Head 0.0 0.1 0.0 0.0 0.0 0.0 0.1 75.0 20.9 1.2 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0 2.0 0.1 100.0

### Table I1.3. Modal mineralogy's of MS1 and MS2 samples, Weight Percent (wt%) (SEM Automated Mineralogy)

| Sample                       |       | S         | KC-MS1     |       | 1 | SKC-MS2 |           |            |       |
|------------------------------|-------|-----------|------------|-------|---|---------|-----------|------------|-------|
| Mineral                      | -75µm | -150+75µm | -250+150µm | Head  | 1 | -75µm   | -150+75µm | -250+150µm | Head  |
| Pyrrhotite                   | 0.3   | 0.7       | 0.3        | 0.4   |   | 0.3     | 0.3       | 0.2        | 0.3   |
| Chalcopyrite                 | 1.0   | 0.4       | 0.3        | 0.6   |   | 0.6     | 0.4       | 0.4        | 0.5   |
| Pentlandite                  | 0.4   | 0.1       | 0.1        | 0.2   |   | 0.3     | 0.1       | 0.1        | 0.2   |
| Pyrite                       | 0.2   | 0.2       | 0.3        | 0.2   |   | 0.0     | 0.1       | 0.0        | 0.1   |
| Talc                         | 0.1   | 0.0       | 0.0        | 0.1   |   | 0.0     | 0.0       | 0.0        | 0.0   |
| Serpentine                   | 0.0   | 0.0       | 0.0        | 0.0   |   | 0.0     | 0.0       | 0.0        | 0.0   |
| Clinopyroxene                | 0.0   | 0.0       | 0.0        | 0.0   |   | 0.0     | 0.0       | 0.0        | 0.0   |
| Amphiboles                   | 70.6  | 75.6      | 75.2       | 73.4  |   | 24.5    | 21.9      | 20.3       | 22.7  |
| Chlorite                     | 5.1   | 2.4       | 2.3        | 3.5   |   | 15.6    | 7.8       | 7.4        | 11.5  |
| Biotite                      | 3.7   | 3.2       | 2.5        | 3.2   |   | 12.0    | 14.5      | 10.3       | 12.2  |
| Quartz                       | 5.5   | 5.8       | 5.8        | 5.7   |   | 3.0     | 3.2       | 3.7        | 3.3   |
| Plagioclase                  | 9.1   | 9.7       | 11.8       | 10.1  |   | 39.9    | 47.7      | 53.5       | 45.5  |
| K-feldspar                   | 0.5   | 0.3       | 0.2        | 0.4   |   | 0.5     | 0.5       | 0.6        | 0.5   |
| Other silicates              | 0.8   | 0.9       | 1.0        | 0.9   |   | 2.3     | 3.0       | 3.4        | 2.8   |
| Carbonates                   | 0.1   | 0.1       | 0.1        | 0.1   |   | 0.0     | 0.0       | 0.0        | 0.0   |
| Magnetite                    | 0.0   | 0.0       | 0.0        | 0.0   |   | 0.0     | 0.0       | 0.0        | 0.0   |
| Ilmenite                     | 0.0   | 0.0       | 0.1        | 0.0   |   | 0.0     | 0.0       | 0.0        | 0.0   |
| Apatite                      | 0.1   | 0.1       | 0.0        | 0.1   |   | 0.1     | 0.1       | 0.0        | 0.1   |
| Mixtures                     | 2.0   | 0.4       | 0.2        | 1.0   |   | 0.5     | 0.1       | 0.1        | 0.3   |
| Unclassified                 | 0.4   | 0.2       | 0.1        | 0.3   |   | 0.3     | 0.2       | 0.1        | 0.2   |
| Total                        | 100.0 | 100.0     | 100.0      | 100.0 |   | 100.0   | 100.0     | 100.0      | 100.0 |
|                              |       |           |            |       |   |         |           |            |       |
| Amount of measured particles | 30471 | 42586     | 18434      | 91491 |   | 29542   | 42520     | 26250      | 98312 |

| Table I1 4 Moda  | I mineralogy's of Tz                    | 1 and T72 samples  | Weight Percent   | (wt%) (SFM | Automated Mineralogy) |
|------------------|-----------------------------------------|--------------------|------------------|------------|-----------------------|
| 1able 11.4. Woud | 1 1111111111111111111111111111111111111 | .I and izz samples | , weight reitent |            | Automateu wineraiogy  |

| Sample                       |       | S         | KC-TZ1         |        |
|------------------------------|-------|-----------|----------------|--------|
| Mineral                      | -75µm | -150+75µm | -<br>250+150µm | Head   |
| Pyrrhotite                   | 0.6   | 0.4       | 0.4            | 0.5    |
| Chalcopyrite                 | 0.7   | 0.5       | 0.5            | 0.6    |
| Pentlandite                  | 0.1   | 0.2       | 0.1            | 0.2    |
| Pyrite                       | 0.2   | 0.1       | 0.1            | 0.1    |
| Talc                         | 0.0   | 0.0       | 0.0            | 0.0    |
| Serpentine                   | 0.0   | 0.0       | 0.0            | 0.0    |
| Clinopyroxene                | 0.0   | 0.0       | 0.0            | 0.0    |
| Amphiboles                   | 36.3  | 34.1      | 31.6           | 34.2   |
| Chlorite                     | 7.9   | 3.8       | 4.1            | 5.6    |
| Biotite                      | 5.5   | 7.1       | 4.4            | 5.6    |
| Quartz                       | 7.9   | 7.6       | 7.1            | 7.6    |
| Plagioclase                  | 33.5  | 39.2      | 44.5           | 38.5   |
| K-feldspar                   | 0.7   | 0.5       | 0.5            | 0.6    |
| Other silicates              | 5.7   | 6.0       | 6.6            | 6.1    |
| Carbonates                   | 0.0   | 0.0       | 0.0            | 0.0    |
| Magnetite                    | 0.1   | 0.0       | 0.0            | 0.0    |
| Ilmenite                     | 0.0   | 0.0       | 0.0            | 0.0    |
| Apatite                      | 0.1   | 0.0       | 0.0            | 0.1    |
| Mixtures                     | 0.5   | 0.1       | 0.1            | 0.3    |
| Unclassified                 | 0.4   | 0.2       | 0.1            | 0.2    |
| Total                        | 100.0 | 100.0     | 100.0          | 100.0  |
|                              |       |           |                |        |
| Amount of measured particles | 29952 | 47390     | 27283          | 104625 |

| SKC-TZ2 |           |                |        |  |  |  |  |  |  |  |
|---------|-----------|----------------|--------|--|--|--|--|--|--|--|
| -75µm   | -150+75µm | -<br>250+150µm | Head   |  |  |  |  |  |  |  |
| 1.2     | 1.2       | 1.3            | 1.2    |  |  |  |  |  |  |  |
| 0.6     | 0.4       | 0.4            | 0.5    |  |  |  |  |  |  |  |
| 0.3     | 0.4       | 0.1            | 0.2    |  |  |  |  |  |  |  |
| 0.2     | 0.0       | 0.1            | 0.1    |  |  |  |  |  |  |  |
| 0.0     | 0.0       | 0.0            | 0.0    |  |  |  |  |  |  |  |
| 0.0     | 0.0       | 0.0            | 0.0    |  |  |  |  |  |  |  |
| 0.0     | 0.0       | 0.0            | 0.0    |  |  |  |  |  |  |  |
| 38.7    | 36.7      | 31.8           | 36.0   |  |  |  |  |  |  |  |
| 12.1    | 6.2       | 6.6            | 8.8    |  |  |  |  |  |  |  |
| 6.5     | 8.0       | 6.0            | 6.8    |  |  |  |  |  |  |  |
| 5.2     | 5.4       | 5.0            | 5.2    |  |  |  |  |  |  |  |
| 31.1    | 37.2      | 43.6           | 36.6   |  |  |  |  |  |  |  |
| 0.5     | 0.4       | 0.4            | 0.5    |  |  |  |  |  |  |  |
| 2.8     | 3.7       | 4.6            | 3.6    |  |  |  |  |  |  |  |
| 0.0     | 0.0       | 0.0            | 0.0    |  |  |  |  |  |  |  |
| 0.1     | 0.0       | 0.0            | 0.0    |  |  |  |  |  |  |  |
| 0.0     | 0.0       | 0.0            | 0.0    |  |  |  |  |  |  |  |
| 0.1     | 0.0       | 0.0            | 0.1    |  |  |  |  |  |  |  |
| 0.3     | 0.1       | 0.0            | 0.2    |  |  |  |  |  |  |  |
| 0.3     | 0.1       | 0.1            | 0.2    |  |  |  |  |  |  |  |
| 100.0   | 100.0     | 100.0          | 100.0  |  |  |  |  |  |  |  |
|         |           |                |        |  |  |  |  |  |  |  |
| 30125   | 49287     | 28834          | 108246 |  |  |  |  |  |  |  |



### Table I1.5. Modal mineralogy's of BAS1 and BAS2 samples, Weight Percent (wt%) (SEM Automated Mineralogy)

| Sample                       |       | Sł        | C-BAS1         |        |       | SK        | C-BAS2         |       |
|------------------------------|-------|-----------|----------------|--------|-------|-----------|----------------|-------|
| Mineral                      | -75µm | -150+75µm | -<br>250+150um | Head   | -75µm | -150+75µm | -<br>250+150um | Head  |
| Pyrrhotite                   | 0.9   | 1.3       | 1.1            | 1.1    | 0.2   | 0.2       | 0.2            | 0.2   |
| Chalcopyrite                 | 0.6   | 0.3       | 0.4            | 0.5    | 2.7   | 1.5       | 1.1            | 1.9   |
| Pentlandite                  | 0.5   | 0.4       | 0.3            | 0.4    | 0.0   | 0.0       | 0.1            | 0.0   |
| Pyrite                       | 0.1   | 0.1       | 0.2            | 0.2    | 0.1   | 0.1       | 0.1            | 0.1   |
| Talc                         | 0.1   | 0.0       | 0.0            | 0.0    | 0.0   | 0.0       | 0.0            | 0.0   |
| Serpentine                   | 0.0   | 0.0       | 0.0            | 0.0    | 0.0   | 0.0       | 0.0            | 0.0   |
| Clinopyroxene                | 0.0   | 0.0       | 0.0            | 0.0    | 0.0   | 0.0       | 0.0            | 0.0   |
| Amphiboles                   | 8.8   | 6.8       | 6.6            | 7.6    | 39.0  | 40.3      | 35.0           | 38.3  |
| Chlorite                     | 8.0   | 3.6       | 3.4            | 5.5    | 13.2  | 6.1       | 5.4            | 9.1   |
| Biotite                      | 12.5  | 19.3      | 13.6           | 14.7   | 3.3   | 6.0       | 5.1            | 4.5   |
| Quartz                       | 4.0   | 4.4       | 4.7            | 4.3    | 3.7   | 3.8       | 3.9            | 3.8   |
| Plagioclase                  | 60.6  | 59.8      | 65.0           | 61.6   | 33.9  | 38.2      | 45.0           | 38.1  |
| K-feldspar                   | 1.0   | 0.8       | 0.8            | 0.9    | 0.6   | 0.5       | 0.5            | 0.5   |
| Other silicates              | 2.3   | 2.9       | 3.5            | 2.8    | 2.4   | 2.8       | 3.4            | 2.8   |
| Carbonates                   | 0.1   | 0.1       | 0.1            | 0.1    | 0.0   | 0.0       | 0.0            | 0.0   |
| Magnetite                    | 0.0   | 0.0       | 0.0            | 0.0    | 0.1   | 0.0       | 0.0            | 0.0   |
| Ilmenite                     | 0.0   | 0.0       | 0.0            | 0.0    | 0.2   | 0.2       | 0.1            | 0.2   |
| Apatite                      | 0.1   | 0.1       | 0.1            | 0.1    | 0.1   | 0.0       | 0.0            | 0.1   |
| Mixtures                     | 0.1   | 0.0       | 0.0            | 0.1    | 0.3   | 0.1       | 0.0            | 0.2   |
| Unclassified                 | 0.4   | 0.2       | 0.2            | 0.2    | 0.3   | 0.2       | 0.2            | 0.2   |
| Total                        | 100.0 | 100.0     | 100.0          | 100.0  | 100.0 | 100.0     | 100.0          | 100.0 |
|                              |       |           |                |        |       |           |                |       |
| Amount of measured particles | 29753 | 47217     | 32285          | 109255 | 29668 | 41879     | 20610          | 92157 |



### Table I2.1. Association between minerals, Sample PM1 (SEM Automated Mineralogy)

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 3.6          | 2.8         | 0.0    | 2.3  | 2.4        | 0.0           | 5.8        | 9.0      | 0.1     |
| Chalcopyrite    | 5.2        |              | 0.2         | 0.0    | 3.3  | 1.8        | 0.0           | 3.7        | 16.6     | 0.1     |
| Pentlandite     | 5.4        | 0.4          |             | 0.0    | 1.1  | 1.5        | 0.0           | 4.6        | 8.0      | 0.1     |
| Pyrite          | 0.3        | 0.0          | 0.0         |        | 0.3  | 0.0        | 0.0           | 0.2        | 0.0      | 0.0     |
| Talc            | 0.1        | 0.1          | 0.0         | 0.0    |      | 4.7        | 0.0           | 7.2        | 4.4      | 0.1     |
| Serpentine      | 0.1        | 0.0          | 0.0         | 0.0    | 8.0  |            | 0.1           | 19.9       | 16.3     | 0.2     |
| Clinopyroxene   | 0.1        | 0.0          | 0.0         | 0.0    | 1.9  | 4.2        |               | 31.1       | 2.4      | 0.0     |
| Amphiboles      | 0.1        | 0.0          | 0.0         | 0.0    | 5.3  | 8.9        | 0.2           |            | 11.2     | 0.1     |
| Chlorite        | 0.1        | 0.1          | 0.0         | 0.0    | 2.1  | 5.3        | 0.0           | 7.9        |          | 0.2     |
| Biotite         | 0.1        | 0.0          | 0.0         | 0.0    | 3.5  | 5.6        | 0.0           | 9.6        | 25.2     |         |
| Quartz          | 0.0        | 0.0          | 0.0         | 0.3    | 0.0  | 0.0        | 0.0           | 0.4        | 0.0      | 0.0     |
| Plagioclase     | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 1.8        | 0.5      | 0.0     |
| K-feldspar      | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 0.5        | 0.2      | 0.1     |
| Other silicates | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.3           | 1.0        | 0.2      | 0.0     |
| Carbonates      | 0.1        | 0.1          | 0.1         | 0.0    | 0.6  | 2.6        | 0.2           | 5.0        | 1.9      | 0.1     |
| Magnetite       | 0.5        | 0.7          | 0.1         | 0.0    | 6.1  | 2.4        | 0.0           | 4.0        | 11.8     | 0.1     |
| Ilmenite        | 0.1        | 0.2          | 0.1         | 0.0    | 4.4  | 4.2        | 0.0           | 6.7        | 34.9     | 0.3     |
| Apatite         | 0.0        | 0.0          | 0.0         | 0.0    | 0.5  | 0.3        | 0.0           | 0.7        | 8.4      | 1.1     |
| Mixtures        | 0.5        | 0.2          | 0.1         | 0.0    | 1.1  | 1.5        | 0.2           | 5.4        | 6.1      | 0.1     |
| Unclassified    | 0.6        | 0.8          | 0.2         | 0.0    | 1.0  | 0.7        | 0.0           | 4.3        | 9.2      | 0.0     |

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 0.0    | 0.0         | 0.0        | 0.0             | 1.4        | 0.5       | 0.0      | 0.0     | 1.4      | 0.3          | 69.8         |
| Chalcopyrite    | 0.0    | 0.0         | 0.0        | 0.0             | 2.1        | 1.2       | 0.1      | 0.0     | 0.8      | 0.4          | 64.3         |
| Pentlandite     | 0.0    | 0.0         | 0.0        | 0.0             | 0.9        | 0.2       | 0.0      | 0.0     | 0.8      | 0.3          | 76.8         |
| Pyrite          | 0.8    | 0.0         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.3      | 0.2          | 98.0         |
| Talc            | 0.0    | 0.0         | 0.0        | 0.0             | 0.1        | 0.2       | 0.0      | 0.0     | 0.1      | 0.0          | 83.1         |
| Serpentine      | 0.0    | 0.0         | 0.0        | 0.0             | 0.8        | 0.1       | 0.1      | 0.0     | 0.1      | 0.0          | 54.3         |
| Clinopyroxene   | 0.0    | 0.0         | 0.0        | 0.0             | 4.5        | 0.0       | 0.0      | 0.0     | 1.9      | 0.0          | 53.8         |
| Amphiboles      | 0.0    | 0.0         | 0.0        | 0.0             | 0.9        | 0.1       | 0.0      | 0.0     | 0.3      | 0.0          | 72.9         |
| Chlorite        | 0.0    | 0.0         | 0.0        | 0.0             | 0.2        | 0.2       | 0.2      | 0.0     | 0.2      | 0.1          | 83.4         |
| Biotite         | 0.0    | 0.0         | 0.0        | 0.0             | 1.2        | 0.2       | 0.1      | 0.2     | 0.3      | 0.0          | 54.0         |
| Quartz          |        | 2.1         | 0.0        | 0.1             | 0.0        | 1.5       | 0.0      | 0.1     | 0.0      | 0.2          | 94.9         |
| Plagioclase     | 2.0    |             | 1.5        | 1.3             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.0          | 92.6         |
| K-feldspar      | 0.0    | 6.1         |            | 0.0             | 0.0        | 0.4       | 0.0      | 0.0     | 0.0      | 25.5         | 67.3         |
| Other silicates | 1.5    | 9.3         | 0.0        |                 | 0.0        | 0.0       | 0.0      | 0.4     | 0.4      | 0.4          | 86.7         |
| Carbonates      | 0.0    | 0.0         | 0.0        | 0.0             |            | 0.3       | 0.1      | 0.1     | 1.9      | 0.1          | 86.8         |
| Magnetite       | 0.0    | 0.0         | 0.0        | 0.0             | 2.7        |           | 0.7      | 0.0     | 0.5      | 0.1          | 70.5         |
| Ilmenite        | 0.0    | 0.0         | 0.0        | 0.0             | 3.3        | 2.2       |          | 0.1     | 0.3      | 0.7          | 42.6         |
| Apatite         | 0.0    | 0.0         | 0.0        | 0.0             | 0.7        | 0.0       | 0.1      |         | 0.0      | 0.1          | 88.2         |
| Mixtures        | 0.0    | 0.0         | 0.0        | 0.0             | 7.5        | 0.2       | 0.1      | 0.0     |          | 0.2          | 76.8         |
| Unclassified    | 0.0    | 0.0         | 0.3        | 0.0             | 1.1        | 0.1       | 0.4      | 0.1     | 1.3      |              | 79.0         |

### Table 12.3. Association between minerals, Sample PM2 (SEM Automated Mineralogy)

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 3.4          | 5.1         | 0.1    | 3.5  | 0.2        | 0.0           | 0.1        | 7.0      | 0.0     |
| Chalcopyrite    | 4.5        |              | 0.3         | 0.0    | 6.1  | 0.2        | 0.0           | 0.4        | 10.0     | 0.0     |
| Pentlandite     | 8.4        | 0.4          |             | 0.0    | 3.2  | 0.1        | 0.0           | 0.1        | 4.3      | 0.0     |
| Pyrite          | 5.5        | 0.0          | 0.0         |        | 0.1  | 0.3        | 0.0           | 0.0        | 0.3      | 0.0     |
| Talc            | 0.0        | 0.1          | 0.0         | 0.0    |      | 0.7        | 0.0           | 0.0        | 1.5      | 0.0     |
| Serpentine      | 0.1        | 0.1          | 0.0         | 0.0    | 20.5 |            | 0.1           | 0.8        | 21.4     | 0.2     |
| Clinopyroxene   | 0.1        | 0.0          | 0.0         | 0.0    | 5.0  | 1.2        |               | 5.3        | 0.9      | 0.0     |
| Amphiboles      | 0.1        | 0.2          | 0.0         | 0.0    | 2.9  | 1.9        | 0.5           |            | 4.3      | 0.1     |
| Chlorite        | 0.1        | 0.1          | 0.0         | 0.0    | 2.2  | 1.1        | 0.0           | 0.1        |          | 0.1     |
| Biotite         | 0.0        | 0.0          | 0.0         | 0.0    | 7.4  | 1.8        | 0.0           | 0.2        | 16.3     |         |
| Quartz          | 0.0        | 0.0          | 0.0         | 0.5    | 0.1  | 0.1        | 0.0           | 0.2        | 0.9      | 0.0     |
| Plagioclase     | 0.0        | 0.0          | 0.0         | 0.0    | 0.1  | 0.0        | 0.0           | 0.4        | 0.6      | 0.2     |
| K-feldspar      | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 0.7        | 0.9      | 0.0     |
| Other silicates | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 8.8        | 0.0      | 0.0     |
| Carbonates      | 0.3        | 0.1          | 0.1         | 0.0    | 2.3  | 1.3        | 0.1           | 0.9        | 7.6      | 0.1     |
| Magnetite       | 0.3        | 0.2          | 0.1         | 0.0    | 12.2 | 1.0        | 0.0           | 0.1        | 14.6     | 0.1     |
| Ilmenite        | 0.1        | 0.1          | 0.0         | 0.0    | 15.7 | 0.6        | 0.0           | 0.3        | 17.4     | 0.0     |
| Apatite         | 0.1        | 0.1          | 0.0         | 0.0    | 7.6  | 0.3        | 0.0           | 0.6        | 10.0     | 0.0     |
| Mixtures        | 0.3        | 0.2          | 0.1         | 0.0    | 1.8  | 0.5        | 0.1           | 0.8        | 6.5      | 0.1     |
| Unclassified    | 0.4        | 0.1          | 0.3         | 0.0    | 2.0  | 0.2        | 0.0           | 0.6        | 3.3      | 0.0     |



### Table I2.4. Association between minerals, Sample PM2 (SEM Automated Mineralogy)

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 0.0    | 0.0         | 0.0        | 0.0             | 7.6        | 2.9       | 0.1      | 0.0     | 1.2      | 0.3          | 68.1         |
| Chalcopyrite    | 0.0    | 0.0         | 0.0        | 0.0             | 5.3        | 2.3       | 0.0      | 0.0     | 0.9      | 0.1          | 69.3         |
| Pentlandite     | 0.0    | 0.0         | 0.0        | 0.0             | 6.8        | 1.3       | 0.0      | 0.0     | 0.8      | 0.4          | 73.4         |
| Pyrite          | 0.9    | 0.1         | 0.0        | 0.0             | 0.3        | 1.1       | 0.0      | 0.0     | 0.0      | 0.0          | 88.9         |
| Talc            | 0.0    | 0.0         | 0.0        | 0.0             | 0.7        | 1.1       | 0.1      | 0.0     | 0.1      | 0.0          | 95.7         |
| Serpentine      | 0.0    | 0.0         | 0.0        | 0.0             | 11.9       | 2.4       | 0.1      | 0.0     | 0.5      | 0.1          | 41.7         |
| Clinopyroxene   | 0.0    | 0.0         | 0.0        | 0.0             | 37.6       | 0.2       | 0.0      | 0.0     | 1.9      | 0.2          | 47.7         |
| Amphiboles      | 0.0    | 0.1         | 0.1        | 0.0             | 20.6       | 0.8       | 0.1      | 0.1     | 2.2      | 0.3          | 64.9         |
| Chlorite        | 0.0    | 0.0         | 0.0        | 0.0             | 3.4        | 1.9       | 0.1      | 0.0     | 0.3      | 0.0          | 90.5         |
| Biotite         | 0.0    | 0.1         | 0.0        | 0.0             | 5.3        | 1.1       | 0.0      | 0.0     | 1.5      | 0.1          | 66.2         |
| Quartz          |        | 1.7         | 0.0        | 0.0             | 0.4        | 0.0       | 0.0      | 0.0     | 0.1      | 0.3          | 95.8         |
| Plagioclase     | 0.3    |             | 0.1        | 0.5             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 97.8         |
| K-feldspar      | 0.0    | 0.4         |            | 0.0             | 0.1        | 0.0       | 0.0      | 0.0     | 0.0      | 0.1          | 97.9         |
| Other silicates | 0.0    | 30.7        | 0.0        |                 | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.6          | 60.0         |
| Carbonates      | 0.0    | 0.0         | 0.0        | 0.0             |            | 3.2       | 0.1      | 0.1     | 1.9      | 0.6          | 80.4         |
| Magnetite       | 0.0    | 0.0         | 0.0        | 0.0             | 10.7       |           | 0.1      | 0.0     | 0.4      | 0.1          | 60.0         |
| Ilmenite        | 0.0    | 0.0         | 0.0        | 0.0             | 7.5        | 2.4       |          | 0.0     | 0.3      | 1.2          | 54.3         |
| Apatite         | 0.0    | 0.0         | 0.0        | 0.0             | 7.6        | 0.8       | 0.0      |         | 0.1      | 2.7          | 70.1         |
| Mixtures        | 0.0    | 0.0         | 0.0        | 0.0             | 15.8       | 1.1       | 0.0      | 0.0     |          | 0.3          | 72.2         |
| Unclassified    | 0.0    | 0.0         | 0.0        | 0.0             | 21.4       | 1.2       | 0.7      | 0.7     | 1.2      |              | 67.8         |

Table I2.5. Association between minerals, Sample PX1 (SEM Automated Mineralogy)

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 2.4          | 3.6         | 0.0    | 1.5  | 1.4        | 0.0           | 18.4       | 6.7      | 0.1     |
| Chalcopyrite    | 1.7        |              | 0.1         | 0.0    | 0.3  | 0.2        | 0.0           | 11.7       | 8.4      | 0.1     |
| Pentlandite     | 11.9       | 0.3          |             | 0.0    | 0.8  | 0.8        | 0.1           | 20.2       | 4.0      | 0.2     |
| Pyrite          | 0.0        | 0.0          | 0.0         |        | 0.0  | 0.0        | 0.0           | 4.6        | 12.5     | 0.0     |
| Talc            | 0.2        | 0.1          | 0.0         | 0.0    |      | 2.6        | 0.1           | 21.0       | 4.0      | 0.1     |
| Serpentine      | 0.2        | 0.0          | 0.0         | 0.0    | 3.4  |            | 0.1           | 25.5       | 15.2     | 0.2     |
| Clinopyroxene   | 0.0        | 0.0          | 0.0         | 0.0    | 0.3  | 0.3        |               | 36.8       | 1.1      | 0.0     |
| Amphiboles      | 0.1        | 0.1          | 0.0         | 0.0    | 1.0  | 0.8        | 0.2           |            | 15.2     | 0.2     |
| Chlorite        | 0.0        | 0.1          | 0.0         | 0.0    | 0.2  | 0.7        | 0.0           | 17.1       |          | 0.3     |
| Biotite         | 0.1        | 0.1          | 0.0         | 0.0    | 0.3  | 0.6        | 0.0           | 15.1       | 23.0     |         |
| Quartz          | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 14.4       | 0.1      | 0.7     |
| Plagioclase     | 0.0        | 0.2          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 8.5        | 2.7      | 0.7     |
| K-feldspar      | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 0.0        | 0.3      | 0.0     |
| Other silicates | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 7.9        | 3.2      | 0.0     |
| Carbonates      | 0.3        | 0.1          | 0.0         | 0.3    | 2.2  | 3.8        | 0.3           | 7.6        | 19.3     | 0.1     |
| Magnetite       | 0.4        | 0.0          | 0.0         | 0.0    | 0.2  | 0.5        | 0.0           | 16.3       | 1.8      | 0.1     |
| Ilmenite        | 0.1        | 0.1          | 0.0         | 0.0    | 0.1  | 0.5        | 0.0           | 24.9       | 18.1     | 0.5     |
| Apatite         | 0.1        | 0.3          | 0.0         | 0.0    | 0.2  | 0.1        | 0.0           | 21.8       | 20.6     | 0.1     |
| Mixtures        | 0.1        | 0.1          | 0.1         | 0.0    | 0.3  | 0.1        | 0.1           | 12.5       | 3.5      | 0.0     |
| Unclassified    | 0.1        | 0.1          | 0.0         | 0.0    | 0.1  | 0.1        | 0.0           | 9.2        | 2.9      | 0.1     |

Table I2.6. Association between minerals, Sample PX1 (SEM Automated Mineralogy)

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 0.0    | 0.0         | 0.0        | 0.0             | 0.2        | 0.0       | 0.1      | 0.0     | 0.9      | 0.4          | 63.9         |
| Chalcopyrite    | 0.0    | 0.0         | 0.0        | 0.0             | 0.1        | 0.0       | 0.1      | 0.0     | 0.5      | 0.1          | 76.5         |
| Pentlandite     | 0.0    | 0.0         | 0.0        | 0.0             | 0.1        | 0.0       | 0.1      | 0.0     | 2.6      | 0.3          | 58.3         |
| Pyrite          | 0.0    | 0.0         | 0.0        | 0.0             | 18.2       | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 64.7         |
| Talc            | 0.0    | 0.0         | 0.0        | 0.0             | 0.2        | 0.0       | 0.0      | 0.0     | 0.3      | 0.0          | 71.5         |
| Serpentine      | 0.0    | 0.0         | 0.0        | 0.0             | 0.4        | 0.0       | 0.1      | 0.0     | 0.1      | 0.0          | 54.9         |
| Clinopyroxene   | 0.0    | 0.0         | 0.0        | 0.0             | 0.1        | 0.0       | 0.0      | 0.0     | 0.7      | 0.0          | 60.7         |
| Amphiboles      | 0.0    | 0.0         | 0.0        | 0.0             | 0.0        | 0.0       | 0.1      | 0.0     | 0.4      | 0.1          | 81.6         |
| Chlorite        | 0.0    | 0.0         | 0.0        | 0.0             | 0.1        | 0.0       | 0.1      | 0.0     | 0.2      | 0.0          | 81.2         |
| Biotite         | 0.0    | 0.0         | 0.0        | 0.0             | 0.0        | 0.0       | 0.2      | 0.0     | 0.0      | 0.1          | 60.4         |
| Quartz          |        | 2.5         | 0.1        | 0.8             | 0.0        | 1.1       | 0.0      | 0.0     | 0.0      | 0.3          | 80.0         |
| Plagioclase     | 1.9    |             | 0.8        | 12.2            | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 73.0         |
| K-feldspar      | 0.3    | 1.0         |            | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.2          | 98.2         |
| Other silicates | 1.1    | 10.6        | 0.0        |                 | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 34.0         | 43.2         |
| Carbonates      | 0.0    | 0.0         | 0.0        | 0.0             |            | 0.1       | 0.8      | 0.1     | 3.4      | 0.1          | 61.3         |
| Magnetite       | 1.3    | 0.0         | 0.0        | 0.0             | 0.7        |           | 0.0      | 0.0     | 0.0      | 0.7          | 77.8         |
| Ilmenite        | 0.0    | 0.0         | 0.0        | 0.0             | 0.6        | 0.0       |          | 0.1     | 0.3      | 1.0          | 53.6         |
| Apatite         | 0.0    | 0.0         | 0.0        | 0.0             | 0.9        | 0.0       | 1.6      |         | 0.2      | 0.4          | 53.4         |
| Mixtures        | 0.0    | 0.0         | 0.0        | 0.0             | 0.3        | 0.0       | 0.0      | 0.0     |          | 0.1          | 82.8         |
| Unclassified    | 0.0    | 0.0         | 0.0        | 1.4             | 0.0        | 0.0       | 0.4      | 0.0     | 0.6      |              | 84.6         |



### Table 12.7. Association between minerals, Sample PX2 (SEM Automated Mineralogy)

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 0.6          | 1.0         | 0.0    | 0.6  | 0.0        | 0.0           | 0.4        | 0.0      | 0.0     |
| Chalcopyrite    | 0.1        |              | 0.1         | 0.0    | 0.0  | 0.0        | 0.0           | 20.3       | 1.8      | 0.1     |
| Pentlandite     | 4.9        | 3.4          |             | 9.9    | 0.0  | 0.0        | 0.0           | 35.7       | 0.3      | 0.0     |
| Pyrite          | 0.0        | 0.0          | 2.4         |        | 0.0  | 0.0        | 0.0           | 2.8        | 0.0      | 0.0     |
| Talc            | 0.8        | 0.0          | 0.0         | 0.0    |      | 0.3        | 0.0           | 4.6        | 0.5      | 0.0     |
| Serpentine      | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  |            | 0.0           | 2.8        | 0.1      | 0.0     |
| Clinopyroxene   | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        |               | 25.5       | 0.4      | 0.1     |
| Amphiboles      | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           |            | 7.5      | 0.6     |
| Chlorite        | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 13.6       |          | 0.7     |
| Biotite         | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 21.4       | 14.1     |         |
| Quartz          | 0.1        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 4.7        | 0.8      | 0.5     |
| Plagioclase     | 0.2        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 6.6        | 1.5      | 1.7     |
| K-feldspar      | 0.3        | 0.1          | 0.1         | 3.0    | 0.0  | 0.0        | 0.0           | 1.2        | 0.0      | 0.2     |
| Other silicates | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 57.7       | 1.1      | 0.1     |
| Carbonates      | 0.0        | 0.0          | 0.0         | 4.2    | 0.0  | 0.4        | 0.6           | 0.5        | 0.0      | 0.1     |
| Magnetite       | 0.2        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 22.7       | 14.9     | 0.2     |
| Ilmenite        | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 26.5       | 3.6      | 0.6     |
| Apatite         | 0.0        | 0.0          | 0.0         | 0.1    | 0.0  | 0.0        | 0.1           | 30.5       | 2.8      | 1.4     |
| Mixtures        | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 12.2       | 0.7      | 0.1     |
| Unclassified    | 0.0        | 0.1          | 0.0         | 0.1    | 0.0  | 0.0        | 0.0           | 11.8       | 1.7      | 0.1     |

Table I2.8. Association between minerals, Sample PX2 (SEM Automated Mineralogy)

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 0.3    | 3.8         | 0.4        | 0.0             | 0.0        | 0.4       | 0.0      | 0.0     | 0.2      | 0.2          | 92.0         |
| Chalcopyrite    | 0.1    | 0.2         | 0.0        | 0.1             | 0.0        | 0.1       | 0.0      | 0.0     | 0.8      | 0.3          | 67.4         |
| Pentlandite     | 0.0    | 2.5         | 1.2        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.3      | 0.0          | 39.9         |
| Pyrite          | 0.0    | 0.5         | 22.4       | 0.0             | 40.6       | 0.0       | 0.0      | 0.9     | 0.0      | 8.4          | 21.9         |
| Talc            | 0.0    | 0.0         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 93.8         |
| Serpentine      | 0.0    | 0.0         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 97.0         |
| Clinopyroxene   | 0.0    | 0.0         | 0.0        | 0.0             | 0.2        | 0.0       | 0.0      | 0.0     | 1.9      | 0.1          | 71.8         |
| Amphiboles      | 0.0    | 0.0         | 0.0        | 0.0             | 0.0        | 0.0       | 0.1      | 0.0     | 0.7      | 0.1          | 90.9         |
| Chlorite        | 0.0    | 0.0         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.0          | 85.6         |
| Biotite         | 0.0    | 0.2         | 0.0        | 0.0             | 0.0        | 0.0       | 0.1      | 0.0     | 0.3      | 0.0          | 63.9         |
| Quartz          |        | 15.4        | 0.7        | 1.8             | 0.0        | 0.0       | 0.0      | 0.0     | 0.2      | 0.6          | 75.2         |
| Plagioclase     | 4.6    |             | 6.3        | 7.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.6          | 71.2         |
| K-feldspar      | 1.2    | 37.3        |            | 0.6             | 0.0        | 0.0       | 0.0      | 0.2     | 0.0      | 3.2          | 52.5         |
| Other silicates | 1.4    | 19.8        | 0.4        |                 | 0.5        | 0.1       | 0.0      | 0.0     | 3.1      | 0.4          | 15.3         |
| Carbonates      | 0.0    | 0.0         | 0.0        | 0.9             |            | 2.0       | 0.5      | 0.2     | 21.3     | 21.0         | 48.3         |
| Magnetite       | 0.1    | 0.0         | 0.1        | 0.4             | 2.0        |           | 0.0      | 0.0     | 1.9      | 3.9          | 52.8         |
| Ilmenite        | 0.0    | 0.0         | 0.0        | 0.0             | 0.0        | 0.0       |          | 0.0     | 0.2      | 2.3          | 66.8         |
| Apatite         | 0.0    | 0.0         | 0.2        | 0.0             | 0.1        | 0.0       | 0.1      |         | 0.3      | 1.4          | 63.1         |
| Mixtures        | 0.0    | 0.0         | 0.0        | 0.0             | 0.1        | 0.0       | 0.0      | 0.0     |          | 0.1          | 86.9         |
| Unclassified    | 0.1    | 0.3         | 0.3        | 0.1             | 1.5        | 0.2       | 2.0      | 0.3     | 1.3      |              | 80.2         |

Table I2.9. Association between minerals, Sample MS1 (SEM Automated Mineralogy)

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 1.7          | 3.5         | 0.0    | 0.0  | 0.0        | 0.0           | 16.4       | 0.7      | 0.1     |
| Chalcopyrite    | 0.5        |              | 0.1         | 0.1    | 0.0  | 0.0        | 0.0           | 21.1       | 0.7      | 0.3     |
| Pentlandite     | 3.5        | 0.3          |             | 0.2    | 0.0  | 0.0        | 0.0           | 13.4       | 0.5      | 0.1     |
| Pyrite          | 0.1        | 0.5          | 0.7         |        | 0.0  | 0.0        | 0.0           | 14.6       | 3.1      | 0.5     |
| Talc            | 0.0        | 0.0          | 0.0         | 0.0    |      | 0.2        | 0.0           | 0.3        | 1.0      | 0.0     |
| Serpentine      | 0.1        | 0.0          | 0.0         | 0.0    | 1.6  |            | 0.0           | 15.0       | 7.6      | 0.3     |
| Clinopyroxene   | 0.0        | 0.7          | 0.0         | 0.0    | 0.0  | 0.0        |               | 6.4        | 0.0      | 0.0     |
| Amphiboles      | 0.1        | 0.4          | 0.1         | 0.0    | 0.0  | 0.0        | 0.0           |            | 2.1      | 0.7     |
| Chlorite        | 0.0        | 0.1          | 0.0         | 0.1    | 0.0  | 0.0        | 0.0           | 16.8       |          | 2.1     |
| Biotite         | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 9.9        | 3.6      |         |
| Quartz          | 0.0        | 0.2          | 0.0         | 0.1    | 0.0  | 0.0        | 0.0           | 39.7       | 2.2      | 1.5     |
| Plagioclase     | 0.1        | 0.3          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 11.0       | 2.8      | 1.9     |
| K-feldspar      | 0.2        | 0.6          | 0.3         | 0.2    | 0.0  | 0.0        | 0.0           | 2.6        | 0.5      | 3.3     |
| Other silicates | 0.1        | 0.3          | 0.0         | 0.1    | 0.0  | 0.0        | 0.0           | 24.8       | 1.5      | 0.5     |
| Carbonates      | 0.6        | 0.2          | 0.0         | 0.0    | 0.0  | 0.0        | 0.4           | 3.0        | 0.6      | 0.9     |
| Magnetite       | 1.5        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 6.0        | 2.4      | 0.1     |
| Ilmenite        | 0.1        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 27.9       | 0.8      | 2.3     |
| Apatite         | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.1           | 23.4       | 1.3      | 1.5     |
| Mixtures        | 0.1        | 0.1          | 0.0         | 0.1    | 0.0  | 0.0        | 0.0           | 20.3       | 0.1      | 0.1     |
| Unclassified    | 1.0        | 0.4          | 0.1         | 0.1    | 0.0  | 0.0        | 0.0           | 24.8       | 0.9      | 0.6     |



### Table I2.10. Association between minerals, Sample MS1 (SEM Automated Mineralogy)

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 0.7    | 3.2         | 0.7        | 0.9             | 0.2        | 0.1       | 0.0      | 0.0     | 0.5      | 1.5          | 68.2         |
| Chalcopyrite    | 2.0    | 3.3         | 0.5        | 0.9             | 0.0        | 0.0       | 0.0      | 0.0     | 0.4      | 0.3          | 69.4         |
| Pentlandite     | 0.9    | 1.9         | 0.8        | 0.4             | 0.0        | 0.0       | 0.0      | 0.0     | 0.3      | 0.3          | 77.0         |
| Pyrite          | 4.9    | 2.9         | 1.4        | 1.4             | 0.0        | 0.0       | 0.0      | 0.0     | 1.3      | 1.2          | 66.8         |
| Talc            | 0.1    | 0.0         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 98.4         |
| Serpentine      | 2.0    | 0.3         | 0.0        | 0.1             | 0.2        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 72.8         |
| Clinopyroxene   | 0.6    | 0.2         | 0.0        | 0.0             | 1.7        | 0.0       | 0.0      | 0.1     | 0.4      | 0.1          | 89.9         |
| Amphiboles      | 8.9    | 2.4         | 0.1        | 1.3             | 0.0        | 0.0       | 0.0      | 0.0     | 0.8      | 0.3          | 82.7         |
| Chlorite        | 3.9    | 4.9         | 0.1        | 0.7             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.1          | 71.0         |
| Biotite         | 4.5    | 5.7         | 0.7        | 0.4             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.2          | 74.7         |
| Quartz          |        | 6.9         | 0.2        | 0.7             | 0.0        | 0.0       | 0.0      | 0.0     | 0.2      | 0.7          | 47.7         |
| Plagioclase     | 7.2    |             | 1.3        | 8.6             | 0.1        | 0.0       | 0.0      | 0.0     | 0.0      | 0.3          | 66.3         |
| K-feldspar      | 2.5    | 20.6        |            | 2.8             | 0.1        | 0.0       | 0.0      | 0.0     | 0.0      | 0.9          | 65.3         |
| Other silicates | 2.9    | 34.1        | 0.8        |                 | 0.0        | 0.0       | 0.5      | 0.0     | 0.3      | 0.6          | 33.6         |
| Carbonates      | 1.4    | 7.4         | 0.7        | 1.1             |            | 0.0       | 0.0      | 0.1     | 0.7      | 0.1          | 82.7         |
| Magnetite       | 0.3    | 0.2         | 0.1        | 0.0             | 0.1        |           | 0.0      | 0.0     | 0.1      | 0.6          | 88.4         |
| Ilmenite        | 2.5    | 1.9         | 0.0        | 19.3            | 0.0        | 0.0       |          | 0.4     | 0.6      | 5.4          | 38.8         |
| Apatite         | 3.9    | 6.5         | 0.3        | 0.4             | 0.1        | 0.0       | 0.3      |         | 0.3      | 0.4          | 61.5         |
| Mixtures        | 0.7    | 0.2         | 0.0        | 0.2             | 0.0        | 0.0       | 0.0      | 0.0     |          | 0.1          | 77.9         |
| Unclassified    | 11.2   | 3.7         | 0.8        | 1.9             | 0.0        | 0.0       | 0.4      | 0.1     | 0.5      |              | 53.5         |

| Table I2.11. Association | between minerals, | Sample MS2 (SEM | Automated Mineralogy) |
|--------------------------|-------------------|-----------------|-----------------------|
|--------------------------|-------------------|-----------------|-----------------------|

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 3.4          | 5.7         | 0.0    | 0.0  | 0.0        | 0.0           | 3.7        | 0.8      | 0.1     |
| Chalcopyrite    | 1.1        |              | 0.1         | 0.3    | 0.0  | 0.0        | 0.0           | 4.9        | 1.8      | 0.3     |
| Pentlandite     | 6.2        | 0.2          |             | 2.7    | 0.0  | 0.0        | 0.0           | 2.8        | 1.4      | 0.2     |
| Pyrite          | 0.1        | 3.9          | 13.9        |        | 0.0  | 0.0        | 0.0           | 5.4        | 1.2      | 0.2     |
| Talc            | 0.0        | 0.3          | 0.0         | 0.0    |      | 2.4        | 0.0           | 4.9        | 6.0      | 0.3     |
| Serpentine      | 0.0        | 0.0          | 0.0         | 0.0    | 2.6  |            | 0.0           | 32.1       | 5.6      | 6.3     |
| Clinopyroxene   | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        |               | 21.3       | 0.2      | 0.1     |
| Amphiboles      | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           |            | 7.3      | 0.7     |
| Chlorite        | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 9.4        |          | 1.8     |
| Biotite         | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 1.6        | 3.2      |         |
| Quartz          | 0.1        | 0.3          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 15.7       | 1.8      | 0.7     |
| Plagioclase     | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 9.7        | 5.0      | 2.6     |
| K-feldspar      | 0.1        | 0.5          | 0.1         | 0.0    | 0.0  | 0.0        | 0.0           | 2.5        | 0.7      | 1.8     |
| Other silicates | 0.1        | 0.4          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 0.9        | 1.3      | 0.2     |
| Carbonates      | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 0.1        | 0.0      | 0.0     |
| Magnetite       | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 2.9        | 0.1      | 0.2     |
| Ilmenite        | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 1.0        | 0.0      | 0.9     |
| Apatite         | 0.0        | 0.2          | 0.1         | 0.0    | 0.0  | 0.0        | 0.0           | 3.2        | 1.3      | 0.9     |
| Mixtures        | 0.1        | 0.1          | 0.0         | 0.1    | 0.0  | 0.0        | 0.0           | 19.0       | 0.6      | 0.4     |
| Unclassified    | 0.1        | 1.0          | 0.2         | 0.1    | 0.0  | 0.0        | 0.0           | 2.7        | 0.6      | 2.0     |

Table I2.12. Association between minerals, Sample MS2 (SEM Automated Mineralogy)

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 1.7    | 5.0         | 0.6        | 2.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.4      | 0.2          | 74.4         |
| Chalcopyrite    | 3.0    | 10.9        | 1.4        | 3.5             | 0.0        | 0.0       | 0.0      | 0.0     | 0.2      | 0.8          | 71.3         |
| Pentlandite     | 0.4    | 4.0         | 0.8        | 1.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.2      | 0.6          | 78.5         |
| Pyrite          | 0.1    | 5.8         | 0.6        | 2.1             | 0.0        | 0.0       | 0.0      | 0.0     | 1.0      | 0.8          | 63.5         |
| Talc            | 6.1    | 7.6         | 0.0        | 0.2             | 0.2        | 0.0       | 0.0      | 0.0     | 0.0      | 2.8          | 69.4         |
| Serpentine      | 1.3    | 4.4         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 1.3          | 46.2         |
| Clinopyroxene   | 0.3    | 0.5         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.2      | 0.0          | 77.2         |
| Amphiboles      | 3.1    | 15.8        | 0.1        | 0.2             | 0.0        | 0.0       | 0.0      | 0.0     | 0.5      | 0.0          | 72.1         |
| Chlorite        | 0.4    | 10.4        | 0.1        | 0.3             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 77.5         |
| Biotite         | 0.4    | 9.5         | 0.2        | 0.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.1          | 85.0         |
| Quartz          |        | 22.4        | 1.0        | 3.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.2      | 0.7          | 54.1         |
| Plagioclase     | 2.8    |             | 1.2        | 5.8             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.1          | 72.5         |
| K-feldspar      | 3.5    | 39.5        |            | 3.5             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.4          | 47.4         |
| Other silicates | 3.3    | 50.3        | 0.9        |                 | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.2          | 42.3         |
| Carbonates      | 0.2    | 0.0         | 0.0        | 0.0             |            | 0.0       | 5.3      | 0.0     | 0.2      | 1.4          | 92.8         |
| Magnetite       | 0.0    | 2.5         | 0.0        | 0.1             | 0.0        |           | 0.0      | 0.0     | 0.0      | 1.5          | 89.7         |
| Ilmenite        | 5.9    | 5.3         | 0.0        | 6.7             | 4.5        | 0.0       |          | 0.0     | 0.0      | 0.0          | 75.6         |
| Apatite         | 0.8    | 6.9         | 0.0        | 0.5             | 0.0        | 0.0       | 0.0      |         | 0.0      | 0.7          | 85.3         |
| Mixtures        | 1.1    | 1.4         | 0.0        | 0.1             | 0.0        | 0.0       | 0.0      | 0.0     |          | 0.0          | 77.0         |
| Unclassified    | 8.8    | 10.5        | 1.2        | 2.4             | 0.1        | 0.2       | 0.0      | 0.2     | 0.1      |              | 69.4         |



### Table I2.13. Association between minerals, Sample TZ1 (SEM Automated Mineralogy)

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 2.3          | 3.7         | 0.1    | 0.0  | 0.0        | 0.0           | 5.9        | 0.7      | 0.1     |
| Chalcopyrite    | 0.9        |              | 0.1         | 0.3    | 0.0  | 0.0        | 0.0           | 11.3       | 1.0      | 0.3     |
| Pentlandite     | 8.7        | 0.4          |             | 1.9    | 0.0  | 0.0        | 0.0           | 8.7        | 0.9      | 0.4     |
| Pyrite          | 0.3        | 3.8          | 4.5         |        | 0.0  | 0.0        | 0.0           | 3.9        | 1.3      | 0.3     |
| Talc            | 0.0        | 0.0          | 0.0         | 0.0    |      | 0.1        | 0.0           | 0.9        | 1.4      | 0.0     |
| Serpentine      | 0.5        | 0.9          | 0.0         | 0.0    | 0.1  |            | 0.0           | 25.4       | 15.4     | 0.0     |
| Clinopyroxene   | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        |               | 2.9        | 0.0      | 0.0     |
| Amphiboles      | 0.1        | 0.4          | 0.1         | 0.0    | 0.0  | 0.0        | 0.0           |            | 5.4      | 0.6     |
| Chlorite        | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 13.9       |          | 1.4     |
| Biotite         | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 3.2        | 2.7      |         |
| Quartz          | 0.1        | 0.3          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 17.6       | 3.0      | 1.0     |
| Plagioclase     | 0.1        | 0.4          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 6.1        | 3.0      | 1.2     |
| K-feldspar      | 0.3        | 0.7          | 0.2         | 0.0    | 0.0  | 0.0        | 0.0           | 2.8        | 0.7      | 2.9     |
| Other silicates | 0.1        | 0.6          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 3.2        | 2.0      | 0.2     |
| Carbonates      | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.2           | 0.1        | 9.8      | 0.7     |
| Magnetite       | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 1.2        | 0.0           | 6.6        | 0.8      | 0.7     |
| Ilmenite        | 4.7        | 0.7          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 2.2        | 4.2      | 7.3     |
| Apatite         | 0.0        | 0.2          | 0.0         | 0.1    | 0.0  | 0.0        | 0.0           | 9.9        | 1.1      | 0.6     |
| Mixtures        | 0.1        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 26.0       | 0.9      | 0.1     |
| Unclassified    | 0.2        | 0.7          | 0.1         | 0.1    | 0.0  | 0.0        | 0.0           | 11.4       | 1.1      | 0.9     |

Table I2.14. Association between minerals, Sample TZ1 (SEM Automated Mineralogy)

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 1.8    | 7.8         | 1.2        | 5.3             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.5          | 69.2         |
| Chalcopyrite    | 4.1    | 15.8        | 1.1        | 8.7             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.6          | 55.3         |
| Pentlandite     | 2.4    | 10.1        | 1.8        | 4.4             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.8          | 57.2         |
| Pyrite          | 1.4    | 6.4         | 1.0        | 4.2             | 0.0        | 0.0       | 0.0      | 0.1     | 0.2      | 0.7          | 70.7         |
| Talc            | 0.2    | 0.1         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 97.4         |
| Serpentine      | 3.3    | 1.6         | 0.0        | 0.0             | 0.0        | 3.8       | 0.0      | 0.0     | 0.1      | 0.7          | 48.2         |
| Clinopyroxene   | 21.8   | 0.8         | 0.0        | 6.0             | 1.1        | 0.0       | 0.0      | 0.0     | 0.1      | 1.3          | 66.0         |
| Amphiboles      | 7.3    | 9.0         | 0.2        | 1.6             | 0.0        | 0.0       | 0.0      | 0.0     | 0.5      | 0.3          | 74.5         |
| Chlorite        | 3.2    | 11.2        | 0.1        | 2.7             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.1          | 67.2         |
| Biotite         | 2.3    | 9.4         | 0.8        | 0.6             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.1          | 80.9         |
| Quartz          |        | 19.2        | 0.7        | 3.4             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.8          | 53.7         |
| Plagioclase     | 5.5    |             | 1.2        | 20.6            | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.3          | 61.6         |
| K-feldspar      | 5.5    | 32.8        |            | 4.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.4          | 49.6         |
| Other silicates | 2.8    | 57.6        | 0.4        |                 | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.2          | 32.6         |
| Carbonates      | 2.1    | 13.5        | 0.7        | 0.8             |            | 0.0       | 0.0      | 0.0     | 0.2      | 0.6          | 71.1         |
| Magnetite       | 0.0    | 2.7         | 0.0        | 0.4             | 0.0        |           | 0.0      | 0.0     | 0.0      | 0.9          | 86.6         |
| Ilmenite        | 6.3    | 16.1        | 0.0        | 25.6            | 0.0        | 0.0       |          | 0.0     | 0.0      | 3.5          | 29.2         |
| Apatite         | 3.8    | 8.3         | 0.1        | 3.0             | 0.0        | 0.0       | 0.0      |         | 0.1      | 0.4          | 72.6         |
| Mixtures        | 1.0    | 0.7         | 0.0        | 0.4             | 0.0        | 0.0       | 0.0      | 0.0     |          | 0.2          | 70.5         |
| Unclassified    | 12.1   | 13.5        | 0.8        | 4.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.2      |              | 54.6         |

Table I2.15. Association between minerals, Sample TZ2 (SEM Automated Mineralogy)

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 1.2          | 4.4         | 0.0    | 0.0  | 0.0        | 0.0           | 4.2        | 0.6      | 0.2     |
| Chalcopyrite    | 1.2        |              | 0.1         | 0.1    | 0.0  | 0.0        | 0.0           | 5.7        | 1.4      | 0.3     |
| Pentlandite     | 15.0       | 0.3          |             | 0.0    | 0.1  | 0.0        | 0.0           | 4.0        | 0.5      | 0.4     |
| Pyrite          | 0.4        | 1.4          | 0.0         |        | 0.0  | 0.0        | 0.0           | 2.5        | 0.3      | 0.5     |
| Talc            | 0.0        | 0.1          | 0.9         | 0.1    |      | 0.1        | 0.0           | 4.4        | 11.4     | 0.4     |
| Serpentine      | 0.0        | 0.0          | 0.0         | 0.0    | 0.2  |            | 0.0           | 28.8       | 9.6      | 0.0     |
| Clinopyroxene   | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        |               | 26.2       | 1.1      | 0.0     |
| Amphiboles      | 0.1        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           |            | 9.4      | 0.6     |
| Chlorite        | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 18.1       |          | 1.6     |
| Biotite         | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 2.5        | 3.7      |         |
| Quartz          | 0.1        | 0.2          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 16.2       | 4.8      | 0.8     |
| Plagioclase     | 0.1        | 0.2          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 7.6        | 2.7      | 2.4     |
| K-feldspar      | 0.3        | 0.8          | 0.1         | 0.0    | 0.1  | 0.0        | 0.0           | 3.3        | 1.3      | 2.3     |
| Other silicates | 0.1        | 0.2          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 2.1        | 2.6      | 0.2     |
| Carbonates      | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.1           | 0.1        | 0.7      | 0.0     |
| Magnetite       | 0.2        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 1.9        | 1.0      | 0.0     |
| Ilmenite        | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 0.0        | 0.0      | 0.0     |
| Apatite         | 0.1        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 8.3        | 2.1      | 0.5     |
| Mixtures        | 0.1        | 0.2          | 0.0         | 0.0    | 0.0  | 0.0        | 0.1           | 32.0       | 0.6      | 0.1     |
| Unclassified    | 0.3        | 0.6          | 0.4         | 0.1    | 0.0  | 0.0        | 0.0           | 8.9        | 2.8      | 1.3     |



### Table I2.16. Association between minerals, Sample TZ2 (SEM Automated Mineralogy)

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 0.9    | 5.8         | 0.8        | 1.5             | 0.0        | 0.0       | 0.0      | 0.0     | 0.2      | 0.4          | 78.1         |
| Chalcopyrite    | 3.0    | 16.8        | 1.8        | 5.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.3      | 0.6          | 63.4         |
| Pentlandite     | 0.6    | 3.7         | 0.8        | 0.9             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.9          | 72.4         |
| Pyrite          | 0.5    | 1.0         | 0.1        | 1.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.5      | 1.0          | 90.6         |
| Talc            | 8.6    | 4.5         | 1.8        | 0.3             | 0.0        | 0.0       | 0.0      | 0.0     | 0.2      | 0.5          | 66.8         |
| Serpentine      | 0.2    | 0.6         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 60.6         |
| Clinopyroxene   | 4.4    | 0.8         | 0.0        | 0.1             | 0.2        | 0.0       | 0.0      | 0.0     | 1.6      | 0.1          | 65.5         |
| Amphiboles      | 4.0    | 9.8         | 0.1        | 0.7             | 0.0        | 0.0       | 0.0      | 0.0     | 0.5      | 0.1          | 74.5         |
| Chlorite        | 2.4    | 6.6         | 0.1        | 2.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.1          | 68.9         |
| Biotite         | 1.0    | 13.6        | 0.4        | 0.4             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.1          | 78.3         |
| Quartz          |        | 20.0        | 0.9        | 1.8             | 0.0        | 0.0       | 0.0      | 0.1     | 0.0      | 0.7          | 54.3         |
| Plagioclase     | 3.9    |             | 0.9        | 21.2            | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.2          | 60.8         |
| K-feldspar      | 6.4    | 32.7        |            | 4.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.4          | 48.3         |
| Other silicates | 1.2    | 68.8        | 0.4        |                 | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.3          | 24.2         |
| Carbonates      | 3.0    | 3.9         | 0.6        | 0.8             |            | 1.2       | 0.0      | 0.0     | 0.8      | 0.3          | 88.6         |
| Magnetite       | 0.0    | 2.4         | 0.0        | 0.3             | 0.6        |           | 0.0      | 0.0     | 0.0      | 0.1          | 93.5         |
| Ilmenite        | 0.0    | 0.0         | 0.0        | 68.7            | 0.0        | 0.0       |          | 0.0     | 0.0      | 18.9         | 8.8          |
| Apatite         | 6.8    | 6.2         | 0.1        | 0.7             | 0.0        | 0.0       | 0.0      |         | 0.0      | 1.1          | 74.1         |
| Mixtures        | 0.5    | 0.7         | 0.0        | 0.1             | 0.0        | 0.0       | 0.0      | 0.0     |          | 0.1          | 65.4         |
| Unclassified    | 10.8   | 13.7        | 0.8        | 5.2             | 0.0        | 0.0       | 0.0      | 0.2     | 0.1      |              | 54.7         |

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 2.0          | 7.9         | 0.2    | 0.0  | 0.0        | 0.0           | 0.9        | 0.8      | 0.5     |
| Chalcopyrite    | 2.4        |              | 0.2         | 0.5    | 0.0  | 0.0        | 0.0           | 1.0        | 1.4      | 0.5     |
| Pentlandite     | 13.7       | 0.4          |             | 1.2    | 0.0  | 0.0        | 0.0           | 1.0        | 0.8      | 0.5     |
| Pyrite          | 1.2        | 3.6          | 5.3         |        | 0.0  | 0.0        | 0.0           | 0.6        | 2.3      | 0.5     |
| Talc            | 0.0        | 0.0          | 0.0         | 0.0    |      | 0.6        | 0.0           | 2.6        | 0.2      | 0.0     |
| Serpentine      | 0.0        | 0.0          | 1.0         | 0.0    | 12.4 |            | 0.0           | 2.7        | 4.5      | 0.1     |
| Clinopyroxene   | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        |               | 6.1        | 0.0      | 0.4     |
| Amphiboles      | 0.1        | 0.1          | 0.1         | 0.0    | 0.0  | 0.0        | 0.0           |            | 3.1      | 0.5     |
| Chlorite        | 0.1        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 2.6        |          | 2.1     |
| Biotite         | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 0.3        | 1.3      |         |
| Quartz          | 0.2        | 0.3          | 0.1         | 0.0    | 0.0  | 0.0        | 0.0           | 3.0        | 1.8      | 1.5     |
| Plagioclase     | 0.2        | 0.3          | 0.1         | 0.0    | 0.0  | 0.0        | 0.0           | 3.4        | 2.7      | 3.7     |
| K-feldspar      | 0.6        | 0.5          | 0.4         | 0.1    | 0.0  | 0.0        | 0.0           | 1.0        | 0.4      | 3.2     |
| Other silicates | 0.4        | 0.7          | 0.2         | 0.1    | 0.0  | 0.0        | 0.0           | 1.0        | 1.9      | 0.8     |
| Carbonates      | 0.1        | 0.2          | 0.0         | 0.3    | 0.0  | 0.0        | 0.0           | 2.3        | 0.6      | 0.3     |
| Magnetite       | 0.0        | 0.0          | 0.2         | 0.0    | 0.0  | 0.0        | 0.0           | 1.5        | 1.8      | 0.3     |
| Ilmenite        | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 2.0        | 0.7      | 7.0     |
| Apatite         | 0.1        | 0.1          | 0.1         | 0.2    | 0.0  | 0.0        | 0.0           | 1.9        | 1.2      | 2.4     |
| Mixtures        | 0.2        | 0.2          | 0.2         | 0.0    | 0.1  | 0.0        | 0.0           | 23.9       | 1.8      | 0.2     |
| Unclassified    | 1.2        | 0.9          | 0.7         | 0.4    | 0.0  | 0.0        | 0.9           | 1.4        | 0.9      | 2.0     |

#### Table I2.18. Association between minerals, Sample BAS1 (SEM Automated Mineralogy)

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 1.1    | 14.7        | 2.4        | 3.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.8          | 63.2         |
| Chalcopyrite    | 1.8    | 21.1        | 2.2        | 5.5             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.7          | 62.0         |
| Pentlandite     | 0.7    | 13.5        | 2.3        | 2.7             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.8          | 60.9         |
| Pyrite          | 0.5    | 10.9        | 1.5        | 3.7             | 0.4        | 0.0       | 0.0      | 0.1     | 0.0      | 1.7          | 65.8         |
| Talc            | 0.5    | 0.0         | 0.0        | 0.0             | 0.1        | 0.0       | 0.0      | 0.0     | 0.1      | 0.1          | 95.9         |
| Serpentine      | 3.1    | 0.4         | 0.0        | 0.0             | 2.3        | 0.1       | 0.0      | 0.0     | 0.0      | 1.3          | 71.9         |
| Clinopyroxene   | 5.9    | 6.7         | 0.0        | 0.1             | 0.6        | 0.0       | 0.0      | 0.0     | 0.1      | 13.2         | 67.0         |
| Amphiboles      | 1.7    | 20.0        | 0.3        | 0.6             | 0.0        | 0.0       | 0.0      | 0.0     | 0.4      | 0.1          | 73.0         |
| Chlorite        | 0.9    | 13.3        | 0.1        | 1.1             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.1          | 79.5         |
| Biotite         | 0.5    | 11.6        | 0.6        | 0.3             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.1          | 85.4         |
| Quartz          |        | 28.1        | 1.6        | 1.2             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.8          | 61.2         |
| Plagioclase     | 2.7    |             | 2.2        | 6.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.3          | 78.1         |
| K-feldspar      | 2.9    | 41.9        |            | 1.5             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.4          | 46.9         |
| Other silicates | 1.0    | 54.5        | 0.8        |                 | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.3          | 37.9         |
| Carbonates      | 1.6    | 14.5        | 0.4        | 1.3             |            | 0.0       | 0.0      | 0.1     | 0.5      | 0.5          | 77.3         |
| Magnetite       | 0.6    | 5.2         | 0.0        | 0.2             | 0.0        |           | 0.0      | 0.0     | 0.0      | 0.1          | 89.8         |
| Ilmenite        | 1.1    | 6.5         | 0.2        | 5.6             | 0.0        | 0.0       |          | 0.2     | 0.0      | 10.9         | 65.7         |
| Apatite         | 1.2    | 24.3        | 0.2        | 2.0             | 0.1        | 0.0       | 0.0      |         | 0.0      | 0.5          | 65.8         |
| Mixtures        | 1.0    | 8.8         | 0.2        | 0.3             | 0.6        | 0.0       | 0.0      | 0.0     |          | 0.4          | 62.2         |
| Unclassified    | 8.3    | 25.5        | 2.1        | 3.1             | 0.1        | 0.0       | 0.3      | 0.1     | 0.1      |              | 51.7         |



### Table I2.19. Association between minerals, Sample BAS2 (SEM Automated Mineralogy)

| Mineral         | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene | Amphiboles | Chlorite | Biotite |
|-----------------|------------|--------------|-------------|--------|------|------------|---------------|------------|----------|---------|
| Pyrrhotite      |            | 14.5         | 2.0         | 0.4    | 0.0  | 0.0        | 0.0           | 3.1        | 2.0      | 0.6     |
| Chalcopyrite    | 1.1        |              | 0.1         | 0.0    | 0.0  | 0.0        | 0.0           | 4.9        | 0.8      | 0.3     |
| Pentlandite     | 9.6        | 3.5          |             | 0.8    | 0.0  | 0.0        | 0.0           | 7.4        | 1.6      | 0.9     |
| Pyrite          | 0.9        | 2.6          | 0.8         |        | 0.0  | 0.2        | 0.0           | 8.3        | 5.4      | 0.6     |
| Talc            | 0.0        | 0.0          | 0.0         | 0.0    |      | 0.0        | 0.0           | 3.7        | 1.5      | 0.2     |
| Serpentine      | 0.6        | 14.9         | 0.2         | 1.2    | 0.0  |            | 0.0           | 9.0        | 14.8     | 8.8     |
| Clinopyroxene   | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        |               | 10.3       | 10.6     | 1.4     |
| Amphiboles      | 0.0        | 0.4          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           |            | 5.2      | 0.6     |
| Chlorite        | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 8.4        |          | 1.3     |
| Biotite         | 0.0        | 0.1          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 4.0        | 5.3      |         |
| Quartz          | 0.0        | 0.6          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 21.2       | 5.0      | 1.0     |
| Plagioclase     | 0.1        | 1.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 6.6        | 6.2      | 1.0     |
| K-feldspar      | 0.1        | 1.6          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 2.8        | 1.1      | 2.4     |
| Other silicates | 0.0        | 0.9          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 4.5        | 2.0      | 0.2     |
| Carbonates      | 0.1        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 9.5        | 0.5      | 0.4     |
| Magnetite       | 0.0        | 0.3          | 0.0         | 0.0    | 0.0  | 0.1        | 0.0           | 4.1        | 0.8      | 0.9     |
| Ilmenite        | 0.1        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 17.2       | 7.8      | 2.8     |
| Apatite         | 0.0        | 0.0          | 0.0         | 0.0    | 0.0  | 0.0        | 0.0           | 7.4        | 1.5      | 0.3     |
| Mixtures        | 0.0        | 0.2          | 0.0         | 0.1    | 0.0  | 0.0        | 0.1           | 32.9       | 0.5      | 0.1     |
| Unclassified    | 0.3        | 1.4          | 0.1         | 0.1    | 0.0  | 0.0        | 0.0           | 11.9       | 2.7      | 1.1     |

## Table I2.20. Association between minerals, Sample BAS2 (SEM Automated Mineralogy)

| Mineral         | Quartz | Plagioclase | K-feldspar | Other silicates | Carbonates | Magnetite | Ilmenite | Apatite | Mixtures | Unclassified | Free Surface |
|-----------------|--------|-------------|------------|-----------------|------------|-----------|----------|---------|----------|--------------|--------------|
| Pyrrhotite      | 1.3    | 11.8        | 1.3        | 2.1             | 0.0        | 0.0       | 0.1      | 0.0     | 0.2      | 1.1          | 56.4         |
| Chalcopyrite    | 1.6    | 15.9        | 1.1        | 3.2             | 0.0        | 0.0       | 0.0      | 0.0     | 0.1      | 0.5          | 70.2         |
| Pentlandite     | 1.1    | 9.4         | 1.4        | 3.3             | 0.0        | 0.0       | 0.1      | 0.0     | 0.2      | 0.6          | 58.7         |
| Pyrite          | 1.7    | 4.5         | 1.3        | 1.7             | 0.1        | 0.0       | 0.0      | 0.0     | 1.1      | 1.4          | 69.1         |
| Talc            | 6.5    | 1.4         | 0.2        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.0          | 86.5         |
| Serpentine      | 13.8   | 1.8         | 1.6        | 0.5             | 0.0        | 0.1       | 0.0      | 0.0     | 0.2      | 2.8          | 27.4         |
| Clinopyroxene   | 1.3    | 2.8         | 0.0        | 0.0             | 0.0        | 0.0       | 0.0      | 0.0     | 1.2      | 0.7          | 71.8         |
| Amphiboles      | 4.4    | 8.5         | 0.1        | 1.1             | 0.0        | 0.0       | 0.1      | 0.0     | 0.6      | 0.3          | 78.5         |
| Chlorite        | 1.6    | 12.3        | 0.1        | 0.8             | 0.0        | 0.0       | 0.1      | 0.0     | 0.0      | 0.1          | 75.0         |
| Biotite         | 1.4    | 8.8         | 0.8        | 0.3             | 0.0        | 0.0       | 0.1      | 0.0     | 0.0      | 0.2          | 78.9         |
| Quartz          |        | 16.7        | 0.5        | 1.4             | 0.0        | 0.0       | 0.1      | 0.0     | 0.1      | 0.8          | 52.5         |
| Plagioclase     | 2.7    |             | 1.5        | 13.0            | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.5          | 67.3         |
| K-feldspar      | 2.2    | 40.5        |            | 1.7             | 0.0        | 0.0       | 0.0      | 0.0     | 0.0      | 0.7          | 46.9         |
| Other silicates | 1.0    | 59.6        | 0.3        |                 | 0.0        | 0.0       | 0.2      | 0.0     | 0.0      | 0.3          | 31.0         |
| Carbonates      | 1.0    | 9.0         | 1.4        | 0.6             |            | 0.0       | 0.0      | 0.0     | 0.9      | 0.4          | 76.1         |
| Magnetite       | 0.8    | 3.0         | 0.0        | 0.0             | 0.0        |           | 0.0      | 0.0     | 0.0      | 0.3          | 89.6         |
| Ilmenite        | 4.8    | 8.8         | 0.0        | 6.5             | 0.0        | 0.0       |          | 0.0     | 0.0      | 8.0          | 44.0         |
| Apatite         | 0.7    | 8.4         | 0.1        | 0.6             | 0.0        | 0.0       | 0.0      |         | 1.1      | 5.1          | 74.8         |
| Mixtures        | 0.5    | 0.6         | 0.0        | 0.2             | 0.0        | 0.0       | 0.0      | 0.1     |          | 0.1          | 64.6         |
| Unclassified    | 7.1    | 27.8        | 1.4        | 2.7             | 0.0        | 0.0       | 2.3      | 0.6     | 0.1      |              | 40.2         |



### Table I3.1. Mineral Liberation, Sample PM1 and PM2 (SEM Automated Mineralogy)

|                                      |             |                  |                   |                   |                   | o noitonadi l     |                   |                   |                   |                   |                   |                |
|--------------------------------------|-------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|
| UNC-DNC                              |             |                  |                   |                   |                   |                   | 63660             |                   |                   |                   |                   |                |
| Mass % of Pyrrhotite                 | Not eveneed | 0% < X <=        | 10% < X <=        | 20% < X <=        | 30% < x <=        | 40% < X <=        | 50% < X <=        | e0% < x <=        | 20% < X <=        | 80% < X <=        | > x > %06         | 1000/          |
|                                      | Not exposed | 10%              | 20%               | 30%               | 40%               | 50%               | 60%               | 20%               | 80%               | %06               | 100%              | %. <b>nn</b> I |
| By particle composition (cumulative) |             | 100.00           | 96.61             | 94.06             | 91.80             | 89.77             | 87.26             | 84.20             | 80.04             | 74.61             | 61.08             | 44.24          |
| By free surface                      | 1.60        | 4.16             | 3.44              | 2.82              | 2.95              | 1.59              | 3.37              | 4.44              | 7.34              | 19.21             | 3.25              | 45.82          |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                |
| By particle composition (cumulative) |             | 100.00           | 93.26             | 84.70             | 80.33             | 75.59             | 73.09             | 71.82             | 64.44             | 61.69             | 53.81             | 49.58          |
| By free surface                      | 3.07        | 7.40             | 8.98              | 3.48              | 3.79              | 4.52              | 6.39              | 3.76              | 4.32              | 2.74              | 1.96              | 49.58          |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                |
| By particle composition (cumulative) |             | 100.00           | 95.70             | 93.21             | 92.22             | 90.28             | 87.85             | 85.76             | 84.85             | 72.30             | 71.12             | 68.06          |
| By free surface                      | 2.06        | 3.44             | 1.54              | 2.55              | 1.90              | 13.23             | 1.75              | 1.90              | 2.11              | 0.51              | 0.95              | 68.06          |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                |
| SKC-PM2                              |             |                  |                   |                   |                   | Liberation c      | lasses            |                   |                   |                   |                   |                |
| Mass % of Pyrrhotite                 | Not exposed | 0% < X <=<br>10% | 10% < x <=<br>20% | 20% < X <=<br>30% | 30% < X <=<br>40% | 40% < x <=<br>50% | 50% < x <=<br>60% | 60% < x <=<br>70% | 70% < x <=<br>80% | 80% < x <=<br>90% | 90% < X <<br>100% | 100%           |
| By particle composition (cumulative) |             | 100.00           | 97.08             | 93.82             | 90.65             | 88.24             | 85.27             | 81.88             | 75.45             | 69.11             | 60.62             | 43.79          |
| By free surface                      | 1.59        | 3.19             | 4.15              | 3.61              | 2.49              | 6.15              | 6.20              | 7.87              | 6.19              | 5.83              | 6.58              | 46.16          |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                |
| By particle composition (cumulative) |             | 100.00           | 94.03             | 89.57             | 87.06             | 83.24             | 79.75             | 78.41             | 73.34             | 69.42             | 67.22             | 50.52          |
| By free surface                      | 2.20        | 5.20             | 4.49              | 4.45              | 3.42              | 4.16              | 4.53              | 2.60              | 4.91              | 2.09              | 8.23              | 53.71          |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                |
| By particle composition (cumulative) |             | 100.00           | 96.29             | 92.94             | 90.85             | 87.33             | 82.42             | 80.54             | 79.41             | 75.52             | 70.75             | 57.43          |
| By free surface                      | 1.37        | 3.11             | 2.67              | 3.91              | 5.22              | 4.28              | 1.54              | 4.56              | 2.21              | 4.88              | 5.84              | 60.41          |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                |



### Table I3.2. Mineral Liberation, Sample PX1 and PX2 (SEM Automated Mineralogy)

| SKC-PX1                              |             |                  |                   |                   |                   | Liberation c      | asses             |                   |                   |                   |                   |               |
|--------------------------------------|-------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
| Mass % of Pyrrhotite                 | Not evoced  | => X > %0        | 10% < X <=        | 20% < X <=        | 30% < X <=        | 40% < X <=        | 50% < X <=        | 60% < X <=        | 70% < X <=        | 80% < X <=        | > x > %06         | 100%          |
|                                      | NOT EXPOSED | 10%              | 20%               | 30%               | 40%               | 50%               | 60%               | 70%               | 80%               | <b>30</b> %       | 100%              | %_ <b>nni</b> |
| By particle composition (cumulative) |             | 100.00           | 95.11             | 91.34             | 09.68             | 87.50             | 85.52             | 81.02             | 76.13             | 70.19             | 60.10             | 41.07         |
| By free surface                      | 2.57        | 4.65             | 3.34              | 4.87              | 1.94              | 4.91              | 3.80              | 6.10              | 6.96              | 6.80              | 10.18             | 43.87         |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |
| By particle composition (cumulative) |             | 100.00           | 95.05             | 92.70             | 89.72             | 87.98             | 86.82             | 85.97             | 85.00             | 83.91             | 79.84             | 73.43         |
| By free surface                      | 3.61        | 3.67             | 2.80              | 1.99              | 1.46              | 1.31              | 0.80              | 2.32              | 1.75              | 2.32              | 3.79              | 74.19         |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |
| By particle composition (cumulative) |             | 100.00           | 89.43             | 85.89             | 83.52             | 75.05             | 73.81             | 69.34             | 66.43             | 64.11             | 58.35             | 48.89         |
| By free surface                      | 5.42        | 5.33             | 3.86              | 7.27              | 4.46              | 5.13              | 1.66              | 4.89              | 0.21              | 8.36              | 4.53              | 48.89         |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |
| SKC-PX2                              |             |                  |                   |                   |                   | Liberation c      | lasses            |                   |                   |                   |                   |               |
| Mass % of Pyrrhotite                 | Not exposed | 0% < X <=<br>10% | 10% < x <=<br>20% | 20% < X <=<br>30% | 30% < X <=<br>40% | 40% < X <=<br>50% | 50% < X <=<br>60% | 60% < x <=<br>70% | 70% < X <=<br>80% | 80% < x <=<br>90% | 90% < X <<br>100% | 100%          |
| By particle composition (cumulative) |             | 100.00           | 97.55             | 97.55             | 90.83             | 90.83             | 90.83             | 90.83             | 90.83             | 90.83             | 90.83             | 90.83         |
| By free surface                      | 0.97        | 4.21             | 0.00              | 3.99              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 90.83         |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |
| By particle composition (cumulative) |             | 100.00           | 94.50             | 92.66             | 91.44             | 91.38             | 87.54             | 87.51             | 82.32             | 74.66             | 67.81             | 46.44         |
| By free surface                      | 2.82        | 3.94             | 1.43              | 2.16              | 0.92              | 1.66              | 0.99              | 5.13              | 0.04              | 11.55             | 19.44             | 49.91         |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |
| By particle composition (cumulative) |             | 100.00           | 77.31             | 77.31             | 17.31             | 77.31             | 77.31             | 77.31             | 77.31             | 77.31             | 0.00              | 0.00          |
| By free surface                      | 14.61       | 8.08             | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 77.31             | 0.00          |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |



#### 1.6.2020

\_\_\_\_\_

\_\_\_\_

### Table I3.3. Mineral Liberation, Sample MS1 and MS2 (SEM Automated Mineralogy)

| SKC-MS1                              |             |                  |                   |                   |                   | Liberation c      | lasses            |                   |                   |                   |                   |       |
|--------------------------------------|-------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
| Mass % of Pyrrhotite                 | Not exposed | 0% < X <=<br>10% | 10% < X <=<br>20% | 20% < X <=<br>30% | 30% < X <=<br>40% | 40% < X <=<br>50% | 50% < X <=<br>60% | 60% < X <=<br>70% | 70% < X <=<br>80% | 80% < X <=<br>90% | 90% < X <<br>100% | 100%  |
| By particle composition (cumulative) |             | 100.00           | 93.04             | 90.31             | 87.72             | 86.41             | 85.70             | 84.59             | 78.70             | 75.41             | 70.71             | 42.38 |
| By free surface                      | 2.37        | 6.05             | 2.66              | 2.24              | 1.73              | 0.15              | 6.85              | 4.73              | 2.03              | 7.62              | 14.27             | 49.29 |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 89.17             | 82.60             | 80.68             | 75.77             | 75.21             | 73.73             | 72.84             | 72.40             | 71.68             | 65.05 |
| By free surface                      | 4.11        | 9.66             | 7.59              | 2.71              | 1.60              | 0.57              | 0.22              | 1.14              | 0.73              | 4.30              | 1.28              | 66.10 |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition              |             | 100.00           | 91.15             | 84.45             | 82.30             | 81.20             | 80.42             | 80.02             | 78.77             | 78.29             | 78.29             | 74.23 |
| By free surface                      | 2.98        | 10.17            | 3.13              | 1.75              | 0.85              | 1.02              | 1.53              | 0.00              | 3.53              | 0.00              | 0.82              | 74.23 |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| SKC-MS2                              |             |                  |                   |                   |                   | Liberation c      | lasses            |                   |                   |                   |                   |       |
| Mass % of Pyrrhotite                 | Not exposed | 0% < X <=<br>10% | 10% < X <=<br>20% | 20% < x <=<br>30% | 30% < X <=<br>40% | 40% < X <=<br>50% | 50% < x <=<br>60% | 60% < x <=<br>70% | 70% < x <=<br>80% | 80% < x <=<br>90% | 90% < X <<br>100% | 100%  |
| By particle composition (cumulative) |             | 100.00           | 96.77             | 95.01             | 92.67             | 91.74             | 89.76             | 87.75             | 84.32             | 83.90             | 61.59             | 44.36 |
| By free surface                      | 1.21        | 2.95             | 2.34              | 0.87              | 3.22              | 1.42              | 4.71              | 3.45              | 20.24             | 6.53              | 8.70              | 44.36 |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 93.60             | 89.88             | 89.10             | 86.92             | 86.39             | 84.83             | 75.30             | 73.93             | 73.14             | 68.83 |
| By free surface                      | 1.99        | 4.97             | 2.80              | 2.14              | 2.27              | 8.68              | 1.72              | 1.75              | 0.54              | 0.88              | 1.93              | 70.34 |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 96.58             | 94.50             | 94.47             | 78.84             | 77.65             | 76.47             | 70.46             | 67.96             | 61.69             | 61.69 |
| By free surface                      | 1.07        | 1.69             | 0.88              | 2.30              | 12.55             | 3.14              | 6.72              | 6.47              | 3.49              | 0.00              | 0.00              | 61.69 |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |



### Table I3.4. Mineral Liberation, Sample TZ1 and TZ2 (SEM Automated Mineralogy)

| SKC T74                              |             |                  |                   |                   |                   | l iharation c     | 36606             |                   |                   |                   |                   |       |
|--------------------------------------|-------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
| 171-000                              |             |                  |                   |                   |                   |                   | 60000             |                   |                   |                   |                   |       |
| Mass % of Pyrrhotite                 | Not exposed | 0% < X <=        | 10% < X <=        | 20% < X <=        | 30% < X <=        | 40% < X <=        | 50% < x <=        | 60% < x <=        | 70% < X <=        | 80% < X <=        | 90% < x <         | 100%  |
|                                      |             | 10%              | 20%               | 30%               | 40%               | 50%               | 60%               | 70%               | 80%               | 90%               | 100%              |       |
| By particle composition (cumulative) |             | 100.00           | 89.84             | 85.35             | 83.24             | 81.46             | 80.39             | 77.27             | 74.35             | 71.74             | 70.05             | 47.57 |
| By free surface                      | 3.39        | 8.43             | 4.15              | 2.42              | 1.71              | 2.52              | 3.69              | 2.74              | 0.59              | 4.29              | 9.24              | 56.84 |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| Bv particle composition (cumulative) |             | 100.00           | 80.05             | 71.08             | 66.65             | 64.34             | 62.57             | 60.80             | 58 49             | 58.13             | 55.93             | 54 55 |
| By free surface                      | 8.59        | 16.12            | 5.18              | 4.47              | 4.31              | 1.78              | 1.04              | 0.53              | 1.33              | 1.21              | 0.63              | 54.82 |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 85.10             | 80.36             | 75.06             | 69.59             | 69.13             | 67.48             | 67.28             | 64.40             | 60.27             | 51.63 |
| By free surface                      | 4.78        | 10.77            | 7.80              | 4.32              | 3.15              | 1.78              | 0.12              | 2.91              | 6.62              | 0.98              | 3.46              | 53.31 |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| SKC-TZ2                              |             |                  |                   |                   |                   | Liberation c      | lasses            |                   |                   |                   |                   |       |
| Mass % of Pyrrhotite                 | Not exposed | 0% < X <=<br>10% | 10% < X <=<br>20% | 20% < X <=<br>30% | 30% < x <=<br>40% | 40% < x <=<br>50% | 50% < x <=<br>60% | 60% < x <=<br>70% | 70% < X <=<br>80% | 80% < X <=<br>90% | 90% < X <<br>100% | 100%  |
| By particle composition (cumulative) |             | 100.00           | 97.67             | 95.64             | 94.71             | 93.38             | 91.62             | 90.76             | 89.51             | 85.91             | 81.54             | 52.47 |
| By free surface                      | 0.73        | 2.04             | 2.16              | 1.57              | 1.79              | 0.80              | 2.16              | 3.13              | 4.28              | 7.96              | 18.09             | 55.31 |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 89.55             | 85.34             | 81.78             | 80.93             | 80.43             | 77.99             | 76.69             | 75.65             | 74.03             | 68.74 |
| By free surface                      | 3.65        | 7.82             | 3.85              | 2.53              | 1.32              | 2.58              | 3.14              | 0.90              | 0.87              | 1.25              | 2.49              | 69.61 |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 94.65             | 90.17             | 86.53             | 83.51             | 82.36             | 81.03             | 78.76             | 78.73             | 74.41             | 63.13 |
| By free surface                      | 1.50        | 3.40             | 2.66              | 3.53              | 3.61              | 4.73              | 0.58              | 2.54              | 3.03              | 0.66              | 10.62             | 63.13 |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |



### Table I3.5. Mineral Liberation, Sample BAS1 and BAS2 (SEM Automated Mineralogy)

|                                      |             |                  |                   |                   |                   | l iharation c     | 9696              |                   |                   |                   |                   |       |
|--------------------------------------|-------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| Mass % of Pyrrhotite                 | Not exposed | 0% < X <=<br>10% | 10% < x <=<br>20% | 20% < x <=<br>30% | 30% < X <=<br>40% | 40% < x <=<br>50% | 50% < x <=<br>60% | 60% < x <=<br>70% | 70% < X <=<br>80% | 80% < x <=<br>90% | 90% < x <<br>100% | 100%  |
| By particle composition (cumulative) |             | 100.00           | 92.32             | 87.71             | 83.68             | 80.47             | 78.30             | 75.01             | 70.02             | 66.31             | 59.38             | 33.85 |
| By free surface                      | 2.73        | 7.53             | 4.74              | 4.83              | 3.21              | 4.19              | 2.62              | 3.54              | 7.60              | 6.65              | 15.18             | 37.17 |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 84.78             | 76.30             | 72.05             | 69.21             | 67.11             | 65.30             | 63.73             | 62.37             | 59.26             | 55.11 |
| By free surface                      | 4.39        | 13.45            | 8.30              | 3.87              | 3.32              | 1.69              | 1.69              | 1.99              | 1.53              | 1.22              | 2.28              | 56.28 |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 87.21             | 77.00             | 73.87             | 68.43             | 66.29             | 63.69             | 61.64             | 58.52             | 56.40             | 50.79 |
| By free surface                      | 4.32        | 11.38            | 6.31              | 9.84              | 3.06              | 2.96              | 1.22              | 1.50              | 0.31              | 5.57              | 2.73              | 50.79 |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| SKC-BAS2                             |             |                  |                   |                   |                   | Liberation c      | lasses            |                   |                   |                   |                   |       |
| Mass % of Pyrrhotite                 | Not exposed | 0% < X <=<br>10% | 10% < X <=<br>20% | 20% < X <=<br>30% | 30% < X <=<br>40% | 40% < x <=<br>50% | 50% < x <=<br>60% | 60% < x <=<br>70% | 70% < x <=<br>80% | 80% < x <=<br>90% | 90% < X <<br>100% | 100%  |
| By particle composition (cumulative) |             | 100.00           | 87.92             | 83.14             | 79.23             | 74.51             | 66.57             | 61.64             | 55.48             | 48.10             | 43.89             | 32.27 |
| By free surface                      | 3.34        | 11.17            | 7.38              | 5.79              | 2.10              | 11.47             | 9.15              | 3.09              | 8.34              | 4.18              | 1.71              | 32.27 |
| Mass % of Chalcopyrite               |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 91.37             | 88.48             | 84.78             | 83.13             | 82.09             | 80.16             | 78.85             | 76.75             | 73.76             | 61.32 |
| By free surface                      | 2.25        | 7.70             | 3.37              | 3.02              | 1.76              | 0.93              | 2.09              | 0.88              | 4.25              | 2.42              | 9.64              | 61.69 |
| Mass % of Pentlandite                |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |
| By particle composition (cumulative) |             | 100.00           | 90.14             | 88.51             | 87.14             | 86.08             | 86.08             | 78.44             | 78.44             | 77.96             | 77.96             | 55.84 |
| By free surface                      | 4.80        | 5.71             | 1.82              | 0.53              | 1.05              | 0.00              | 7.65              | 0.48              | 0.00              | 0.00              | 18.84             | 59.11 |
|                                      |             |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |       |



| Pyrrhotite         Chalcopyrite         Pentlandite           0         1116         78         63           0         116         78         63           0         116         78         63           136         87         32           5         49         65           65         49         65           67         109         86           99         65         50           61         109         65           20         14         25           20         14         25           20         14         25           20         14         25           20         14         25           21         14         25           22         117         28           23         59         17         28           20         16         17         28           21         17         28         18           23         55         7         7           25         37         55         7           25         7         7         7 | en         Mine           on         Pyrrhotite         Chalcopyrite         Pentlandite         Pyrite           0         116         78         63         0         1           0         136         87         32         0         1           0         136         87         32         0         1           0         109         86         99         3         0           10         109         86         99         3         0           110         87         50         53         0         3           20         14         25         5         5         9           20         14         25         5         5         9           20         14         25         5         5         5           20         14         25         5         5         54           21         10         10         10         10         10           21         55         11         28         54         14           21         55         7         38         3         3           21         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pyrrhotite<br>(µm)Chalcopyrite<br>(µm)Pentlandite<br>(µm)Minerals011678 $(1m)$ $(1m)$ $(1m)$ $(1m)$ 011678 $87$ 320 $171$ 0136 $87$ 320 $171$ $(1m)$ $(1m)$ 0136 $87$ 320 $171$ $(1m)$ 5495050530 $106$ 5201425252 $86$ 61425532 $106$ 71425532 $106$ 61425532 $106$ 710109 $106$ $106$ 168591728 $54$ $10$ 17537557380176918 $14$ 175426644 $47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | minerals         Minerals           minerals           minerals         minerals           minerals         minerals           minerals         minerals           minerals         minerals         minerals           minerals         minerals         minerals           minerals <thmin< th="">         minerals         mineral</thmin<> | en         Pyrthotite         Chalcopyrite         Pentlandite         Pyrite         Talc         Serpentine         Clinopyroxer           0         116         78         63         0         171         181         85           0         116         78         63         0         171         181         85           0         136         87         32         0         171         181         85           109         86         99         3         164         113         32           65         49         65         2         86         96         54           20         104         25         5         32         62         12         44           65         20         14         25         5         32         62         12           100         14         25         5         32         62         12         12           66         14         25         54         32         62         12         12           67         10         10         106         68         44         12           68         59         5 <td< th=""><th>Minerals           On         Pyrthotite         Chalcopyrite         Pentlandite         Pyrite         Tatc         Serpentine         Clinopyroxene         Amp           0         116         78         63         0         171         181         85         2           0         136         87         32         0         171         181         85         2           0         136         87         32         0         171         181         85         2           0         136         87         32         0         148         120         60         2           109         86         99         3         164         113         32         2           20         148         120         68         44         4         4           20         14         25         5         32         62         12         6           20         14         25         5         32         62         12         6         44           6         6         6         6         6         7         12         5           6         10</th></td<> | Minerals           On         Pyrthotite         Chalcopyrite         Pentlandite         Pyrite         Tatc         Serpentine         Clinopyroxene         Amp           0         116         78         63         0         171         181         85         2           0         136         87         32         0         171         181         85         2           0         136         87         32         0         171         181         85         2           0         136         87         32         0         148         120         60         2           109         86         99         3         164         113         32         2           20         148         120         68         44         4         4           20         14         25         5         32         62         12         6           20         14         25         5         32         62         12         6         44           6         6         6         6         6         7         12         5           6         10                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chalcopyrite<br>(µm)         Pentlandite<br>(µm)           78         63           87         32           86         99           49         65           50         53           14         25           14         25           14         25           14         25           14         25           14         25           14         25           14         25           14         25           14         25           14         25           100         9         18           37         55         7           37         55         7           37         55         7                                                                                                                                                                                                                                                                                                                                                              | Mine           Chalcopyrite         Pentlandite         Pyrite           (µm)         (µm)         (µm)         (µm)           78         63         0         32           86         99         3         0         33           86         99         32         0         33           14         25         53         0         34           114         25         53         0         34           114         25         5         5         5           114         25         5         5         5           114         25         10         14         14           59         17         28         54         14           100         9         18         14         14           37         55         7         38         34           37         55         7         38         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alinerals           Chalcopyrite         Pentlandite         Pyrite         Talc         S           78         63         0         171         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S             | MineralsChalcopyritePentlanditePyriteTalcSerpentine $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $86$ $99$ $3$ $164$ $113$ $86$ $96$ $96$ $50$ $53$ $0$ $106$ $68$ $96$ $96$ $50$ $53$ $0$ $106$ $68$ $96$ $96$ $14$ $25$ $5$ $32$ $62$ $96$ $14$ $25$ $5$ $32$ $62$ $96$ $14$ $25$ $5$ $32$ $62$ $96$ $14$ $25$ $5$ $32$ $62$ $96$ $14$ $25$ $5$ $32$ $62$ $96$ $14$ $100$ $9$ $17$ $28$ $62$ $100$ $9$ $17$ $28$ $54$ $154$ $100$ $9$ $18$ $14$ $196$ $37$ $55$ $7$ $38$ $152$ $42$ $66$ $44$ $47$ $125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minerals           Chalcopyrite         Pentlandite         Pyrite         Talc         Serpentine         Clinopyroxer           (µm)         (µm)         (µm)         (µm)         (µm)         (µm)         (µm)           87         32         0         171         181         85         95           87         32         0         171         181         85         54           86         99         3         164         113         32         54           50         53         0         106         68         44         44           14         25         5         32         62         12         54           14         25         5         32         62         12         54           14         25         5         32         62         12         54           14         25         5         32         62         12         12           150         100         106         68         44         12           100         110         100         10         10         10         12           50         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minerals           Chalcopyrite         Pentlandite         Pyrite         Talc         Serpentine         Clinopyroxene         Amp           (µm)         (µm)         (µm)         (µm)         (µm)         (µm)         (µm)         (µm)         (µm)           78         63         0         171         181         85         0         10         (11)         100         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10) |
| Pentlandite           (µm)           63           63           32           99           99           65           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           53           54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mine           Pentlandite         Pyrite         Mine           (µm)         (µm)         (µm)         (µm)           63         0         32         0           32         0         32         0         33           65         2         3         0         33           53         0         3         0         34           25         5         5         5         1           1         (µm)         (µm)         (µm)         1           25         5         5         5         1           1         (µm)         (µm)         1         1         1           25         5         5         5         5         1         1           1         18         1         1         1         1         1         1         1         1         1         4         1         4         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td>Minerals           Pentlandite         Pyrite         Talc         S           (µm)         (µm)         (µm)         (µm)         S           63         0         171         S         S           32         0         171         S         S           99         3         164         S         S           53         0         106         S         S           25         5         32         R         S           25         5         32         Cart         I           1         (µm)         (µm)         (         I           18         18         14         1         1           18         7         38         54         1           18         18         14         1         1           7         38         54         1         1</td> <td>MineralsPentlanditePyriteTalcSerpentine<math>(\mum)</math><math>(\mum)</math><math>(\mum)</math><math>(\mum)</math><math>(\mum)</math><math>63</math><math>0</math><math>171</math><math>181</math><math>120</math><math>32</math><math>0</math><math>174</math><math>113</math><math>96</math><math>53</math><math>0</math><math>164</math><math>113</math><math>53</math><math>0</math><math>106</math><math>68</math><math>53</math><math>0</math><math>106</math><math>68</math><math>53</math><math>0</math><math>106</math><math>68</math><math>25</math><math>5</math><math>32</math><math>62</math><math>25</math><math>5</math><math>32</math><math>62</math><math>106</math><math>68</math><math>113</math><math>106</math><math>106</math><math>68</math><math>26</math><math>106</math><math>68</math><math>106</math><math>113</math><math>113</math><math>106</math><math>113</math><math>113</math><math>106</math><math>116</math><math>113</math><math>100</math><math>106</math><math>113</math><math>114</math><math>1166</math><math>114</math><math>125</math><math>38</math><math>152</math><math>44</math><math>47</math><math>125</math></td> <td>MineralsPentlanditePyriteTalcSerpentineClinopyroxer<math>(\mum)</math><math>(\mum)</math><math>(\mum)</math><math>(\mum)</math><math>(\mum)</math><math>(\mum)</math><math>63</math>0<math>171</math><math>181</math><math>85</math><math>63</math>0<math>171</math><math>181</math><math>85</math><math>32</math>0<math>148</math><math>120</math><math>60</math><math>99</math>3<math>164</math><math>113</math><math>32</math><math>53</math>0<math>106</math><math>68</math><math>44</math><math>53</math>0<math>106</math><math>68</math><math>44</math><math>25</math>5<math>32</math><math>62</math><math>12</math><math>25</math>5<math>32</math><math>62</math><math>12</math><math>10</math><math>106</math><math>68</math><math>44</math><math>26</math><math>54</math><math>62</math><math>12</math><math>10</math><math>106</math><math>68</math><math>44</math><math>116</math><math>110</math><math>(\mum)</math><math>(\mum)</math><math>118</math><math>14</math><math>120</math><math>111</math><math>18</math><math>14</math><math>196</math><math>118</math><math>18</math><math>14</math><math>196</math><math>118</math><math>18</math><math>14</math><math>196</math><math>117</math><math>18</math><math>14</math><math>196</math><math>117</math><math>7</math><math>38</math><math>152</math><math>79</math><math>44</math><math>47</math><math>125</math><math>79</math></td> <td>Minerals           Pentlandite         Pyrite         Talc         Serpentine         Clinopyroxene         Amp           <math>(µm)</math> <math>µm</math> <math>µm</math> <math>µm</math>         &lt;</td> | Minerals           Pentlandite         Pyrite         Talc         S           (µm)         (µm)         (µm)         (µm)         S           63         0         171         S         S           32         0         171         S         S           99         3         164         S         S           53         0         106         S         S           25         5         32         R         S           25         5         32         Cart         I           1         (µm)         (µm)         (         I           18         18         14         1         1           18         7         38         54         1           18         18         14         1         1           7         38         54         1         1                                                                                                                                                                                                                                                                                                                                                   | MineralsPentlanditePyriteTalcSerpentine $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $63$ $0$ $171$ $181$ $120$ $32$ $0$ $174$ $113$ $96$ $53$ $0$ $164$ $113$ $53$ $0$ $106$ $68$ $53$ $0$ $106$ $68$ $53$ $0$ $106$ $68$ $25$ $5$ $32$ $62$ $25$ $5$ $32$ $62$ $106$ $68$ $113$ $106$ $106$ $68$ $26$ $106$ $68$ $106$ $113$ $113$ $106$ $113$ $113$ $106$ $116$ $113$ $100$ $106$ $113$ $114$ $1166$ $114$ $125$ $38$ $152$ $44$ $47$ $125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MineralsPentlanditePyriteTalcSerpentineClinopyroxer $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $(\mum)$ $63$ 0 $171$ $181$ $85$ $63$ 0 $171$ $181$ $85$ $32$ 0 $148$ $120$ $60$ $99$ 3 $164$ $113$ $32$ $53$ 0 $106$ $68$ $44$ $53$ 0 $106$ $68$ $44$ $25$ 5 $32$ $62$ $12$ $25$ 5 $32$ $62$ $12$ $10$ $106$ $68$ $44$ $26$ $54$ $62$ $12$ $10$ $106$ $68$ $44$ $116$ $110$ $(\mum)$ $(\mum)$ $118$ $14$ $120$ $111$ $18$ $14$ $196$ $118$ $18$ $14$ $196$ $118$ $18$ $14$ $196$ $117$ $18$ $14$ $196$ $117$ $7$ $38$ $152$ $79$ $44$ $47$ $125$ $79$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minerals           Pentlandite         Pyrite         Talc         Serpentine         Clinopyroxene         Amp $(µm)$ $µm$ $µm$ $µm$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mine<br>Pyrite<br>(um)<br>0<br>0<br>2<br>2<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>5<br>5<br>K-felds<br>1<br>4<br>7<br>4<br>7<br>4<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minerals           Pyrite         Talc         S.           (µm)         (µm)         (µm)         171         S.           0         1711         0         1711         S.         S.           3         164         3         164         S.         S.         S.           5         32         86         0         106         Minerals         Minerals         S.         S. | Minerals       Pyrite     Talc     Serpentine       (µm)     (µm)     (µm)       0     171     181       0     171     181       10     148     120       2     86     96       0     106     68       5     32     62       5     32     62       Minerals     (µm)     (µm)       144     154     166       144     196     81       54     154     166       38     152     83       38     152     152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minerals         Pyrite       Talc       Serpentine       Clinopyroxer         (µm)       (µm)       (µm)       (µm)         0       171       181       85         0       148       120       60         3       164       113       32         2       86       96       54         0       106       68       44         1       113       32       32         5       32       62       12       12         7       32       62       12       12         Minerals       154       154       120       11         64       154       154       120       11         64       196       118       118       117         38       152       79       79       117         47       125       79       79       79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minerals         Aminerals           Pyrite         Talc         Serpentine         Clinopyroxene         Amp           (µm)         (µm)         (µm)         (µm)         (µm)         (µm)           0         171         181         85         0         0           1         148         120         60         54         0         0           2         86         96         54         44         12         32         12           0         106         68         44         12         32         32         12           5         32         62         12         32         32         32         32           6         106         68         44         12         32         32         12           5         32         62         12         32         32         33         12           6         112         33         12         35         12         35         14           14         196         118         60         35         35         35         35           5         38         152         11         50         35                                                                                                                                 |

| Table 14.1. Average N | /lineral Grain Size | (µm), Sample PM1 | (SEM Automated I | Mineralogy) |
|-----------------------|---------------------|------------------|------------------|-------------|
| 0                     |                     | <b>NA 77 I</b>   | <b>`</b>         | 011         |



|                           | Particulate   |            |              |        |             | Minera   | ls      |            |               |              |         |
|---------------------------|---------------|------------|--------------|--------|-------------|----------|---------|------------|---------------|--------------|---------|
| Polished Block Sample     | Size Fraction | Pyrrhotite | Chalco       | pyrite | Pentlandite | Pyrite   | Talc \$ | Serpentine | Clinopyroxer  | le Amph      | iboles  |
|                           | (mrl)         | (unl)      | IT)          | a)     | (mn)        | (mŋ)     | (mu)    | (mn)       | (mu)          | n)           | (n      |
| 16584_SKC_PM2_250_150_1_3 | -250+150      | 150        |              | 80     | 100         | 10       | 136     | 89         | 21            | <del>,</del> | 98      |
| 16585_SKC_PM2_250_150_2_3 | -250+150      | 128        | ő            | 3      | 93          | 19       | 137     | 57         | 18            | ÷            | 10      |
| 16586_SKC_PM2_250_150_3_3 | -250+150      | 138        | 10           | 4      | 73          | 37       | 155     | 110        | 14            | 4            | 46      |
| 16587_SKC_PM2_150_75_1_2  | -150+75       | 78         | Ö            | 3      | 73          | 35       | 86      | 52         | 16            | 2            | 6       |
| 16588_SKC_PM2_150_75_2_2  | -150+75       | 73         | 0            | 2      | 76          | 0        | 94      | 66         | 19            | 5            | 80      |
| 16589_SKC_PM2_75          | -75           | 30         | <del>~</del> | 5      | 29          | 10       | 44      | 24         | 10            | 0            | 8       |
|                           |               |            |              |        |             | M        | -       |            |               |              |         |
|                           | Particulate   |            |              |        |             | Miner    | als     |            |               |              |         |
| Polished Block Sample     | Size Fraction | Chlorite I | Biotite (    | Quartz | Plagioclase | K-feldsp | bar Cá  | arbonates  | Magnetite III | menite /     | Apatite |
|                           | (mu)          | (mn)       | (mr)         | (mrl)  | (mŋ)        | (unl)    |         | (mŋ)       | (mn)          | (mn)         | (mrl)   |
| 16584_SKC_PM2_250_150_1_3 | -250+150      | 148        | 98           | 76     | 28          | 30       |         | 164        | 115           | 63           | 68      |
| 16585_SKC_PM2_250_150_2_3 | -250+150      | 155        | 30           | 84     | 26          | 17       |         | 191        | 152           | 104          | 84      |
| 16586_SKC_PM2_250_150_3_3 | -250+150      | 163        | 66           | 42     | 25          | 28       |         | 177        | 119           | 113          | 63      |
| 16587_SKC_PM2_150_75_1_2  | -150+75       | 92         | 45           | 58     | 37          | 50       |         | 112        | 81            | 86           | 27      |
| 16588_SKC_PM2_150_75_2_2  | -150+75       | 92         | 40           | 42     | 54          | 46       |         | 147        | 84            | 79           | 44      |
| 16589_SKC_PM2_75          | -75           | 38         | 13           | 12     | 16          | 17       |         | 37         | 30            | 19           | 20      |

Table I4.2. Average Mineral Grain Size (µm), Sample PM2 (SEM Automated Mineralogy)



|                              | Particulate   |            |           |        |             | Mine                | erals |            |                |         |                |
|------------------------------|---------------|------------|-----------|--------|-------------|---------------------|-------|------------|----------------|---------|----------------|
| <b>Polished Block Sample</b> | Size Fraction | Pyrrhotite | Chalco    | pyrite | Pentlandite | Pyrite <sup>.</sup> | Talc  | Serpentine | Clinopyroxene  | Amph    | iboles         |
|                              | (mrl)         | (mn)       | url)      | (r     | (mn)        | (mrl)               | (mu)  | (mŋ)       | (mrl)          | ц,      | (n             |
| 16590_SKC_PX1_250_150_1_3    | -250+150      | 100        | 12        | 2      | 92          | 7                   | 162   | 123        | 63             | 22      | 22             |
| 16591_SKC_PX1_250_150_2_3    | -250+150      | 66         | 96        | 6      | 64          | 97                  | 141   | 123        | 56             | 6       | 97             |
| 16592_SKC_PX1_250_150_3_3    | -250+150      | 83         | 75        | 10     | 64          | 67                  | 112   | 115        | 108            | 26      | 59             |
| 16593_SKC_PX1_150_75_1_2     | -150+75       | 69         | 67        | ~      | 53          | 39                  | 78    | 57         | 51             | 1       | <del>1</del> 3 |
| 16594_SKC_PX1_150_75_2_2     | -150+75       | 68         | 50        | ~      | 40          | 0                   | 65    | 66         | 48             | 45      | 54             |
| 16595_SKC_PX1_75             | -75           | 12         | 36        | 10     | 6           | ~                   | 19    | 47         | 12             | 5       | 9              |
|                              |               |            |           |        |             |                     |       |            |                |         |                |
|                              | Particulate   |            |           |        |             | Mine                | rals  |            |                |         |                |
| Polished Block Sample        | Size Fraction | Chlorite B | liotite Q | uartz  | Plagioclase | K-felds             | par ( | Carbonates | Magnetite Ilme | enite A | patite         |
|                              | (mu)          | )<br>(шп)  | (mu)      | (mŋ    | (mu)        | (mµ)                | _     | (mrl)      | rl) (mrl)      | Î       | (mu)           |
| 16590_SKC_PX1_250_150_1_3    | -250+150      | 188        | 113       | 22     | 62          | 41                  |       | 67         | 20             | 36      | 91             |
| 16591_SKC_PX1_250_150_2_3    | -250+150      | 160        | 71        | 17     | 31          | 71                  |       | 113        | 84 8           | 34      | 112            |
| 16592_SKC_PX1_250_150_3_3    | -250+150      | 152        | 118       | œ      | 27          | ო                   |       | 91         | 82             | 97      | 139            |
| 16593_SKC_PX1_150_75_1_2     | -150+75       | 146        | 126       | 12     | 43          | 10                  |       | 56         | 36             | 33      | 19             |
| 16594_SKC_PX1_150_75_2_2     | -150+75       | 125        | 92        | 48     | 17          | 23                  |       | 60         | 73 2           | 42      | 51             |
| 16595_SKC_PX1_75             | -75           | 40         | 33        | ი      | 7           | 12                  |       | 13         | 9              | 20      | 4              |

| Table 14 3 Average    | • Mineral Grain S | Size (um) Samn | ole PX1 (SFM) | Automated N   | /lineralogy) |
|-----------------------|-------------------|----------------|---------------|---------------|--------------|
| rubic ritor / treruge |                   |                |               | , aconnacea n |              |



|                              | Particulate Size |                   |            |         |             | Mine    | erals |            |                |          |       |
|------------------------------|------------------|-------------------|------------|---------|-------------|---------|-------|------------|----------------|----------|-------|
| <b>Polished Block Sample</b> | Fraction         | Pyrrhotite        | Chalcop    | yrite I | Pentlandite | Pyrite  | Talc  | Serpentine | Clinopyroxene  | Amphik   | ooles |
|                              | (mu)             | (mŋ)              | (mrl)      | ~       | (mn)        | (und)   | (mn)  | (mn)       | (mrl)          | url)     | -     |
| 16600_SKC_PX2_250_150_1_3    | -250+150         | 20                | 39         |         | 13          | 12      | 71    | 5          | 44             | 212      | +     |
| 16601_SKC_PX2_250_150_2_3    | -250+150         | 16                | 61         |         | 35          | 16      | 26    | 9          | 121            | 216      | 6     |
| 16602_SKC_PX2_250_150_3_3    | -250+150         | 17                | 78         |         | 5           | 0       | 14    | 9          | 17             | 219      | 0     |
| 16603_SKC_PX2_150_75_1_2     | -150+75          | 0                 | 40         |         | с           | 13      | 52    | 4          | 43             | 162      | +     |
| 16604_SKC_PX2_150_75_2_2     | -150+75          | 0                 | 79         |         | 5           | 0       | 23    | с          | 45             | 182      | 0     |
| 16605_SKC_PX2_75             | -75              | 5                 | 8          |         | 0           | 0       | 0     | o          | 7              | 61       |       |
|                              |                  |                   |            |         |             |         |       |            |                |          |       |
|                              | Particulate      |                   |            |         |             | Mine    | erals |            |                |          |       |
| <b>Polished Block Sample</b> | Size Fraction    | Chlorite <b>B</b> | siotite Qu | uartz F | Plagioclase | K-felds | par C | arbonates  | Magnetite IIme | enite Ap | atite |
|                              | (mrl)            | (mn)              | l) (mu)    | (mu     | (mrl)       | mrl)    | _     | (mu)       | n) (mu)        | (h<br>(h | (m    |
| 16600_SKC_PX2_250_150_1_3    | -250+150         | 131               | 152        | 68      | 63          | 65      |       | 29         | 14             | 31       | 27    |
| 16601_SKC_PX2_250_150_2_3    | -250+150         | 220               | 213        | 80      | 73          | 8       |       | 85         | 14             | 02       | 92    |
| 16602_SKC_PX2_250_150_3_3    | -250+150         | 167               | 134        | 84      | 121         | 14      |       | 21         | 30 1           | 04       | 44    |
| 16603_SKC_PX2_150_75_1_2     | -150+75          | 118               | 93         | 44      | 48          | 20      |       | 18         | 19             | 80       | 60    |
| 16604_SKC_PX2_150_75_2_2     | -150+75          | 105               | 83         | 44      | 62          | 7       |       | 21         | 6              |          | 73    |
| 16605_SKC_PX2_75             | -75              | 30                | 17         | ი       | 11          | 9       |       | ო          | 4              | 13       | 5     |

### Table I4.4. Average Mineral Grain Size ( $\mu m$ ), Sample PX2 (SEM Automated Mineralogy)



|                              | Particulate     |            |             |                | Min      | herals   |              |            |            |         |
|------------------------------|-----------------|------------|-------------|----------------|----------|----------|--------------|------------|------------|---------|
| <b>Polished Block Sample</b> | Size Fraction   | Pyrrhotite | Chalcopyrit | Pentlandite    | Pyrite 7 | Talc Se  | rpentine Cli | nopyroxene | Amphil     | ooles   |
|                              | (mn)            | (mrl)      | (mn)        | (mrl)          | (mu)     | (mu      | (mrl)        | (mrl)      | url)       | (r      |
| 16606_SKC_MS1_250_150_1_3    | -250+150        | 81         | 54          | 36             | 74       | 4        | 11           | 12         | 18         | 4       |
| 16607_SKC_MS1_250_150_2_3    | -250+150        | 92         | 64          | 19             | 56       | 22       | 8            | 11         | 210        | 0       |
| 16608_SKC_MS1_250_150_3_3    | -250+150        | 76         | 82          | 66             | 77       | 54       | с            | 68         | 20         | Ю       |
| 16609_SKC_MS1_150_75_1_2     | -150+75         | 57         | 60          | 35             | 50       | 12       | 13           | 16         | 13         | 8       |
| 16610_SKC_MS1_150_75_2_2     | -150+75         | 76         | 64          | 45             | 59       | 6        | 11           | 8          | 14:        | e       |
| 16611_SKC_MS1_75             | -75             | 17         | 26          | 18             | 15       | 24       | 9            | 8          | 68         |         |
|                              |                 |            |             |                |          |          |              |            |            |         |
|                              | Particulate Siz | e          |             |                | Ϊ        | nerals   |              |            |            |         |
| Polished Block Sample        | Fraction        | Chlorite   | Biotite Qua | rtz Plagioclas | e K-fel  | dspar (  | Carbonates   | Magnetite  | Ilmenite / | Apatite |
|                              | (mu)            | (mŋ)       | (hr (hr     | (und) (u       | ٿ<br>    | <b>n</b> | (mu)         | (un)       | (mn)       | (mu)    |
| 16606 SKC MS1 250 150 1 3    | -250+150        | 139        | 133 12      | 9 145          | 7        | 91       | 73           | 9          | 29         | 146     |

|                              | Particulate     |            |         |         |            | Ξ       | nerals  |            |                |          |
|------------------------------|-----------------|------------|---------|---------|------------|---------|---------|------------|----------------|----------|
| <b>Polished Block Sample</b> | Size Fraction   | Pyrrhotite | Chalcop | yrite P | entlandite | Pyrite  | Talc (  | Serpentine | Clinopyroxene  | Amp      |
|                              | (mrl)           | (mn)       | (mŋ)    | _       | (mrl)      | (mn)    | (mrl)   | (mrl)      | (mu)           | <u> </u> |
| 16606_SKC_MS1_250_150_1_3    | -250+150        | 81         | 54      |         | 36         | 74      | 4       | 11         | 12             |          |
| 16607_SKC_MS1_250_150_2_3    | -250+150        | 92         | 64      |         | 19         | 56      | 22      | 8          | 11             |          |
| 16608_SKC_MS1_250_150_3_3    | -250+150        | 76         | 82      |         | 66         | 17      | 54      | ю          | 68             |          |
| 16609_SKC_MS1_150_75_1_2     | -150+75         | 57         | 60      |         | 35         | 50      | 12      | 13         | 16             |          |
| 16610_SKC_MS1_150_75_2_2     | -150+75         | 76         | 64      |         | 45         | 59      | 6       | 11         | 8              |          |
| 16611_SKC_MS1_75             | -75             | 17         | 26      |         | 18         | 15      | 24      | 9          | 8              |          |
|                              | -               | -          |         |         |            |         |         |            |                |          |
|                              | Particulate Siz | ze         |         |         |            | 2       | lineral | S          |                |          |
| <b>Polished Block Sample</b> | Fraction        | Chlorite   | Biotite | Quartz  | Plagioclas | se K-fe | eldspa  | r Carbonat | es Magnetite I | Imenit   |
|                              | (mrl)           | (mrl)      | (mrl)   | (mrl)   | (un)       |         | (mu     | (mrl)      | (mµ)           | (mr)     |
| 16606_SKC_MS1_250_150_1_3    | -250+150        | 139        | 133     | 129     | 145        |         | 46      | 73         | 9              | 29       |
| 16607_SKC_MS1_250_150_2_3    | -250+150        | 114        | 114     | 130     | 154        |         | 45      | 71         | 13             | 23       |
| 16608_SKC_MS1_250_150_3_3    | -250+150        | 148        | 112     | 138     | 110        |         | 39      | 44         | 12             | 32       |
| 16609_SKC_MS1_150_75_1_2     | -150+75         | 75         | 103     | 66      | 75         |         | 81      | 55         | 50             | 13       |
| 16610_SKC_MS1_150_75_2_2     | -150+75         | 67         | 92      | 98      | 88         |         | 72      | 57         | თ              | 16       |
| 16611 SKC MS1 75             | -75             | 35         | 45      | 36      | 34         |         | 34      | 22         | 5              | <b>б</b> |

Table I4.5. Average Mineral Grain Size (µm), Sample MS1 (SEM Automated Mineralogy)

1.6.2020

64 22 35 63 9

16611\_SKC\_MS1\_75

|                           | Particulate Size |            |          |        |             | Mine    | erals |            |              |        |         |
|---------------------------|------------------|------------|----------|--------|-------------|---------|-------|------------|--------------|--------|---------|
| Polished Block Sample     | Fraction         | Pyrrhotite | Chalc    | pyrite | Pentlandite | Pyrite  | Talc  | Serpentine | Clinopyroxe  | ne Amp | hiboles |
|                           | (mu)             | (mn)       | 1        | (ur    | (mu)        | (mrl)   | (mŋ)  | (mn)       | (mn)         |        | (mu)    |
| 16612_SKC_MS2_250_150_1_3 | -250+150         | 49         |          | 97     | 49          | 36      | ∞     | 0          | 9            |        | 158     |
| 16613_SKC_MS2_250_150_2_3 | -250+150         | 109        | 0,       | 92     | 77          | 28      | 7     | 0          | 13           |        | 161     |
| 16614_SKC_MS2_250_150_3_3 | -250+150         | 50         | ~        | 25     | 32          | 23      | 6     | 12         | 13           |        | 150     |
| 16615_SKC_MS2_150_75_1_2  | -150+75          | 65         |          | 88     | 40          | 44      | 15    | 9          | 27           |        | 125     |
| 16616_SKC_MS2_150_75_2_2  | -150+75          | 51         | •        | 68     | 50          | 46      | 23    | 19         | 13           |        | 110     |
| 16617_SKC_MS2_75          | -75              | 17         |          | 19     | 20          | 10      | ო     | -          | 9            |        | 52      |
|                           | Darticulato      |            |          |        |             | Mine    | rals  |            |              |        |         |
| Doliched Block Sample     | Size Fraction    | Chlorite B | iotite ( | Juartz | Pladioclase | K-felds | par C | arbonates  | Magnetite II | nenite | Apatite |
|                           | (mn)             | (unl)      | (un      | (unl)  | (unl)       | (unl)   |       | (mn)       | (unl)        | (mn)   | (mr)    |
| 16612_SKC_MS2_250_150_1_3 | -250+150         | 98         | 170      | 113    | 180         | 131     |       | 6          | 2            | 21     | 82      |
| 16613_SKC_MS2_250_150_2_3 | -250+150         | 121        | 175      | 108    | 159         | 80      |       | 0          | ი            | с      | 55      |
| 16614_SKC_MS2_250_150_3_3 | -250+150         | 130        | 120      | 111    | 154         | 98      |       | 98         | 14           | S      | 31      |
| 16615_SKC_MS2_150_75_1_2  | -150+75          | 87         | 115      | 87     | 97          | 52      |       | 18         | 18           | 11     | 44      |
| 16616_SKC_MS2_150_75_2_2  | -150+75          | 72         | 89       | 82     | 95          | 76      |       | 9          | 14           | 0      | 70      |
| 16617_SKC_MS2_75          | -75              | 35         | 46       | 38     | 45          | 24      |       | 4          | o            | 4      | 23      |

### Table I4.6. Average Mineral Grain Size (µm), Sample MS2 (SEM Automated Mineralogy)



|                              |               |            |         |          |            | NA      | -       |            |              |          | ſ        |
|------------------------------|---------------|------------|---------|----------|------------|---------|---------|------------|--------------|----------|----------|
|                              | Particulate   |            |         |          |            |         | nerais  |            |              |          |          |
| <b>Polished Block Sample</b> | Size Fraction | Pyrrhotite | Chalcop | oyrite F | entlandite | Pyrite  | Talc    | Serpentine | Clinopyroxer | le Amph  | iboles   |
|                              | (mŋ)          | (mu)       | url)    | -        | (mŋ)       | (mrl)   | (mŋ)    | (mŋ)       | (unl)        | л)       | Ê        |
| 16621_SKC_TZ1_250_150_1_3    | -250+150      | 79         | 06      |          | 34         | 59      | 15      | 30         | 5            | 16       | 34       |
| 16622_SKC_TZ1_250_150_2_3    | -250+150      | 83         | 86      |          | 32         | 76      | 4       | 9          | ω            | 7        | 46       |
| 16623_SKC_TZ1_250_150_3_3    | -250+150      | 73         | 93      |          | 82         | 105     | 17      | 7          | 4            | 16       | 37       |
| 16624_SKC_TZ1_150_75_1_2     | -150+75       | 62         | 64      |          | 67         | 41      | 38      | 6          | 9            |          | 22       |
| 16625_SKC_TZ1_150_75_2_2     | -150+75       | 68         | 62      |          | 73         | 53      | 40      | С          | 18           | 1        | <u> </u> |
| 16626_SKC_TZ1_75             | -75           | 28         | 19      |          | 0          | 36      | ø       | 9          | 4            | 4        | ٥.       |
|                              |               |            |         |          |            |         |         |            |              |          |          |
|                              | Particulate   |            |         |          |            | Σ       | inerals |            |              |          |          |
| Polished Block Sample        | Size Fractior | n Chlorite | Biotite | Quartz   | Plagioclas | e K-fel | dspar   | Carbonates | Magnetite I  | menite / | Apatite  |
|                              | (mn)          | (mn)       | (mŋ)    | (mrl)    | (mn)       | 3       | lm)     | (mrl)      | (mn)         | (mŋ)     | (mn)     |
| 16621_SKC_TZ1_250_150_1_3    | -250+150      | 198        | 109     | 128      | 124        |         | 37      | 55         | 10           | 11       | 27       |
| 16622_SKC_TZ1_250_150_2_3    | -250+150      | 107        | 124     | 138      | 108        |         | 71      | 13         | 11           | 19       | 25       |
| 16623_SKC_TZ1_250_150_3_3    | -250+150      | 122        | 128     | 129      | 107        |         | 27      | 65         | 20           | 10       | 39       |
| 16624_SKC_TZ1_150_75_1_2     | -150+75       | 59         | 84      | 84       | 80         |         | 32      | 11         | 45           | 8        | 38       |
| 16625_SKC_TZ1_150_75_2_2     | -150+75       | 77         | 95      | 94       | 67         |         | 4       | 30         | 21           | 10       | 14       |
| 16626_SKC_TZ1_75             | -75           | 33         | 28      | 44       | 43         |         | 21      | 9          | 10           | 7        | 10       |

# Table I4.7. Average Mineral Grain Size (µm), Sample TZ1 (SEM Automated Mineralogy)



|                              | Particulate   |            |            |          |            | Mine                | erals  |            |               |          |       |
|------------------------------|---------------|------------|------------|----------|------------|---------------------|--------|------------|---------------|----------|-------|
| <b>Polished Block Sample</b> | Size Fraction | Pyrrhotite | Chalcopy   | /rite P  | entlandite | Pyrite <sup>-</sup> | Talc   | Serpentine | Clinopyroxene | Amphib   | oles  |
|                              | (mu)          | (mn)       | (un)       |          | (mŋ)       | )<br>(mrl)          | (mu)   | (mrl)      | (unl)         | (mrl)    | ~     |
| 16627_SKC_TZ2_250_150_1_3    | -250+150      | 122        | 109        |          | 39         | 57                  | 15     | 4          | 10            | 164      |       |
| 16628_SKC_TZ2_250_150_2_3    | -250+150      | 127        | 81         |          | 76         | 83                  | 17     | 7          | 20            | 175      |       |
| 16629_SKC_TZ2_250_150_3_3    | -250+150      | 135        | 176        |          | 33         | 80                  | 10     | 5          | 31            | 169      | _     |
| 16630_SKC_TZ2_150_75_1_2     | -150+75       | 86         | 60         |          | 74         | 45                  | 15     | 8          | 9             | 123      | _     |
| 16631_SKC_TZ2_150_75_2_2     | -150+75       | 86         | 68         |          | 83         | 24                  | 6      | 0          | 9             | 115      |       |
| 16632_SKC_TZ2_75             | -75           | 28         | 31         |          | 18         | 22                  | S      | ო          | 10            | 82       |       |
|                              |               |            |            |          |            |                     |        |            |               |          |       |
|                              | Particulate   |            |            |          |            | Mine                | erals  |            |               |          |       |
| <b>Polished Block Sample</b> | Size Fraction | Chlorite E | siotite Qu | artz P   | lagioclase | K-felds             | spar ( | Carbonates | Magnetite IIm | enite Ap | atite |
|                              | (mrl)         | (mn)       | rl) (mr)   | <b>E</b> | (mrl)      | mu)                 | ~      | (mu)       | l) (url)      | 1) (mu   | (mr   |
| 16627_SKC_TZ2_250_150_1_3    | -250+150      | 71         | 124 1:     | 21       | 152        | 49                  |        | 29         | 8             | ∞        | 22    |
| 16628_SKC_TZ2_250_150_2_3    | -250+150      | 108        | 130 1:     | 29       | 109        | 76                  |        | 18         | 10            | 0        | 74    |
| 16629_SKC_TZ2_250_150_3_3    | -250+150      | 96         | 140 1:     | 33       | 122        | 87                  |        | 12         | 30            | 9        | 40    |
| 16630_SKC_TZ2_150_75_1_2     | -150+75       | 61         | 6<br>06    | 2        | 77         | 48                  |        | 6          | 21            | 0        | 59    |
| 16631_SKC_TZ2_150_75_2_2     | -150+75       | 64         | 80 7       | 74       | 77         | 36                  |        | 42         | 10            | 0        | 34    |
| 16632_SKC_TZ2_75             | -75           | 34         | 45 3       | 32       | 34         | 24                  |        | 15         | 8             | 0        | 24    |

Table I4.8. Average Mineral Grain Size ( $\mu m$ ), Sample TZ2 (SEM Automated Mineralogy)



42

9

ശ

20

3

48

36

50

37

-75

16641\_SKC\_BAS1\_75

| Table I4.9. Average Minera | l Grain Size (µm), | Sample BAS1 (SEM | Automated Mineralogy) |
|----------------------------|--------------------|------------------|-----------------------|
|----------------------------|--------------------|------------------|-----------------------|

|                              | <b>Particulate Size</b> |            |               |             | Mine                | rals   |            |               |          |            |
|------------------------------|-------------------------|------------|---------------|-------------|---------------------|--------|------------|---------------|----------|------------|
| <b>Polished Block Sample</b> | Fraction                | Pyrrhotite | Chalcopyrite  | Pentlandite | Pyrite <sup>-</sup> | ralc S | Serpentine | Clinopyroxen  | e Amph   | hiboles    |
|                              | (unl)                   | (mrl)      | (unl)         | (mu)        | ) (unl)             | (mu    | (mn)       | (mu)          | <u>э</u> | ( <u>m</u> |
| 16636_SKC_BAS1_250_150_1_3   | -250+150                | 114        | 74            | 50          | 58                  | 2      | 4          | ω             | -        | 23         |
| 16637_SKC_BAS1_250_150_2_3   | -250+150                | 97         | 78            | 83          | 120                 | 24     | 13         | 62            | -        | 49         |
| 16638_SKC_BAS1_250_150_3_3   | -250+150                | 96         | 41            | 62          | 55                  | 4      | 9          | 9             | -        | 45         |
| 16639_SKC_BAS1_150_75_1_2    | -150+75                 | 75         | 47            | 54          | 48                  | 24     | 4          | თ             | -        | 64         |
| 16640_SKC_BAS1_150_75_2_2    | -150+75                 | 72         | 56            | 67          | 42                  | 21     | 31         | 11            | -        | 16         |
| 16641_SKC_BAS1_75            | -75                     | 18         | 23            | 16          | 13                  | 24     | 2          | с             | 4,       | 50         |
|                              |                         |            |               |             |                     |        |            |               |          |            |
|                              | Particulate             |            |               |             | Miner               | als    |            |               |          |            |
| <b>Polished Block Sample</b> | Size Fraction           | Chlorite B | iotite Quartz | Plagioclase | K-feldsp            | bar Ca | arbonates  | Magnetite IIm | enite A  | patite     |
|                              | (mu)                    | (mn)       | (un) (un)     | (mn)        | (mu)                |        | (mn)       | 1) (unl)      | (m       | (mrl)      |
| 16636_SKC_BAS1_250_150_1_3   | -250+150                | 88         | 155 150       | 139         | 46                  |        | 06         | 78            | 32       | 77         |
| 16637_SKC_BAS1_250_150_2_3   | -250+150                | 98         | 138 142       | 132         | 110                 |        | 78         | 13            | 24       | 52         |
| 16638_SKC_BAS1_250_150_3_3   | -250+150                | 108        | 147 126       | 125         | 60                  |        | 66         | 80            | 11       | 57         |
| 16639_SKC_BAS1_150_75_1_2    | -150+75                 | 81         | 106 73        | 98          | 42                  |        | 43         | 10            | 12       | 66         |
| 16640_SKC_BAS1_150_75_2_2    | -150+75                 | 82         | 126 95        | 95          | 50                  |        | 29         | 9             | 9        | 42         |



15

13

ω

ი

33

38

34

34

32

-75

16647\_SKC\_BAS2\_75

| Table I4.10. Average Mineral Grain Size ( $\mu$ m), Sample BAS2 (SEM Automated Mineralog | y) |
|------------------------------------------------------------------------------------------|----|
|------------------------------------------------------------------------------------------|----|

|                              |               |            |               |               | Mine     | rais     |           |              |          |         |
|------------------------------|---------------|------------|---------------|---------------|----------|----------|-----------|--------------|----------|---------|
| Polished Block Sample        | Faction       | Pyrrhotite | Chalcopyrit   | e Pentlandite | Pyrite - | Talc S   | erpentine | Clinopyroxe  | ene Amp  | hiboles |
| •                            | (mu)          | (mu)       | (mrl)         | (mu)          | ) (mŋ)   | (mų      | (mn)      | (mu)         | -        | (mu     |
| 16642_SKC_BAS2_250_150_1_3   | -250+150      | 47         | 93            | 14            | 49       | 2        | 6         | 2            |          | 167     |
| 16643_SKC_BAS2_250_150_2_3   | -250+150      | 60         | 119           | 72            | 53       | 18       | 8         | ю            |          | 207     |
| 16644_SKC_BAS2_250_150_3_3   | -250+150      | 99         | 125           | 89            | 79       | 9        | 10        | 54           |          | 203     |
| 16645_SKC_BAS2_150_75_1_2    | -150+75       | 56         | 69            | 24            | 41       | <b>б</b> | 10        | 52           | <u> </u> | 136     |
| 16646_SKC_BAS2_150_75_2_2    | -150+75       | 39         | 82            | 28            | 114      | ω        | 9         | 11           | ·        | 140     |
| 16647_SKC_BAS2_75            | -75           | 14         | 41            | 7             | 1        | 7        | 2         | с            |          | 94      |
|                              |               |            |               |               |          |          |           |              |          |         |
|                              | Particulate   |            |               |               | Mine     | rals     |           |              |          |         |
| <b>Polished Block Sample</b> | Size Fraction | Chlorite B | siotite Quart | z Plagioclase | K-felds  | oar Cá   | arbonates | Magnetite II | menite / | Apatite |
|                              | (un)          | (mn)       | (mu) (mu)     | (mu)          | (աղ)     |          | (mrl)     | (mn)         | (mŋ)     | (mn)    |
| 16642_SKC_BAS2_250_150_1_3   | -250+150      | 97         | 116 131       | 126           | 55       |          | 17        | 10           | 30       | 46      |
| 16643_SKC_BAS2_250_150_2_3   | -250+150      | 105        | 159 132       | 105           | 59       |          | 8         | 12           | 27       | 14      |
| 16644_SKC_BAS2_250_150_3_3   | -250+150      | 95         | 120 113       | 115           | 83       |          | 32        | 18           | 28       | 25      |
| 16645_SKC_BAS2_150_75_1_2    | -150+75       | 70         | 95 84         | 83            | 60       |          | 78        | 15           | 42       | 64      |
| 16646_SKC_BAS2_150_75_2_2    | -150+75       | 81         | 147 86        | 91            | 62       |          | 58        | 35           | 33       | 28      |



|                           | Particulate Size |            |                    |             |           | Mine    | erals   |             |                 |          |          |
|---------------------------|------------------|------------|--------------------|-------------|-----------|---------|---------|-------------|-----------------|----------|----------|
| Polished Block Sample     | Fraction         | Pyrrhotite | Chalcopy           | rite Pent   | tlandite  | Pyrite  | Talc S  | erpentine   | Clinopyroxene   | Amphi    | boles    |
|                           | (mu)             | (un)       | (un)               |             | (und      | (mu)    | (mr)    | (mu)        | (unl)           | url)     | <u>ر</u> |
| 16578_SKC_PM1_250_150_1_3 | -250+150         | 0.49       | 0.23               |             | 0.11      | 0.00    | 12.49   | 5.99        | 0.11            | 24.      | 32       |
| 16579_SKC_PM1_250_150_2_3 | -250+150         | 0.50       | 0.24               |             | 0.10      | 0.00    | 13.19   | 5.63        | 0.07            | 24.      | 31       |
| 16580_SKC_PM1_250_150_3_3 | -250+150         | 0.29       | 0.21               |             | 0.12      | 0.00    | 13.09   | 5.55        | 0.08            | 23.      | 35       |
| 16581_SKC_PM1_150_75_1_2  | -150+75          | 0.40       | 0.19               |             | 0.14      | 0.00    | 16.19   | 6.32        | 0.14            | 23.      | 30       |
| 16582_SKC_PM1_150_75_2_2  | -150+75          | 0.44       | 0.25               | <u> </u>    | 0.11      | 0.00    | 16.11   | 6.05        | 0.12            | 23.      | 35       |
| 16583_SKC_PM1_75          | -75              | 0.31       | 0.23               | <u> </u>    | 0.14      | 0.00    | 22.19   | 4.83        | 0.12            | 19.      | 92       |
|                           |                  |            |                    |             |           |         |         |             |                 |          |          |
|                           | Particulate Size |            |                    |             |           | Min     | erals   |             |                 |          |          |
| Polished Block Sample     | Fraction         | Chlorite E | <b>Siotite</b> Qua | irtz Albit∈ | e Plagioc | lase K. | feldspa | r Carbonate | s Magnetite III | nenite / | Apatite  |
|                           | (mn)             | (mŋ)       | url) (mrl)         | (un) (u     | url)      | -       | (mn)    | (mn)        | (mn)            | (mrl)    | (mrl)    |
| 16578_SKC_PM1_250_150_1_3 | -250+150         | 45.76      | 0.17 0.0           | 0.00        | 0.0       | ~<br>~  | 0.03    | 8.32        | 0.75            | 0.10     | 0.02     |
| 16579_SKC_PM1_250_150_2_3 | -250+150         | 46.48      | 0.19 0.0           | 0.00        | 0.0       | _       | 0.00    | 7.74        | 0.57            | 0.11     | 0.03     |
| 16580_SKC_PM1_250_150_3_3 | -250+150         | 47.14      | 0.17 0.0           | 0.01        | 0.0       |         | 0.03    | 8.15        | 0.67            | 0.10     | 0.01     |
| 16581_SKC_PM1_150_75_1_2  | -150+75          | 43.95      | 0.22 0.0           | 0.01        | 0.0       | ~       | 0.02    | 7.14        | 0.54            | 0.09     | 0.02     |
| 16582_SKC_PM1_150_75_2_2  | -150+75          | 44.25      | 0.21 0.0           | 0.02        | 0.0       |         | 0.00    | 7.66        | 09.0            | 0.11     | 0.01     |
| 16583_SKC_PM1_75          | -75              | 45.67      | 0.15 0.0           | 0.01        | 0.0       | ~       | 0.00    | 4.10        | 0.32            | 0.05     | 0.06     |

| Table IF 1 Surface  | Minoral Proportions   | (0/2) Sample DN/1 /   | SEM Automated Minoralogy      |
|---------------------|-----------------------|-----------------------|-------------------------------|
| Table 15.1. Suitace | willer al Fropol dons | ( /0), Sample Fivit ( | SLIVI AUTOINALEU IVIIIELAIOgy |



|                              | Particulate   |            |               |            |            | Minerals   |              |              |            |          |
|------------------------------|---------------|------------|---------------|------------|------------|------------|--------------|--------------|------------|----------|
| <b>Polished Block Sample</b> | Size Fraction | Pyrrhotite | Chalcopyri    | te Pentlan | idite Pyri | te Talc    | Serpentine ( | Clinopyroxen | e Amphik   | ooles    |
|                              | (mn)          | (mŋ)       | (mr)          | (und)      | url) (     | (und) (u   | (un)         | (mu)         | url)       | 2        |
| 16584_SKC_PM2_250_150_1_3    | -250+150      | 0.59       | 0.26          | 0.27       | 0.0        | 0 32.61    | 0.56         | 0.01         | 0.2        | ω        |
| 16585_SKC_PM2_250_150_2_3    | -250+150      | 0.57       | 0.25          | 0.23       | 3 0.0      | 0 32.84    | 0.57         | 0.01         | 0.3        | 5        |
| 16586_SKC_PM2_250_150_3_3    | -250+150      | 0.58       | 0.26          | 0.22       | 0.0        | 0 32.85    | 0.64         | 0.01         | 0.3        | 9        |
| 16587_SKC_PM2_150_75_1_2     | -150+75       | 0.53       | 0.25          | 0.27       | 0.0        | 1 44.48    | 0.43         | 0.01         | 0.2        | 2        |
| 16588_SKC_PM2_150_75_2_2     | -150+75       | 0.53       | 0.20          | 0.19       | 0.0        | 0 44.65    | 0.41         | 0.02         | 0.3        | <i>с</i> |
| 16589_SKC_PM2_75             | -75           | 0.13       | 0.17          | 0.11       | 0.0        | 1 57.61    | 0.39         | 0.02         | 0.2        | 6        |
|                              |               |            |               |            |            |            |              |              |            |          |
|                              | Particulate   |            |               |            |            | Minerals   |              |              |            |          |
| Polished Block Sample        | Size Fraction | Chlorite B | iotite Quartz | Albite PI  | lagioclase | K-feldspai | Carbonates   | Magnetite II | menite A   | patite   |
|                              | (mn)          | ) (mu)     | (un) (un      | (mrl)      | (url)      | (mŋ)       | (mrl)        | (mn)         | )<br>(mrl) | (mu)     |
| 16584_SKC_PM2_250_150_1_3    | -250+150      | 39.15 (    | 0.06 0.04     | 0.02       | 0.01       | 0.03       | 22.42        | 2.71         | 0.08 (     | 0.07     |
| 16585_SKC_PM2_250_150_2_3    | -250+150      | 37.77 0    | 0.05 0.03     | 0.01       | 0.01       | 0.06       | 23.33        | 2.90         | 0.11 (     | 0.03     |
| 16586 SKC PM2 250 150 3 3    | -250-150      | 37 70 0    | 000 000       | 0.01       | 000        | 0.04       | 23 30        | 2 68         | 0.13       | 0.04     |

|                           | Particulate   |          |         |        |        |             | Minerals   |            |           |          |         |
|---------------------------|---------------|----------|---------|--------|--------|-------------|------------|------------|-----------|----------|---------|
| Polished Block Sample     | Size Fraction | Chlorite | Biotite | Quartz | Albite | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
|                           | (mn)          | (mrl)    | (mrl)   | (mrl)  | (mr)   | (mn)        | (mrl)      | (mrl)      | (url)     | (mŋ)     | (mrl)   |
| 16584_SKC_PM2_250_150_1_3 | -250+150      | 39.15    | 0.06    | 0.04   | 0.02   | 0.01        | 0.03       | 22.42      | 2.71      | 0.08     | 0.07    |
| 16585_SKC_PM2_250_150_2_3 | -250+150      | 37.77    | 0.05    | 0.03   | 0.01   | 0.01        | 0.06       | 23.33      | 2.90      | 0.11     | 0.03    |
| 16586_SKC_PM2_250_150_3_3 | -250+150      | 37.70    | 0.09    | 0.02   | 0.01   | 0.00        | 0.04       | 23.39      | 2.68      | 0.13     | 0.04    |
| 16587_SKC_PM2_150_75_1_2  | -150+75       | 34.76    | 0.11    | 0.04   | 0.02   | 0.02        | 0.04       | 15.49      | 2.41      | 0.08     | 0.02    |
| 16588_SKC_PM2_150_75_2_2  | -150+75       | 34.39    | 0.11    | 0.03   | 0.03   | 0.03        | 0.05       | 15.44      | 2.67      | 0.08     | 0.04    |
| 16589_SKC_PM2_75          | -75           | 30.02    | 0.06    | 0.02   | 0.03   | 0.04        | 0.02       | 7.51       | 1.39      | 0.09     | 0.04    |

Table I5.2. Surface Mineral Proportions (%), Sample PM2 (SEM Automated Mineralogy)



|                              | Particulate   |            |           |          |          |           | Mine     | rals   |            |            |          |         |
|------------------------------|---------------|------------|-----------|----------|----------|-----------|----------|--------|------------|------------|----------|---------|
| Polished Block Sample        | Size Fraction | Pyrrhotit  | e Chalc   | opyrite  | Pentlan  | ndite Py  | rite .   | ralc S | Serpentine | Clinopyrox | ene Am   | hiboles |
|                              | (mn)          | (mŋ)       | ц<br>Ц    | <u> </u> | (mr)     | (         | )<br>(щ  | (un    | (mrl)      | (unl)      |          | (mu)    |
| 16590_SKC_PX1_250_150_1_3    | -250+150      | 0.40       | Ö         | 18       | 0.10     | 0         | 00.      | 1.44   | 0.82       | 0.08       |          | 36.72   |
| 16591_SKC_PX1_250_150_2_3    | -250+150      | 0.30       | Ö         | 14       | 0.05     | 0         | .02      | 1.22   | 0.86       | 0.08       |          | 36.32   |
| 16592_SKC_PX1_250_150_3_3    | -250+150      | 0.33       | Ö         | 26       | 0.06     | 0         | .02      | 1.13   | 0.85       | 0.13       |          | 36.76   |
| 16593_SKC_PX1_150_75_1_2     | -150+75       | 0.39       | Ö         | 23       | 0.05     | 0         | <u>.</u> | 1.30   | 0.75       | 0.22       |          | 33.10   |
| 16594_SKC_PX1_150_75_2_2     | -150+75       | 0.35       | Ö         | 24       | 0.05     | 0         | 00.      | 1.24   | 0.85       | 0.25       |          | 32.58   |
| 16595_SKC_PX1_75             | -75           | 0.13       | Ö         | 23       | 0.04     | 4         | 00.      | 1.96   | 0.78       | 0.27       |          | 17.48   |
|                              |               |            |           |          |          |           |          |        |            |            |          |         |
|                              | Particulate   |            |           |          |          |           | Minera   | ls     |            |            |          |         |
| <b>Polished Block Sample</b> | Size Fraction | Chlorite B | liotite Q | luartz   | Albite F | Plagiocle | ase K-fe | Idspar | Carbonates | Magnetite  | Ilmenite | Apatite |
| ,                            | (mrl)         | (mn)       | (mu)      | (urd)    | (mn)     | (mu)      | <u> </u> | (un    | (mŋ)       | (mn)       | (mrl)    | (mn)    |
| 16590_SKC_PX1_250_150_1_3    | -250+150      | 29.07      | 0.33      | 0.01     | 0.00     | 0.04      |          | .01    | 0.27       | 0.04       | 0.08     | 0.05    |
| 16591_SKC_PX1_250_150_2_3    | -250+150      | 29.57      | 0.36      | 0.01     | 0.01     | 0.05      |          | .02    | 0.34       | 0.02       | 0.14     | 0.07    |
| 16592_SKC_PX1_250_150_3_3    | -250+150      | 28.99      | 0.47      | 0.00     | 0.00     | 0.03      |          | 00.0   | 0.33       | 0.09       | 0.12     | 0.07    |
| 16593_SKC_PX1_150_75_1_2     | -150+75       | 32.54      | 0.41      | 0.01     | 0.00     | 0.01      |          | 00.0   | 0.20       | 0.03       | 0.09     | 0.01    |
| 16594_SKC_PX1_150_75_2_2     | -150+75       | 32.32      | 0.53      | 0.02     | 0.01     | 0.03      |          | 00.0   | 0.23       | 0.08       | 0.10     | 0.03    |
| 16595_SKC_PX1_75             | -75           | 45.95      | 0.30      | 0.02     | 0.01     | 0.01      |          | .02    | 0.12       | 0.03       | 0.10     | 0.01    |

| 00<br>03.<br>03. | 47.              | 840000                                       |
|------------------|------------------|----------------------------------------------|
|                  | Ilmer<br>(µm     | 0.0.0.0.0                                    |
| 0.27<br>0.27     | agnetite<br>(µm) | 0.04<br>0.02<br>0.03<br>0.03<br>0.03         |
|                  | es Ma            |                                              |
| C8<br>28         | onat<br>um)      | ).27<br>).34<br>).33<br>).20<br>).23<br>).12 |

Table I5.3. Surface Mineral Proportions (%), Sample PX1 (SEM Automated Mineralogy)



|                           | Particulate   |             |          |           |           |            | Mir                | erals   |              |                |        |         |
|---------------------------|---------------|-------------|----------|-----------|-----------|------------|--------------------|---------|--------------|----------------|--------|---------|
| Polished Block Sample     | Size Fractio  | n Pyrrhoti  | ite Cha  | alcopyrit | e Pentla  | andite F   | <sup>o</sup> yrite | Talc \$ | Serpentine   | Clinopyroxen   | e Ampl | hiboles |
|                           | (mrl)         | (mn)        |          | (mn)      | <u>н)</u> | <b>(</b> m | (mn)               | (mrl)   | (mrl)        | (mn)           | 5      | (ur     |
| 16600_SKC_PX2_250_150_1_  | 3 -250+150    | 00'0        |          | 0.05      | 0         | 00         | 0.00               | 0.03    | 0.00         | 0.02           | ю́     | 3.89    |
| 16601_SKC_PX2_250_150_2_  | 3 -250+150    | 00.00       |          | 0.05      | ö         | 01         | 0.00               | 0.01    | 0.00         | 0.06           | òó     | 3.51    |
| 16602_SKC_PX2_250_150_3_  | 3 -250+150    | 0.01        |          | 0.07      | ō         | 00         | 0.00               | 0.01    | 0.00         | 0.02           | ò      | 3.70    |
| 16603_SKC_PX2_150_75_1_2  | -150+75       | 00.00       |          | 0.06      | ö         | 00         | 0.00               | 0.03    | 0.00         | 0.05           | õ      | 0.03    |
| 16604_SKC_PX2_150_75_2_2  | -150+75       | 00.00       |          | 0.06      | ö         | 00         | 0.00               | 0.02    | 0.00         | 0.05           | ŏ      | 0.32    |
| 16605_SKC_PX2_75          | -75           | 00.00       |          | 0.02      | Ö         | 00         | 0.00               | 0.00    | 0.02         | 0.06           | ě,     | 5.50    |
|                           |               |             |          |           |           |            |                    |         |              |                |        |         |
|                           | Particulate   |             |          |           |           |            | Mine               | rals    |              |                |        |         |
| Polished Block Sample     | Size Fraction | Chlorite Bi | iotite ( | Quartz    | Albite    | Plagiocla  | ase K-f            | eldspa  | r Carbonate: | s Magnetite II | menite | Apatite |
|                           | (mr)          | ) (mu)      | (mu      | (mrl)     | (mr)      | (unl)      |                    | (mul)   | (url)        | (mrl)          | (mrl)  | (mrl)   |
| 16600_SKC_PX2_250_150_1_3 | -250+150      | 12.55 1     | 1.89     | 0.06      | 0.01      | 0.24       |                    | 0.02    | 0.04         | 0.03           | 0.26   | 0.03    |
| 16601_SKC_PX2_250_150_2_3 | -250+150      | 12.97 1     | 1.84     | 0.05      | 0.01      | 0.20       |                    | 0.00    | 0.11         | 0.01           | 0.30   | 0.07    |
| 16602_SKC_PX2_250_150_3_3 | -250+150      | 12.28       | 2.11     | 0.03      | 0.02      | 0.19       |                    | 0.01    | 0.02         | 0.03           | 0.49   | 0.02    |
| 16603_SKC_PX2_150_75_1_2  | -150+75       | 15.67 2     | 2.00     | 0.04      | 0.00      | 0.11       |                    | 0.01    | 0.02         | 0.02           | 0.34   | 0.06    |
| 16604_SKC_PX2_150_75_2_2  | -150+75       | 15.71 1     | 1.83     | 0.07      | 0.03      | 0.16       |                    | 0.01    | 0.01         | 0.01           | 0.23   | 0.02    |
| 16605_SKC_PX2_75          | -75           | 28.80 (     | 0.84     | 0.02      | 0.00      | 0.07       |                    | 0.01    | 0.00         | 0.00           | 0.10   | 0.02    |

| Table I5.4 | . Surface Mineral | Proportions (% | ), Sample PX2 | (SEM Automated | Mineralogy) |
|------------|-------------------|----------------|---------------|----------------|-------------|
|------------|-------------------|----------------|---------------|----------------|-------------|

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland



|                           | Particulate   |             |              |            | 2           | linerals   |            |               |          |         |
|---------------------------|---------------|-------------|--------------|------------|-------------|------------|------------|---------------|----------|---------|
| Polished Block Sample     | Size Fraction | Pyrrhotite  | Chalcopyrit  | e Pentland | ite Pyrite  | Talc       | Serpentine | Clinopyroxen  | e Ampl   | hiboles |
|                           | (unl)         | (mr)        | (mr)         | (un)       | (url)       | (mrl)      | (mn)       | (mn)          | -        | (ur     |
| 16606_SKC_MS1_250_150_1_3 | -250+150      | 0.18        | 0.25         | 0.04       | 0.26        | 0.00       | 0.01       | 0.00          | 7        | 3.18    |
| 16607_SKC_MS1_250_150_2_3 | -250+150      | 0.26        | 0.19         | 0.04       | 0.15        | 0.01       | 0.00       | 0.00          | ~        | 1.98    |
| 16608_SKC_MS1_250_150_3_3 | -250+150      | 0.13        | 0.26         | 0.09       | 0.13        | 0.03       | 0.00       | 0.01          | 7        | 1.83    |
| 16609_SKC_MS1_150_75_1_2  | -150+75       | 0.38        | 0.34         | 0.07       | 0.10        | 0.02       | 0.01       | 0.02          | 7        | 3.09    |
| 16610_SKC_MS1_150_75_2_2  | -150+75       | 0.43        | 0.31         | 0.11       | 0.13        | 0.01       | 0.01       | 0.00          |          | 2.50    |
| 16611_SKC_MS1_75          | -75           | 0.22        | 0.63         | 0.22       | 0.10        | 0.06       | 0.01       | 0.02          | 0        | 7.12    |
|                           |               |             |              |            |             |            |            |               |          |         |
|                           | Particulate   |             |              |            | Ϊ           | inerals    |            |               |          |         |
| Polished Block Sample     | Size Fraction | Chlorite Bi | otite Quartz | Albite Pl  | agioclase I | K-feldspar | Carbonates | Magnetite IIn | nenite / | Apatite |
|                           | (mrl)         | (mrl)       | (un) (un     | (mu)       | (mrl)       | (mrl)      | (unl)      | (mn)          | (unl)    | (mrl)   |
| 16606_SKC_MS1_250_150_1_3 | -250+150      | 2.62 3      | .05 6.52     | 0.28       | 11.71       | 0.26       | 0.05       | 0.00          | 0.04     | 0.06    |
| 16607_SKC_MS1_250_150_2_3 | -250+150      | 2.73 3      | .14 6.47     | 0.24       | 12.77       | 0.23       | 0.13       | 0.01          | 0.04     | 0.04    |
| 16608_SKC_MS1_250_150_3_3 | -250+150      | 2.88 2      | 91 6.36      | 0.28       | 13.22       | 0.23       | 0.04       | 0.01          | 0.04     | 0.03    |
| 16609_SKC_MS1_150_75_1_2  | -150+75       | 3.18 3      | .88 6.12     | 0.23       | 9.91        | 0.31       | 0.10       | 0.03          | 0.03     | 0.03    |
| 16610_SKC_MS1_150_75_2_2  | -150+75       | 3.42 3      | .90 6.05     | 0.17       | 10.19       | 0.31       | 0.09       | 0.03          | 0.03     | 0.07    |
| 16611_SKC_MS1_75          | -75           | 7.77 3      | .74 5.88     | 0.22       | 8.54        | 0.39       | 0.11       | 0.07          | 0.02     | 0.07    |

| able 15.5. Surface Mineral | Proportions (%), | Sample MS1 (SEM | Automated Mineralogy) |
|----------------------------|------------------|-----------------|-----------------------|
|----------------------------|------------------|-----------------|-----------------------|

Minerals



|                              | Particulate   |            |               |            | 2            | linerals   |            |               |          |                |
|------------------------------|---------------|------------|---------------|------------|--------------|------------|------------|---------------|----------|----------------|
| <b>Polished Block Sample</b> | Size Fraction | Pyrrhotite | Chalcopyrit   | te Pentlan | idite Pyrite | Talc       | Serpentine | Clinopyroxene | e Amphi  | iboles         |
|                              | (աո)          | (mŋ)       | (mŋ)          | mu)        | (un) (       | (mrl)      | (mŋ)       | (mu)          | lur)     | <del>ا</del>   |
| 16612_SKC_MS2_250_150_1_3    | -250+150      | 0.10       | 0.21          | 0.0        | 0.04         | 00.0       | 00.0       | 0.00          | 19.      | 49             |
| 16613_SKC_MS2_250_150_2_3    | -250+150      | 0.16       | 0.25          | 0.07       | 0.02         | 0.00       | 00.0       | 0.00          | 19.      | 14             |
| 16614_SKC_MS2_250_150_3_3    | -250+150      | 0.10       | 0.32          | 0.01       | 0.01         | 0.01       | 0.01       | 0.01          | 19.      | 49             |
| 16615_SKC_MS2_150_75_1_2     | -150+75       | 0.19       | 0.26          | 0.07       | 0.06         | 0.01       | 0.00       | 0.01          | 20.      | 49             |
| 16616_SKC_MS2_150_75_2_2     | -150+75       | 0.10       | 0.33          | 0.07       | 0.05         | 0.00       | 0.01       | 0.03          | 20.      | 68             |
| 16617_SKC_MS2_75             | -75           | 0.13       | 0.42          | 0.16       | 0.02         | 0.00       | 00.0       | 0.02          | 25.      | 49             |
|                              |               |            |               |            |              |            |            |               |          |                |
|                              | Particulate   |            |               |            | 2            | linerals   |            |               |          |                |
| Polished Block Sample        | Size Fraction | Chlorite B | iotite Quart: | z Albite   | Plagioclase  | K-feldspar | Carbonates | Magnetite IIr | nenite A | <b>Npatite</b> |
|                              | (mn)          | )<br>(mrl) | (un) (un)     | (mu)       | (mŋ)         | (mrl)      | (աո)       | (mn)          | (mn)     | (mu)           |
| 16612_SKC_MS2_250_150_1_3    | -250+150      | 8.76 1     | 2.50 3.73     | 0.45       | 51.37        | 0.67       | 0.00       | 0.00          | 0.00     | 0.04           |
| 16613_SKC_MS2_250_150_2_3    | -250+150      | 9.29       | 12.80 3.54    | 0.35       | 51.04        | 0.70       | 0.00       | 0.00          | 0.00     | 0.02           |
| 16614_SKC_MS2_250_150_3_3    | -250+150      | 9.73 1     | 12.86 3.32    | 0.38       | 50.60        | 0.61       | 0.05       | 0.01          | 0.00     | 0.02           |
| 16615_SKC_MS2_150_75_1_2     | -150+75       | 10.91      | 6.72 2.86     | 0.49       | 44.40        | 0.61       | 0.01       | 0.16          | 0.00     | 0.05           |
| 16616_SKC_MS2_150_75_2_2     | -150+75       | 10.43 1    | 16.89 2.93    | 0.40       | 44.56        | 0.75       | 0.01       | 0.02          | 0.00     | 0.08           |
| 16617_SKC_MS2_75             | -75           | 20.47      | 0.21 2.67     | 0.40       | 36.33        | 0.64       | 0.01       | 0.18          | 0.00     | 0.08           |

| Table 15.6 Surface Mineral Proportions | (%) Sample MS2    | (SEM Automated  | Mineralogy)   |
|----------------------------------------|-------------------|-----------------|---------------|
|                                        | (/0), Sumple MiSz | (JEIN Automateu | winner alogy) |



|                              | Particulate     |              |              |             | 2        | linerals   |            |               |           |        |
|------------------------------|-----------------|--------------|--------------|-------------|----------|------------|------------|---------------|-----------|--------|
| Polished Block Sample        | Size Fraction   | Pyrrhotite   | Chalcopyrite | Pentlandite | e Pyrite | Talc       | Serpentine | Clinopyroxene | Amphil    | boles  |
|                              | (mn)            | (mrl)        | (un)         | (un)        | (mŋ)     | (un)       | (mn)       | (mu)          | url)      | (c     |
| 16621_SKC_TZ1_250_150_1_3    | -250+150        | 0.20         | 0.38         | 0.12        | 0.06     | 0.00       | 0.01       | 0.00          | 30.0      | 8      |
| 16622_SKC_TZ1_250_150_2_3    | -250+150        | 0.23         | 0.34         | 0.06        | 0.09     | 0.00       | 0.00       | 0.00          | 31.2      | 22     |
| 16623_SKC_TZ1_250_150_3_3    | -250+150        | 0.24         | 0.38         | 0.11        | 0.08     | 0.00       | 0.00       | 0.00          | 30.6      | 63     |
| 16624_SKC_TZ1_150_75_1_2     | -150+75         | 0.30         | 0.38         | 0.12        | 0.06     | 0.01       | 0.00       | 0.00          | 31.7      | 77     |
| 16625_SKC_TZ1_150_75_2_2     | -150+75         | 0.26         | 0.34         | 0.11        | 0.07     | 0.02       | 0.00       | 0.01          | 32.8      | 81     |
| 16626_SKC_TZ1_75             | -75             | 0:30         | 0.65         | 0.13        | 0.05     | 0.07       | 0.01       | 0.00          | 35.1      | 7      |
|                              |                 |              |              |             |          |            |            |               |           |        |
|                              | Particulate     |              |              |             | Ξ        | nerals     |            |               |           |        |
| <b>Polished Block Sample</b> | Size Fraction 0 | Chlorite Bio | tite Quartz  | Albite Plag | ioclase  | K-feldspar | Carbonates | Magnetite IIm | ienite Ap | patite |
|                              | (mn)            | п) (шп)      | (mu) (m      | ) (unl)     | hm)      | (mr)       | (mŋ)       | ) (unl)       | )<br>(шп  | (mm    |
| 16621_SKC_TZ1_250_150_1_3    | -250+150        | 4.97 5.      | 70 7.73      | 0.50 4      | 4.40     | 0.64       | 0.02       | 0.01          | 00.0      | 0.04   |
| 16622_SKC_TZ1_250_150_2_3    | -250+150        | 4.81 5.      | 71 7.84      | 0.62 4      | 3.49     | 0.57       | 0.00       | 0.00          | 00.00     | 0.02   |
| 16623_SKC_TZ1_250_150_3_3    | -250+150        | 5.06 5.      | 89 7.13      | 0.51 4      | 3.86     | 0.76       | 0.02       | 0.02          | 00.00     | 0.05   |
| 16624_SKC_TZ1_150_75_1_2     | -150+75         | 5.37 8.      | 54 7.48      | 0.62 3      | 9.03     | 0.69       | 0.01       | 0.09          | 00.00     | 0.04   |
| 16625_SKC_TZ1_150_75_2_2     | -150+75         | 5.19 8.      | 55 7.47      | 0.57 3      | 8.56     | 0.76       | 0.03       | 0.06          | 00.00     | 0.02   |
| 16626_SKC_TZ1_75             | -75             | 10.46 5.     | 55 7.36      | 0.54 3      | 3.05     | 06.0       | 0.03       | 0.12 0        | 00.00     | D.08   |

| Table 15.7. Surface Mineral Pro | portions (%), Sam      | ple T71 (SEM Aut | omated Mineralogy) |
|---------------------------------|------------------------|------------------|--------------------|
|                                 | /por cions ( / 0), Sum |                  |                    |

| Geologian tutkimuskeskus | I   | Geologiska forskningscentralen | I | Geological Survey of Finla | nd |
|--------------------------|-----|--------------------------------|---|----------------------------|----|
| 0                        | · · | 5 5                            |   |                            |    |



|                              | Particulate     |              |              |               | Σ        | inerals   |            |             |          |         |
|------------------------------|-----------------|--------------|--------------|---------------|----------|-----------|------------|-------------|----------|---------|
| Polished Block Sample        | Size Fraction   | Pyrrhotite   | Chalcopyrite | Pentlandite   | Pyrite   | Talc      | Serpentine | Clinopyroxe | ne Amph  | hiboles |
|                              | (un)            | (mrl)        | (mu)         | (mn)          | (mŋ)     | (mrl)     | (mn)       | (un)        | <u>,</u> | m)      |
| 16627_SKC_TZ2_250_150_1_3    | 3 -250+150      | 0.78         | 0.27         | 0.06          | 0.02     | 0.01      | 00.0       | 0.01        | 80       | .46     |
| 16628_SKC_TZ2_250_150_2_3    | 3 -250+150      | 0.68         | 0.28         | 0.12          | 0.05     | 0.01      | 0.00       | 0.01        | 30       | .24     |
| 16629_SKC_TZ2_250_150_3_3    | 3 -250+150      | 0.59         | 0.27         | 0.05          | 0.03     | 0.01      | 0.00       | 0.01        | 30       | .71     |
| 16630_SKC_TZ2_150_75_1_2     | -150+75         | 0.72         | 0.27         | 0.21          | 0.03     | 0.02      | 0.00       | 0.01        | 34       | .95     |
| 16631_SKC_TZ2_150_75_2_2     | -150+75         | 0.65         | 0.32         | 0.14          | 0.01     | 0.04      | 0.00       | 0.01        | 34       | .77     |
| 16632_SKC_TZ2_75             | -75             | 0.57         | 0.38         | 0.15          | 0.08     | 0.03      | 0.00       | 0.02        | 36       | 6.16    |
|                              |                 |              |              |               |          |           |            |             |          |         |
|                              |                 |              |              |               |          |           |            |             |          |         |
|                              | Particulate     |              |              |               | Mir      | nerals    |            |             |          |         |
| <b>Polished Block Sample</b> | Size Fraction C | hlorite Biot | ite Quartz / | VIbite Plagic | oclase K | -feldspar | Carbonates | Magnetite I | menite / | Apatite |
|                              | (mn)            | un) (mu)     | (und) (u     | ול) (md)      | (m)      | (mm)      | (mn)       | (mn)        | (mm)     | (mn)    |
| 16627 SKC TZ2 250 150 1 3    | -250+150        | 8.73 7.7     | 6 5.35       | 0.56 42       | 32       | 0.61      | 0.00       | 0.01        | 000      | 0.02    |

|                              | -             |          |         | 0000   | <b>`</b> | 20.0        | 00.0       | 00:0       | 10:0      | ,        | ~ ~ ~   |   |
|------------------------------|---------------|----------|---------|--------|----------|-------------|------------|------------|-----------|----------|---------|---|
|                              |               |          |         |        |          |             |            |            |           |          |         | , |
|                              | Particulate   |          |         |        |          | 2           | linerals   |            |           |          |         | • |
| <b>Polished Block Sample</b> | Size Fraction | Chlorite | Biotite | Quartz | Albite   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |   |
|                              | (mu)          | (mn)     | (mn)    | (mn)   | (mn)     | (mn)        | (mrl)      | (mŋ)       | (mŋ)      | (mn)     | (mrl)   |   |
| 16627_SKC_TZ2_250_150_1_3    | -250+150      | 8.73     | 7.76    | 5.35   | 0.56     | 42.32       | 0.61       | 0.00       | 0.01      | 0.00     | 0.02    |   |
| 16628_SKC_TZ2_250_150_2_3    | -250+150      | 7.99     | 7.99    | 4.55   | 0.33     | 43.77       | 0.56       | 0.01       | 0.01      | 0.00     | 0.03    |   |
| 16629_SKC_TZ2_250_150_3_3    | -250+150      | 8.07     | 8.04    | 5.42   | 0.38     | 42.58       | 0.56       | 0.01       | 0.01      | 0.00     | 0.04    |   |
| 16630_SKC_TZ2_150_75_1_2     | -150+75       | 9.09     | 10.47   | 5.05   | 0.32     | 35.15       | 0.57       | 0.00       | 0.05      | 0.00     | 0.03    |   |
| 16631_SKC_TZ2_150_75_2_2     | -150+75       | 8.70     | 10.53   | 5.11   | 0.39     | 35.71       | 0.60       | 0.01       | 0.04      | 0.00     | 0.02    |   |
| 16632_SKC_TZ2_75             | -75           | 16.98    | 6.52    | 4.71   | 0.29     | 29.89       | 0.61       | 0.03       | 0.12      | 0.00     | 0.07    |   |

Table I5.8. Surface Mineral Proportions (%), Sample TZ2 (SEM Automated Mineralogy)



|                              | Particulate     |              |              |            | 2         | linerals  |              |                  |               |
|------------------------------|-----------------|--------------|--------------|------------|-----------|-----------|--------------|------------------|---------------|
| Polished Block Sample        | Size Fraction   | Pyrrhotite   | Chalcopyrite | Pentlandi  | te Pyrite | Talc      | Serpentine   | Clinopyroxene    | Amphiboles    |
|                              | (mrl)           | (mrl)        | (mu)         | (mrl)      | (mrl)     | (mu)      | (un)         | (mn)             | (mrl)         |
| 16636_SKC_BAS1_250_150_1_3   | -250+150        | 0.57         | 0.30         | 0.15       | 0.10      | 0.01      | 0.00         | 0.01             | 5.89          |
| 16637_SKC_BAS1_250_150_2_3   | -250+150        | 0.57         | 0.24         | 0.16       | 0.12      | 0.01      | 0.01         | 0.02             | 6.27          |
| 16638_SKC_BAS1_250_150_3_3   | -250+150        | 0.57         | 0.29         | 0.16       | 0.07      | 0.00      | 0.00         | 00.00            | 6.21          |
| 16639_SKC_BAS1_150_75_1_2    | -150+75         | 0.67         | 0.22         | 0.18       | 0.07      | 0.02      | 0.00         | 0.01             | 6.17          |
| 16640_SKC_BAS1_150_75_2_2    | -150+75         | 0.67         | 0.28         | 0.20       | 0.08      | 0.01      | 0.01         | 0.01             | 6.29          |
| 16641_SKC_BAS1_75            | -75             | 0.59         | 0.49         | 0.34       | 0.10      | 0.07      | 0.00         | 0.02             | 9.36          |
|                              |                 |              |              |            |           | a.        |              |                  |               |
|                              |                 |              |              |            |           |           |              |                  |               |
|                              | Particulate     |              |              |            | Mi        | nerals    |              |                  |               |
| <b>Polished Block Sample</b> | Size Fraction ( | Chlorite Bio | tite Quartz  | Albite Pla | gioclase  | K-feldspa | r Carbonates | s Magnetite Ilme | enite Apatite |

|                            | Particulate   |          |         |        |        | Σ           | inerals    |            |           |          |         |
|----------------------------|---------------|----------|---------|--------|--------|-------------|------------|------------|-----------|----------|---------|
| Polished Block Sample      | Size Fraction | Chlorite | Biotite | Quartz | Albite | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
|                            | (un)          | (mrl)    | (mn)    | (mrl)  | (mrl)  | (mrl)       | (mn)       | (mŋ)       | (mrl)     | (mn)     | (mrl)   |
| 16636_SKC_BAS1_250_150_1_3 | -250+150      | 4.47     | 18.74   | 4.15   | 4.09   | 57.50       | 1.15       | 0.08       | 0.08      | 0.00     | 0.07    |
| 16637_SKC_BAS1_250_150_2_3 | -250+150      | 4.53     | 20.92   | 4.42   | 3.85   | 55.26       | 1.04       | 0.06       | 0.02      | 0.01     | 0.04    |
| 16638_SKC_BAS1_250_150_3_3 | -250+150      | 4.88     | 19.05   | 3.95   | 3.50   | 57.33       | 1.12       | 0.11       | 0.01      | 0.01     | 0.05    |
| 16639_SKC_BAS1_150_75_1_2  | -150+75       | 5.72     | 26.30   | 3.65   | 2.60   | 50.81       | 1.13       | 0.08       | 0.05      | 0.00     | 0.08    |
| 16640_SKC_BAS1_150_75_2_2  | -150+75       | 5.63     | 25.14   | 3.63   | 2.80   | 51.68       | 1.20       | 0.05       | 0.04      | 0.00     | 0.03    |
| 16641_SKC_BAS1_75          | -75           | 11.36    | 13.61   | 3.53   | 2.50   | 53.50       | 1.41       | 0.17       | 0.09      | 0.01     | 0.10    |

Geological Survey of Finland



|                            | Particulate   |             |               |             |            | Minerals   |               |               |          |          |
|----------------------------|---------------|-------------|---------------|-------------|------------|------------|---------------|---------------|----------|----------|
| Polished Block Sample      | Size Fraction | Pyrrhotite  | e Chalcopyr   | ite Pentlaı | ndite Pyri | te Talc    | Serpentine    | Clinopyroxene | e Amphi  | iboles   |
|                            | (unl)         | (mrl)       | (mŋ)          | url)        | url) (เ    | (und) (u   | (un)          | (mn)          | url)     | <u>ہ</u> |
| 16642_SKC_BAS2_250_150_1_3 | -250+150      | 0.10        | 0.87          | 0.0         | 1 0.0      | 5 0.00     | 0.00          | 00'0          | 32.      | 18       |
| 16643_SKC_BAS2_250_150_2_3 | -250+150      | 0.12        | 0.70          | 0.0         | 4 0.0      | 6 0.02     | 0.01          | 0.00          | 33.5     | 35       |
| 16644_SKC_BAS2_250_150_3_3 | -250+150      | 0.12        | 0.76          | 0.0         | 5 0.0      | 5 0.00     | 0.00          | 0.02          | 31.0     | 65       |
| 16645_SKC_BAS2_150_75_1_2  | -150+75       | 0.10        | 0.91          | 0.0         | 2 0.0      | 4 0.01     | 0.00          | 0.02          | 36.0     | 62       |
| 16646_SKC_BAS2_150_75_2_2  | -150+75       | 0.10        | 0.99          | 0.0         | 2 0.0      | 4 0.00     | 0.00          | 0.01          | 36.8     | 88       |
| 16647_SKC_BAS2_75          | -75           | 0.12        | 1.62          | 0.0         | 4 0.0      | 5 0.02     | 0.00          | 0.01          | 34.      | 17       |
|                            |               |             |               |             |            |            |               |               |          |          |
|                            | Particulate   |             |               |             |            | Minerals   |               |               |          |          |
| Polished Block Sample      | Size Fraction | Chlorite Bi | iotite Quart: | z Albite    | Plagioclas | e K-feldsp | ar Carbonates | Magnetite IIm | enite Ap | oatite   |
|                            | (mn)          | ) (mu)      | (mu) (mu)     | (mn)        | (mµ)       | (mn)       | (mn)          | 1) (url)      | )<br>(ur | (mu      |
| 16642_SKC_BAS2_250_150_1_3 | -250+150      | 8.09        | 7.31 3.80     | 0.54        | 43.80      | 0.66       | 0.01          | 0.01 0        | 0 CO.    | 0.03     |
| 16643_SKC_BAS2_250_150_2_3 | -250+150      | 7.97        | 7.27 3.86     | 0.80        | 42.41      | 0.63       | 00.0          | 0.03 0        | .07 C    | 0.02     |
| 16644_SKC_BAS2_250_150_3_3 | -250+150      | 7.89 (      | 5.83 4.23     | 0.54        | 44.61      | 0.53       | 0.02          | 0.01 0        | .07 C    | 0.02     |
| 16645_SKC_BAS2_150_75_1_2  | -150+75       | 9.80        | 3.00 3.62     | 0.38        | 37.10      | 0.65       | 0.03          | 0.05 0        | .08<br>C | 0.03     |
| 16646_SKC_BAS2_150_75_2_2  | -150+75       | 9.51        | 7.65 3.73     | 0.45        | 37.19      | 0.63       | 0.04          | 0.06 0        | .10<br>C | 0.02     |
| 16647_SKC_BAS2_75          | -75           | 19.02       | 3.44 3.50     | 0.50        | 33.57      | 0.77       | 0.03          | 0.12 0        | 0 60.    | 0.08     |

| Table I5.10. Surface Mineral Proportions | %), Sample BAS2 (SEM Automated Mineralogy) |
|------------------------------------------|--------------------------------------------|
|                                          |                                            |

| Table I6.1. Mineral Cumulative Grain Size Distribution | (Sample PM1 250/150, Size Fraction -250+150 micron) |
|--------------------------------------------------------|-----------------------------------------------------|
|--------------------------------------------------------|-----------------------------------------------------|

| Grain Size      |               |              |             |        |       | Mineral      | s (Sample PM1 | 250/150, Siz | e Fractio | n -250+1 | 50 micro | (u          |            |            |           |          |         |
|-----------------|---------------|--------------|-------------|--------|-------|--------------|---------------|--------------|-----------|----------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories (µm) | Pyrrhotite    | Chalcopyrite | Pentlandite | Pyrite | Talc  | Serpentine ( | Clinopyroxene | Amphiboles   | Chlorite  | Biotite  | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10              | 0.00          | 0.06         | 0.00        | 0.00   | 0.06  | 0.01         | 0.00          | 0.01         | 0.02      | 0.00     | 0.00     | 0.00        | 0.00       | 0.00       | 0.00      | 0.04     | 0.00    |
| 20              | 0.17          | 0.22         | 0.43        | 0.00   | 1.23  | 0.41         | 0.48          | 0.33         | 0.43      | 0.87     | 2.33     | 0.00        | 2.87       | 0.21       | 0.21      | 0.26     | 0.58    |
| 30              | 0.61          | 0.79         | 1.42        | 0.00   | 2.81  | 1.07         | 2.35          | 0.92         | 1.12      | 2.45     | 4.36     | 0.28        | 4.14       | 0.61       | 0.61      | 0.84     | 1.79    |
| 40              | 1.25          | 1.74         | 1.80        | 0.00   | 4.23  | 1.86         | 3.63          | 1.70         | 1.88      | 5.09     | 9.68     | 0.28        | 8.40       | 1.23       | 1.09      | 2.62     | 3.99    |
| 50              | 2.01          | 3.58         | 2.79        | 0.00   | 5.95  | 2.94         | 5.30          | 2.58         | 2.94      | 6.93     | 9.68     | 4.73        | 8.40       | 2.25       | 1.57      | 3.13     | 6.72    |
| 60              | 3.96          | 5.61         | 3.21        | 0.00   | 7.93  | 4.29         | 7.49          | 3.80         | 4.22      | 8.56     | 9.68     | 17.65       | 9.70       | 3.54       | 2.86      | 3.59     | 7.47    |
| 70              | 5.29          | 6.83         | 4.57        | 0.00   | 10.28 | 6.00         | 8.60          | 5.34         | 5.97      | 12.92    | 9.68     | 21.09       | 11.33      | 4.83       | 3.64      | 5.95     | 7.53    |
| 80              | 6.55          | 8.88         | 9.80        | 0.00   | 12.85 | 7.89         | 9.41          | 7.42         | 8.15      | 14.76    | 9.68     | 24.80       | 17.09      | 6.60       | 5.68      | 6.84     | 8.15    |
| 06              | 10.06         | 11.30        | 14.61       | 0.00   | 16.09 | 11.07        | 13.78         | 10.27        | 10.78     | 16.94    | 9.68     | 24.80       | 17.09      | 8.81       | 8.23      | 8.45     | 9.05    |
| 100             | 12.44         | 13.38        | 14.97       | 0.00   | 19.90 | 14.55        | 14.06         | 13.45        | 13.99     | 21.74    | 61.97    | 80.16       | 17.49      | 11.38      | 11.51     | 10.94    | 9.96    |
| 110             | 15.01         | 18.97        | 18.82       | 0.00   | 24.55 | 19.10        | 20.81         | 17.29        | 17.66     | 23.77    | 61.97    | 80.16       | 17.49      | 14.75      | 13.42     | 17.37    | 10.43   |
| 120             | 19.63         | 24.45        | 22.93       | 0.00   | 29.86 | 23.35        | 26.56         | 21.68        | 22.09     | 28.06    | 61.97    | 80.16       | 17.49      | 19.12      | 16.28     | 23.04    | 12.91   |
| 130             | 25.45         | 29.96        | 31.03       | 0.00   | 35.45 | 28.05        | 30.25         | 27.40        | 27.76     | 40.27    | 61.97    | 80.16       | 17.49      | 23.81      | 20.51     | 27.44    | 15.97   |
| 140             | 31.35         | 35.51        | 32.37       | 0.00   | 42.33 | 34.61        | 32.63         | 33.49        | 33.73     | 42.17    | 61.97    | 80.21       | 17.49      | 30.34      | 25.24     | 29.87    | 18.03   |
| 150             | 34.80         | 43.92        | 44.65       | 100.00 | 48.27 | 40.82        | 41.88         | 38.92        | 39.75     | 52.53    | 99.49    | 80.31       | 17.49      | 36.27      | 27.71     | 40.93    | 52.51   |
| 160             | 36.87         | 48.31        | 59.16       | 100.00 | 55.35 | 47.69        | 42.49         | 45.58        | 46.35     | 54.96    | 99.49    | 99.85       | 17.49      | 42.03      | 34.35     | 56.29    | 53.67   |
| 170             | 43.85         | 54.44        | 61.77       | 100.00 | 61.31 | 53.85        | 50.43         | 51.89        | 52.91     | 57.13    | 99.49    | 99.85       | 17.49      | 48.67      | 40.55     | 61.04    | 55.38   |
| 180             | 47.98         | 58.37        | 71.69       | 100.00 | 66.77 | 59.78        | 62.34         | 58.23        | 59.24     | 61.56    | 99.49    | 99.85       | 17.49      | 56.05      | 50.79     | 64.74    | 58.66   |
| 190             | 55.10         | 69.58        | 74.12       | 100.00 | 73.07 | 65.64        | 63.54         | 63.50        | 65.58     | 64.68    | 99.49    | 99.85       | 17.49      | 63.00      | 62.16     | 71.14    | 76.45   |
| 200             | 59.45         | 73.54        | 83.17       | 100.00 | 78.64 | 70.45        | 64.70         | 60.69        | 71.26     | 76.67    | 100.00   | 99.85       | 17.49      | 69.27      | 67.65     | 78.30    | 80.04   |
| 210             | 66.39         | 78.00        | 88.65       | 100.00 | 83.06 | 75.81        | 64.97         | 74.15        | 76.80     | 83.39    | 100.00   | 99.85       | 17.49      | 74.38      | 76.14     | 84.32    | 80.29   |
| 220             | 71.20         | 86.27        | 90.72       | 100.00 | 86.15 | 80.13        | 83.44         | 78.87        | 81.06     | 84.43    | 100.00   | 100.00      | 17.49      | 79.25      | 80.01     | 88.49    | 81.20   |
| 230             | 84.26         | 90.25        | 93.90       | 100.00 | 89.57 | 82.95        | 84.92         | 83.00        | 84.96     | 95.07    | 100.00   | 100.00      | 100.00     | 83.10      | 83.01     | 90.42    | 86.40   |
| 240             | 88.25         | 91.26        | 96.32       | 100.00 | 92.65 | 86.18        | 85.51         | 86.07        | 88.60     | 96.41    | 100.00   | 100.00      | 100.00     | 86.18      | 90.52     | 92.46    | 88.33   |
| 250             | 91.28         | 91.48        | 98.56       | 100.00 | 93.83 | 88.74        | 86.69         | 88.28        | 90.96     | 96.95    | 100.00   | 100.00      | 100.00     | 88.57      | 94.66     | 93.85    | 88.42   |
| 260             | 91.65         | 92.97        | 99.32       | 100.00 | 95.66 | 90.47        | 86.70         | 90.73        | 93.45     | 97.88    | 100.00   | 100.00      | 100.00     | 91.13      | 96.50     | 97.31    | 89.86   |
| 270             | 95.97         | 94.93        | 99.47       | 100.00 | 96.77 | 92.41        | 86.80         | 92.47        | 95.04     | 98.30    | 100.00   | 100.00      | 100.00     | 93.34      | 96.53     | 98.67    | 89.87   |
| 280             | 96.04         | 96.57        | 99.48       | 100.00 | 97.68 | 93.45        | 86.80         | 93.95        | 96.28     | 99.18    | 100.00   | 100.00      | 100.00     | 94.82      | 96.74     | 98.94    | 92.45   |
| 290             | 99.58         | 99.13        | 99.73       | 100.00 | 98.23 | 94.83        | 99.13         | 94.86        | 97.29     | 99.48    | 100.00   | 100.00      | 100.00     | 95.91      | 99.91     | 99.05    | 98.89   |
| 300             | 99.61         | 99.27        | 99.73       | 100.00 | 98.68 | 95.80        | 99.13         | 95.89        | 98.11     | 99.55    | 100.00   | 100.00      | 100.00     | 96.67      | 96.96     | 99.24    | 98.92   |
| 310             | 99.62         | 99.31        | 99.73       | 100.00 | 99.02 | 96.37        | 99.23         | 96.59        | 98.79     | 99.65    | 100.00   | 100.00      | 100.00     | 98.47      | 96.96     | 99.52    | 99.55   |
| 320             | 99.62         | 99.32        | 99.73       | 100.00 | 99.28 | 96.98        | 99.32         | 97.06        | 99.10     | 99.71    | 100.00   | 100.00      | 100.00     | 98.87      | 96.96     | 99.53    | 99.59   |
| 330             | 99.62         | 99.32        | 99.73       | 100.00 | 99.35 | 97.52        | 99.32         | 97.59        | 99.35     | 99.82    | 100.00   | 100.00      | 100.00     | 98.87      | 99.96     | 99.59    | 99.59   |
| 340             | 99.62         | 99.32        | 99.73       | 100.00 | 99.58 | 98.15        | 99.39         | 98.16        | 99.45     | 99.86    | 100.00   | 100.00      | 100.00     | 99.07      | 96.96     | 99.60    | 99.59   |
| 350             | 99.62         | 99.32        | 99.74       | 100.00 | 99.91 | 98.23        | 99.52         | 98.54        | 99.63     | 99.86    | 100.00   | 100.00      | 100.00     | 99.07      | 96.96     | 99.80    | 99.73   |
| 360             | 99.72         | 99.36        | 99.95       | 100.00 | 96.96 | 98.75        | 99.53         | 99.14        | 99.80     | 99.94    | 100.00   | 100.00      | 100.00     | 99.67      | 96.96     | 99.87    | 99.79   |
| 370             | 99.99         | 99.89        | 99.98       | 100.00 | 99.97 | 99.16        | 99.54         | 99.26        | 99.85     | 99.96    | 100.00   | 100.00      | 100.00     | 99.79      | 96.96     | 99.92    | 99.79   |
| 380             | 99.99         | 99.89        | 99.98       | 100.00 | 99.98 | 99.23        | 99.89         | 99.39        | 99.85     | 99.96    | 100.00   | 100.00      | 100.00     | 99.81      | 99.98     | 99.92    | 99.87   |
| 390             | <u> 66.99</u> | 99.89        | 99.98       | 100.00 | 99.98 | 99.23        | 99.89         | 99.41        | 99.86     | 99.98    | 100.00   | 100.00      | 100.00     | 99.81      | 99.98     | 99.92    | 99.87   |
| 400             | <u>99.99</u>  | 99.89        | 99.98       | 100.00 | 99.98 | 99.31        | 99.89         | 99.48        | 99.86     | 99.98    | 100.00   | 100.00      | 100.00     | 99.96      | 100.00    | 99.92    | 99.87   |
| Other           | 0.01          | 0.11         | 0.02        | 0.00   | 0.02  | 0.69         | 0.11          | 0.52         | 0.14      | 0.02     | 0.00     | 0.00        | 0.00       | 0.04       | 0.00      | 0.08     | 0.13    |



L
| Table I6.2. Mineral Cumulative Grain Size Distribution | (Sample PM1 150/75, Size Fraction -150+75 micron) |
|--------------------------------------------------------|---------------------------------------------------|
|--------------------------------------------------------|---------------------------------------------------|

| Grain Size      |            |              |              |        |        | Min        | erals (Sample PI | M1 150/75, SI | ze Fractio | on -150+      | 75 micror | (           |            |            |           |          |         |
|-----------------|------------|--------------|--------------|--------|--------|------------|------------------|---------------|------------|---------------|-----------|-------------|------------|------------|-----------|----------|---------|
| Categories (µm) | Pyrrhotite | Chalcopyrite | Pentlandite  | Pyrite | Talc   | Serpentine | Clinopyroxene    | Amphiboles    | Chlorite   | Biotite       | Quartz    | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10              | 0.13       | 0.13         | 0.21         | 0.00   | 0.95   | 0.20       | 0.11             | 0.17          | 0.43       | 0.32          | 0.62      | 0.59        | 0.00       | 0.08       | 0.12      | 0.18     | 0.00    |
| 20              | 1.26       | 2.08         | 2.09         | 0.00   | 5.98   | 2.00       | 3.81             | 1.75          | 3.13       | 3.38          | 5.63      | 2.00        | 1.26       | 0.95       | 0.84      | 1.40     | 2.44    |
| 30              | 2.68       | 5.76         | 4.08         | 0.00   | 11.32  | 4.73       | 8.13             | 4.36          | 6.82       | 8.69          | 7.70      | 13.70       | 7.55       | 2.45       | 2.39      | 3.87     | 16.59   |
| 40              | 6.25       | 12.61        | 6.96         | 0.00   | 17.93  | 9.16       | 14.23            | 8.47          | 11.81      | 17.03         | 7.70      | 17.39       | 7.55       | 5.42       | 5.33      | 6.36     | 36.56   |
| 50              | 12.23      | 16.82        | 11.84        | 0.00   | 26.25  | 15.53      | 20.11            | 14.55         | 18.61      | 27.02         | 7.70      | 18.70       | 7.55       | 9.70       | 9.37      | 10.60    | 44.87   |
| 60              | 18.85      | 25.90        | 17.03        | 0.00   | 36.38  | 24.71      | 25.81            | 22.84         | 28.27      | 35.18         | 7.70      | 27.02       | 40.01      | 16.99      | 15.17     | 22.66    | 65.40   |
| 70              | 30.10      | 30.90        | 32.58        | 0.00   | 47.04  | 34.72      | 35.32            | 32.50         | 38.40      | 42.21         | 7.70      | 27.02       | 40.01      | 26.34      | 26.61     | 27.87    | 68.40   |
| 80              | 44.54      | 49.30        | 42.58        | 100.00 | 58.10  | 46.04      | 44.42            | 43.13         | 49.86      | 46.32         | 15.08     | 27.02       | 40.01      | 36.87      | 38.32     | 41.75    | 69.50   |
| 06              | 60.10      | 65.04        | 54.51        | 100.00 | 68.40  | 57.33      | 57.24            | 54.25         | 60.33      | 58.35         | 15.08     | 27.02       | 40.01      | 49.03      | 54.06     | 59.00    | 74.96   |
| 100             | 65.09      | 78.91        | 55.52        | 100.00 | 76.98  | 66.00      | 71.30            | 63.43         | 70.00      | 78.54         | 15.08     | 68.83       | 100.00     | 61.28      | 66.97     | 75.41    | 84.93   |
| 110             | 74.16      | 85.41        | 60.25        | 100.00 | 83.47  | 73.36      | 83.78            | 72.02         | 77.88      | 87.12         | 15.08     | 100.00      | 100.00     | 70.95      | 78.11     | 84.61    | 90.89   |
| 120             | 83.83      | 90.04        | 68.90        | 100.00 | 88.65  | 79.64      | 85.22            | 79.27         | 84.72      | 89.16         | 15.08     | 100.00      | 100.00     | 78.31      | 84.92     | 95.36    | 92.74   |
| 130             | 90.19      | 90.98        | 85.49        | 100.00 | 91.95  | 85.08      | 85.86            | 85.23         | 89.81      | 89.70         | 15.08     | 100.00      | 100.00     | 85.48      | 89.42     | 95.97    | 96.18   |
| 140             | 95.15      | 92.26        | 98.58        | 100.00 | 94.43  | 89.21      | 86.23            | 88.70         | 93.03      | 90.23         | 100.00    | 100.00      | 100.00     | 90.34      | 89.58     | 96.48    | 96.60   |
| 150             | 97.25      | 92.40        | 98.68        | 100.00 | 96.46  | 92.43      | 87.58            | 91.98         | 95.53      | 96.91         | 100.00    | 100.00      | 100.00     | 93.46      | 90.07     | 96.82    | 96.70   |
| 160             | 98.49      | 98.71        | 98.69        | 100.00 | 97.77  | 94.15      | 98.88            | 94.28         | 97.57      | 97.94         | 100.00    | 100.00      | 100.00     | 95.43      | 94.64     | 97.48    | 98.15   |
| 170             | 99.63      | 98.91        | 99.86        | 100.00 | 98.33  | 96.26      | 98.98            | 95.82         | 98.68      | 98.29         | 100.00    | 100.00      | 100.00     | 97.17      | 97.65     | 99.55    | 99.81   |
| 180             | 99.78      | 99.10        | <u>99.99</u> | 100.00 | 98.71  | 97.73      | 99.58            | 96.96         | 99.17      | 98.44         | 100.00    | 100.00      | 100.00     | 98.00      | 97.66     | 99.88    | 99.81   |
| 190             | 99.78      | 99.10        | 99.99        | 100.00 | 99.34  | 97.91      | 99.83            | 97.82         | 99.52      | 98.58         | 100.00    | 100.00      | 100.00     | 98.30      | 97.66     | 99.93    | 99.81   |
| 200             | 99.99      | 99.10        | 99.99        | 100.00 | 99.58  | 98.66      | 99.84            | 98.57         | 99.67      | 99.84         | 100.00    | 100.00      | 100.00     | 99.22      | 97.66     | 99.95    | 99.81   |
| 210             | 100.00     | 100.00       | 100.00       | 100.00 | 99.63  | 90.66      | 99.85            | 99.04         | 99.75      | 96.96         | 100.00    | 100.00      | 100.00     | 99.51      | 97.66     | 99.95    | 100.00  |
| 220             | 100.00     | 100.00       | 100.00       | 100.00 | 99.78  | 99.08      | 99.86            | 99.24         | 99.77      | 99.97         | 100.00    | 100.00      | 100.00     | 99.73      | 100.00    | 99.95    | 100.00  |
| 230             | 100.00     | 100.00       | 100.00       | 100.00 | 99.79  | 99.11      | 100.00           | 99.41         | 99.87      | 99.98         | 100.00    | 100.00      | 100.00     | 99.76      | 100.00    | 99.95    | 100.00  |
| 240             | 100.00     | 100.00       | 100.00       | 100.00 | 99.92  | 99.27      | 100.00           | 99.54         | 99.99      | 99.99         | 100.00    | 100.00      | 100.00     | 99.77      | 100.00    | 100.00   | 100.00  |
| 250             | 100.00     | 100.00       | 100.00       | 100.00 | 96.66  | 99.27      | 100.00           | 99.59         | 99.99      | 99.99         | 100.00    | 100.00      | 100.00     | 99.77      | 100.00    | 100.00   | 100.00  |
| 260             | 100.00     | 100.00       | 100.00       | 100.00 | 96.66  | 99.37      | 100.00           | 99.72         | 99.99      | 99.99         | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270             | 100.00     | 100.00       | 100.00       | 100.00 | 99.99  | 99.51      | 100.00           | 99.93         | 99.99      | <b>66.</b> 66 | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400             | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



| Table I6.3. Mineral | <b>Cumulative Grain</b> | Size Distribution | (Sample PM1 -75, | Size Fraction -75 micron) |
|---------------------|-------------------------|-------------------|------------------|---------------------------|
|---------------------|-------------------------|-------------------|------------------|---------------------------|

| Grain Size         |            |              |             |        |        | -          | Minerals (Samp | le PM1 -75, S | ze Fracti | on -75 m | icron) |             |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|----------------|---------------|-----------|----------|--------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene  | Amphiboles    | Chlorite  | Biotite  | Quartz | Plagioclase | K-feldspar | Carbonates | Magnetite | llmenite | Apatite |
| 10                 | 11.64      | 29.83        | 7.68        | 100.00 | 33.26  | 16.21      | 3.63           | 15.17         | 26.92     | 16.18    | 16.20  | 49.95       | 100.00     | 13.18      | 11.05     | 16.18    | 0.36    |
| 20                 | 44.08      | 82.48        | 24.44       | 100.00 | 65.28  | 44.78      | 56.66          | 41.93         | 56.34     | 54.72    | 48.90  | 87.70       | 100.00     | 37.44      | 21.68     | 67.99    | 0.97    |
| 30                 | 59.23      | 92.22        | 32.36       | 100.00 | 81.83  | 62.80      | 58.82          | 60.78         | 73.01     | 74.81    | 48.90  | 100.00      | 100.00     | 53.97      | 33.51     | 95.62    | 0.97    |
| 40                 | 76.74      | 98.67        | 70.43       | 100.00 | 90.86  | 78.62      | 93.98          | 77.37         | 84.53     | 96.89    | 100.00 | 100.00      | 100.00     | 68.87      | 51.81     | 95.62    | 1.07    |
| 50                 | 99.35      | 99.93        | 81.15       | 100.00 | 97.47  | 87.65      | 99.71          | 86.88         | 91.42     | 98.15    | 100.00 | 100.00      | 100.00     | 82.85      | 76.93     | 99.36    | 22.70   |
| 60                 | 99.83      | 100.00       | 100.00      | 100.00 | 98.54  | 93.98      | 100.00         | 92.25         | 96.50     | 98.21    | 100.00 | 100.00      | 100.00     | 93.13      | 93.54     | 100.00   | 99.50   |
| 70                 | 100.00     | 100.00       | 100.00      | 100.00 | 99.56  | 96.50      | 100.00         | 95.68         | 98.39     | 100.00   | 100.00 | 100.00      | 100.00     | 96.02      | 93.67     | 100.00   | 99.50   |
| 80                 | 100.00     | 100.00       | 100.00      | 100.00 | 99.71  | 96.53      | 100.00         | 97.33         | 98.60     | 100.00   | 100.00 | 100.00      | 100.00     | 99.29      | 93.72     | 100.00   | 99.50   |
| 06                 | 100.00     | 100.00       | 100.00      | 100.00 | 99.99  | 97.14      | 100.00         | 98.89         | 98.63     | 100.00   | 100.00 | 100.00      | 100.00     | 99.29      | 100.00    | 100.00   | 99.50   |
| 100                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 97.14      | 100.00         | 99.51         | 99.16     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.50   |
| 110                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 97.15      | 100.00         | 99.51         | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 120                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 97.15      | 100.00         | 99.51         | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 130                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 140                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 150                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 160                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 170                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 180                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 190                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 200                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

| ain Size         |            |              |             |        |        | Mineral      | s (Sample PM2 | 250/150, Siz | e Fractic | n -250+1 | 50 micro | (uo         |            |            |           |          |         |
|------------------|------------|--------------|-------------|--------|--------|--------------|---------------|--------------|-----------|----------|----------|-------------|------------|------------|-----------|----------|---------|
| tegories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine ( | Clinopyroxene | Amphiboles   | Chlorite  | Biotite  | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10               | 0.00       | 0.00         | 0.02        | 0.00   | 0.06   | 0.00         | 0.00          | 0.06         | 0.01      | 0.00     | 0.00     | 0.00        | 0.52       | 0.00       | 0.00      | 0.03     | 0.06    |
| 20               | 0.18       | 0.12         | 0.16        | 4.68   | 1.11   | 0.25         | 2.04          | 0.36         | 0.43      | 1.39     | 0.69     | 1.17        | 5.03       | 0.13       | 0.14      | 0.12     | 0.27    |
| 30               | 0.62       | 0.56         | 0.77        | 4.68   | 2.57   | 0.77         | 3.54          | 0.72         | 1.11      | 2.81     | 2.65     | 3.88        | 5.73       | 0.42       | 0.55      | 0.30     | 0.27    |
| 40               | 1.01       | 1.15         | 1.70        | 41.40  | 4.03   | 1.24         | 3.91          | 1.21         | 1.90      | 5.04     | 4.96     | 3.88        | 14.90      | 0.84       | 1.17      | 0.54     | 1.02    |
| 50               | 1.96       | 1.77         | 2.49        | 41.40  | 5.89   | 1.87         | 3.91          | 2.00         | 3.02      | 9.67     | 8.54     | 15.33       | 21.16      | 1.58       | 1.99      | 1.51     | 2.39    |
| 09               | 2.39       | 3.55         | 3.14        | 41.40  | 8.03   | 2.44         | 7.36          | 3.30         | 4.41      | 11.90    | 8.54     | 28.12       | 38.81      | 2.51       | 2.66      | 2.50     | 2.39    |
| 02               | 3.32       | 7.14         | 4.14        | 41.40  | 10.65  | 3.54         | 9.03          | 6.96         | 6.33      | 12.15    | 8.54     | 28.12       | 51.59      | 3.83       | 4.14      | 3.85     | 3.37    |
| 80               | 5.18       | 7.93         | 5.82        | 76.82  | 13.63  | 5.23         | 9.03          | 11.18        | 8.80      | 15.33    | 8.54     | 58.46       | 69.25      | 5.37       | 5.61      | 4.88     | 4.83    |
| 06               | 8.68       | 11.22        | 9.08        | 76.82  | 17.92  | 8.57         | 9.30          | 13.76        | 12.22     | 15.99    | 8.54     | 58.46       | 72.78      | 7.57       | 8.30      | 10.49    | 5.15    |
| 100              | 10.70      | 12.51        | 13.10       | 76.82  | 22.61  | 12.66        | 14.04         | 15.23        | 16.25     | 16.37    | 8.54     | 58.46       | 72.78      | 10.35      | 11.28     | 13.31    | 5.20    |
| 110              | 13.93      | 17.12        | 22.51       | 76.82  | 28.47  | 16.37        | 25.57         | 18.36        | 21.06     | 17.04    | 10.51    | 62.25       | 72.78      | 13.74      | 15.39     | 15.95    | 5.99    |
| 120              | 18.22      | 21.29        | 28.40       | 88.00  | 35.00  | 22.98        | 30.01         | 22.84        | 27.08     | 19.71    | 24.25    | 62.32       | 80.55      | 17.85      | 21.04     | 22.02    | 8.08    |
| 130              | 27.43      | 26.41        | 34.57       | 88.42  | 42.41  | 28.17        | 46.87         | 29.22        | 33.44     | 21.20    | 24.25    | 92.91       | 80.55      | 23.13      | 26.03     | 30.54    | 11.08   |
| 140              | 29.41      | 29.79        | 38.69       | 88.42  | 50.55  | 37.19        | 58.85         | 40.79        | 40.64     | 22.70    | 24.25    | 92.91       | 80.55      | 28.46      | 33.29     | 31.97    | 18.57   |
| 150              | 34.34      | 35.77        | 42.72       | 88.42  | 57.32  | 42.28        | 60.34         | 44.97        | 47.66     | 37.56    | 24.25    | 92.91       | 80.55      | 34.21      | 40.34     | 36.97    | 26.95   |
| 160              | 41.73      | 44.53        | 57.18       | 88.42  | 63.79  | 49.39        | 68.82         | 53.73        | 55.36     | 39.30    | 63.35    | 92.91       | 100.00     | 40.73      | 49.13     | 41.89    | 28.47   |
| 170              | 50.33      | 50.81        | 59.89       | 88.42  | 69.99  | 60.70        | 71.37         | 57.40        | 62.71     | 41.62    | 100.00   | 92.91       | 100.00     | 48.04      | 55.58     | 42.98    | 45.86   |
| 180              | 56.05      | 66.05        | 69.38       | 89.14  | 75.28  | 66.84        | 74.52         | 61.07        | 68.80     | 50.74    | 100.00   | 92.91       | 100.00     | 55.48      | 64.48     | 49.77    | 46.38   |
| 190              | 61.30      | 70.71        | 75.85       | 89.14  | 80.01  | 71.59        | 76.97         | 63.98        | 74.44     | 53.72    | 100.00   | 92.91       | 100.00     | 62.26      | 70.77     | 64.38    | 47.00   |
| 200              | 66.98      | 74.98        | 80.24       | 89.14  | 85.22  | 76.79        | 81.74         | 66.57        | 79.67     | 70.27    | 100.00   | 92.91       | 100.00     | 68.42      | 77.24     | 66.60    | 51.24   |
| 210              | 71.80      | 83.83        | 82.99       | 96.81  | 88.85  | 80.36        | 86.91         | 71.47        | 84.52     | 95.99    | 100.00   | 92.91       | 100.00     | 74.10      | 81.68     | 72.16    | 70.67   |
| 220              | 77.51      | 88.40        | 84.88       | 96.81  | 91.84  | 83.14        | 94.99         | 79.30        | 87.97     | 97.22    | 100.00   | 92.91       | 100.00     | 79.16      | 86.31     | 82.29    | 70.79   |
| 230              | 84.88      | 90.97        | 92.72       | 96.81  | 94.27  | 85.09        | 96.34         | 83.77        | 91.46     | 97.95    | 100.00   | 92.91       | 100.00     | 84.06      | 88.72     | 82.61    | 70.86   |
| 240              | 89.61      | 96.21        | 95.04       | 96.81  | 95.94  | 89.11        | 99.39         | 86.89        | 93.65     | 98.23    | 100.00   | 92.91       | 100.00     | 87.29      | 93.15     | 90.81    | 70.90   |
| 250              | 90.40      | 96.39        | 95.36       | 96.81  | 97.08  | 92.28        | 99.81         | 94.43        | 95.11     | 98.83    | 100.00   | 100.00      | 100.00     | 90.32      | 95.75     | 93.62    | 71.42   |
| 260              | 94.25      | 98.75        | 98.15       | 96.81  | 98.54  | 93.39        | 99.81         | 95.10        | 96.34     | 90.06    | 100.00   | 100.00      | 100.00     | 92.68      | 97.63     | 93.77    | 88.04   |
| 270              | 94.32      | 99.61        | 98.17       | 96.81  | 98.88  | 97.02        | 99.95         | 95.20        | 97.42     | 99.44    | 100.00   | 100.00      | 100.00     | 94.34      | 98.54     | 94.41    | 99.95   |
| 280              | 97.14      | 99.68        | 99.09       | 96.81  | 99.22  | 97.28        | 99.95         | 95.81        | 97.97     | 99.50    | 100.00   | 100.00      | 100.00     | 95.63      | 98.98     | 94.67    | 99.95   |
| 290              | 97.37      | 99.68        | 99.18       | 96.81  | 99.52  | 97.44        | 99.95         | 95.89        | 98.38     | 99.57    | 100.00   | 100.00      | 100.00     | 96.86      | 99.44     | 94.68    | 99.97   |
| 300              | 97.39      | 99.75        | 99.54       | 96.81  | 99.71  | 98.25        | 99.95         | <u>99.69</u> | 98.92     | 99.61    | 100.00   | 100.00      | 100.00     | 97.65      | 99.55     | 94.93    | 99.99   |
| 310              | 99.77      | 99.77        | 99.54       | 100.00 | 99.80  | 99.37        | 99.95         | 99.83        | 99.57     | 99.63    | 100.00   | 100.00      | 100.00     | 98.08      | 99.84     | 94.93    | 99.99   |
| 320              | 99.80      | 99.94        | 99.57       | 100.00 | 99.99  | 99.39        | 99.95         | 99.83        | 99.80     | 99.63    | 100.00   | 100.00      | 100.00     | 98.39      | 99.86     | 94.95    | 99.99   |
| 330              | 100.00     | 100.00       | 100.00      | 100.00 | 99.99  | 99.67        | 99.95         | 99.92        | 99.87     | 99.64    | 100.00   | 100.00      | 100.00     | 99.08      | 96.96     | 99.99    | 99.99   |
| 340              | 100.00     | 100.00       | 100.00      | 100.00 | 99.99  | 99.69        | 99.95         | 99.92        | 99.88     | 99.64    | 100.00   | 100.00      | 100.00     | 99.28      | 96.96     | 99.99    | 99.99   |
| 350              | 100.00     | 100.00       | 100.00      | 100.00 | 99.99  | 99.69        | 100.00        | 99.93        | 99.88     | 99.69    | 100.00   | 100.00      | 100.00     | 99.57      | 99.98     | 99.99    | 100.00  |
| 360              | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 99.70        | 100.00        | 99.93        | 99.94     | 99.71    | 100.00   | 100.00      | 100.00     | 99.74      | 99.98     | 99.99    | 100.00  |
| 370              | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 99.70        | 100.00        | 99.93        | 99.94     | 99.71    | 100.00   | 100.00      | 100.00     | 99.80      | 99.98     | 99.99    | 100.00  |
| 380              | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 99.71        | 100.00        | 99.94        | 99.96     | 99.75    | 100.00   | 100.00      | 100.00     | 99.95      | 100.00    | 100.00   | 100.00  |
| 390              | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 99.71        | 100.00        | 99.94        | 99.96     | 99.75    | 100.00   | 100.00      | 100.00     | 99.95      | 100.00    | 100.00   | 100.00  |
| 400              | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 99.71        | 100.00        | 99.94        | 96.96     | 99.75    | 100.00   | 100.00      | 100.00     | 99.95      | 100.00    | 100.00   | 100.00  |
| Other            | 0.00       | 0.00         | 0.00        | 0.00   | 0.00   | 0.29         | 0.00          | 0.06         | 0.04      | 0.25     | 0.00     | 0.00        | 0.00       | 0.05       | 0.00      | 0.00     | 0.00    |

Table I6.4. Mineral Cumulative Grain Size Distribution (Sample PM2 250/150, Size Fraction -250+150 micron)



| Table I6.5. Mineral Cumulative Grain Size Distribution (S | Sample PM2 150/75, Size Fraction -150+75 micron) |
|-----------------------------------------------------------|--------------------------------------------------|
|-----------------------------------------------------------|--------------------------------------------------|

| Grain Size         |            |               |             |        |        | Min        | erals (Sample PI | M2 150/75, Si | ze Fractic | n -150+7 | 5 micron | (           |            |            |           |          |         |
|--------------------|------------|---------------|-------------|--------|--------|------------|------------------|---------------|------------|----------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite  | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene    | Amphiboles    | Chlorite   | Biotite  | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.09       | 0.07          | 0.14        | 0.00   | 1.02   | 0.28       | 0.04             | 0.66          | 0.48       | 0.82     | 0.59     | 0.61        | 2.00       | 0.10       | 0.05      | 0.16     | 0.29    |
| 20                 | 1.09       | 1.76          | 0.90        | 0.00   | 6.45   | 2.60       | 7.32             | 4.06          | 3.57       | 5.30     | 4.83     | 3.95        | 12.12      | 1.08       | 1.04      | 0.85     | 0.83    |
| 30                 | 2.98       | 3.73          | 2.75        | 0.00   | 14.09  | 5.55       | 10.03            | 6.69          | 8.31       | 12.56    | 6.32     | 12.04       | 22.49      | 2.94       | 2.77      | 1.54     | 3.15    |
| 40                 | 5.28       | 8.53          | 6.26        | 0.00   | 23.31  | 11.53      | 11.27            | 10.07         | 15.12      | 19.25    | 23.13    | 13.61       | 45.40      | 6.03       | 5.24      | 5.77     | 5.01    |
| 50                 | 10.49      | 11.98         | 11.67       | 0.00   | 34.65  | 21.40      | 33.15            | 19.77         | 24.49      | 27.24    | 23.13    | 19.46       | 52.32      | 11.58      | 9.41      | 9.06     | 5.40    |
| 60                 | 19.70      | 17.09         | 18.34       | 0.00   | 45.77  | 27.37      | 36.18            | 29.51         | 35.65      | 41.98    | 27.50    | 19.46       | 68.05      | 18.38      | 16.40     | 13.97    | 5.80    |
| 70                 | 25.09      | 32.46         | 31.38       | 0.00   | 57.46  | 38.45      | 73.82            | 37.30         | 47.43      | 64.47    | 47.55    | 19.46       | 73.61      | 27.94      | 25.60     | 26.50    | 20.86   |
| 80                 | 38.54      | 46.34         | 39.63       | 0.00   | 68.64  | 50.43      | 74.42            | 42.35         | 58.97      | 70.77    | 58.03    | 19.46       | 86.87      | 38.86      | 38.42     | 29.19    | 25.69   |
| 06                 | 50.52      | 57.20         | 51.52       | 0.00   | 78.27  | 62.49      | 76.60            | 52.42         | 69.85      | 86.40    | 81.92    | 39.78       | 86.87      | 50.26      | 50.74     | 41.39    | 60.79   |
| 100                | 66.87      | 63.70         | 56.81       | 100.00 | 85.21  | 69.70      | 79.31            | 66.25         | 78.52      | 87.38    | 81.94    | 39.78       | 91.82      | 61.17      | 62.08     | 58.31    | 66.44   |
| 110                | 78.47      | 73.37         | 63.52       | 100.00 | 90.87  | 76.45      | 83.36            | 83.97         | 85.96      | 97.58    | 81.94    | 39.78       | 99.97      | 71.03      | 71.60     | 64.02    | 67.26   |
| 120                | 83.33      | 79.19         | 68.52       | 100.00 | 94.61  | 86.60      | 86.57            | 96.28         | 90.76      | 98.24    | 100.00   | 100.00      | 99.97      | 78.35      | 78.15     | 68.95    | 90.82   |
| 130                | 91.17      | 94.59         | 76.77       | 100.00 | 96.66  | 89.73      | 92.90            | 98.10         | 94.54      | 99.33    | 100.00   | 100.00      | 99.97      | 85.32      | 86.45     | 70.67    | 98.48   |
| 140                | 92.58      | 98.01         | 83.22       | 100.00 | 98.55  | 94.03      | 98.28            | 98.44         | 96.55      | 99.51    | 100.00   | 100.00      | 99.97      | 90.36      | 92.48     | 77.41    | 99.63   |
| 150                | 96.03      | 98.56         | 93.91       | 100.00 | 99.23  | 97.02      | 98.79            | 98.72         | 98.15      | 99.66    | 100.00   | 100.00      | 99.97      | 93.53      | 94.95     | 77.46    | 99.99   |
| 160                | 97.35      | 99.16         | 93.95       | 100.00 | 99.68  | 97.30      | 99.51            | 99.75         | 99.02      | 99.72    | 100.00   | 100.00      | 100.00     | 95.84      | 97.20     | 82.48    | 99.99   |
| 170                | 97.35      | 99.32         | 97.81       | 100.00 | 99.83  | 97.40      | 99.51            | 99.77         | 99.58      | 99.73    | 100.00   | 100.00      | 100.00     | 97.02      | 98.95     | 87.19    | 99.99   |
| 180                | 98.71      | 99.98         | 98.74       | 100.00 | 99.91  | 97.64      | 100.00           | 99.82         | 99.81      | 99.96    | 100.00   | 100.00      | 100.00     | 98.26      | 99.32     | 99.79    | 100.00  |
| 190                | 100.00     | 99.99         | 100.00      | 100.00 | 99.97  | 97.67      | 100.00           | 100.00        | 99.87      | 100.00   | 100.00   | 100.00      | 100.00     | 99.07      | 99.98     | 100.00   | 100.00  |
| 200                | 100.00     | 99.99         | 100.00      | 100.00 | 99.99  | 97.67      | 100.00           | 100.00        | 99.91      | 100.00   | 100.00   | 100.00      | 100.00     | 99.28      | 99.99     | 100.00   | 100.00  |
| 210                | 100.00     | 99.99         | 100.00      | 100.00 | 99.99  | 97.67      | 100.00           | 100.00        | 99.95      | 100.00   | 100.00   | 100.00      | 100.00     | 99.36      | 99.99     | 100.00   | 100.00  |
| 220                | 100.00     | 99.99         | 100.00      | 100.00 | 100.00 | 99.99      | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 99.44      | 100.00    | 100.00   | 100.00  |
| 230                | 100.00     | <u> 66.66</u> | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 99.67      | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 99.99         | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 99.67      | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 99.88      | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 99.88      | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 99.88      | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 99.88      | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 99.88      | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



Table I6.6. Mineral Cumulative Grain Size Distribution (Sample PM2 -75, Size Fraction -75 micron)

| Grain Size         |            |              |             |        |        | -          | Winerals (Sampl | e PM2 -75, S | ze Fracti | on -75 m | icron) |             |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|-----------------|--------------|-----------|----------|--------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene   | Amphiboles   | Chlorite  | Biotite  | Quartz | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 13.23      | 17.04        | 66.6        | 0.00   | 26.72  | 26.08      | 7.42            | 19.18        | 18.65     | 11.65    | 23.05  | 12.92       | 21.54      | 13.58      | 12.05     | 17.96    | 5.02    |
| 20                 | 31.63      | 55.78        | 23.90       | 100.00 | 58.32  | 48.48      | 21.71           | 35.56        | 47.31     | 37.17    | 23.05  | 19.53       | 33.15      | 38.17      | 32.15     | 53.72    | 21.44   |
| 30                 | 56.78      | 76.98        | 52.27       | 100.00 | 77.03  | 68.53      | 30.26           | 43.98        | 69.67     | 98.55    | 100.00 | 66.02       | 33.15      | 56.07      | 51.94     | 75.36    | 31.15   |
| 40                 | 69.52      | 99.13        | 52.27       | 100.00 | 88.40  | 80.11      | 30.26           | 65.30        | 84.09     | 98.68    | 100.00 | 100.00      | 100.00     | 68.64      | 69.98     | 99.30    | 31.15   |
| 50                 | 69.52      | 100.00       | 52.27       | 100.00 | 95.25  | 83.14      | 30.26           | 87.01        | 91.21     | 100.00   | 100.00 | 100.00      | 100.00     | 79.72      | 83.32     | 100.00   | 100.00  |
| 60                 | 100.00     | 100.00       | 100.00      | 100.00 | 97.39  | 92.67      | 92.24           | 100.00       | 95.33     | 100.00   | 100.00 | 100.00      | 100.00     | 88.58      | 99.71     | 100.00   | 100.00  |
| 20                 | 100.00     | 100.00       | 100.00      | 100.00 | 99.54  | 99.26      | 98.20           | 100.00       | 98.26     | 100.00   | 100.00 | 100.00      | 100.00     | 96.09      | 99.94     | 100.00   | 100.00  |
| 80                 | 100.00     | 100.00       | 100.00      | 100.00 | 99.91  | 99.26      | 100.00          | 100.00       | 98.87     | 100.00   | 100.00 | 100.00      | 100.00     | 98.87      | 99.97     | 100.00   | 100.00  |
| 06                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 100                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 110                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 120                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 130                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 140                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 150                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 160                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 170                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 180                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 190                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 200                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



|                    |               |               |               |        |               | Minera         | ils (Sample PX <sup>+</sup> | 1_250/150, Siz | ce Fractio    | on -250+      | 150 micr | on)         |            |            |           |               |         |
|--------------------|---------------|---------------|---------------|--------|---------------|----------------|-----------------------------|----------------|---------------|---------------|----------|-------------|------------|------------|-----------|---------------|---------|
| Categories<br>(µm) | Pyrrhotite    | Chalcopyrite  | Pentlandite   | Pyrite | Talc          | Serpentine     | Clinopyroxene               | Amphiboles     | Chlorite      | Biotite       | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite      | Apatite |
| 10                 | 0.02          | 0.08          | 0.00          | 0.00   | 0.06          | 0.00           | 0.12                        | 0.01           | 0.02          | 0.02          | 0.00     | 0.00        | 0.00       | 0.02       | 0.00      | 0.00          | 0.00    |
| 20                 | 0.33          | 0.35          | 0.25          | 0.00   | 0.79          | 0.47           | 4.73                        | 0.31           | 0.53          | 0.40          | 2.33     | 1.29        | 1.34       | 0.32       | 0.16      | 0.12          | 0.00    |
| 30                 | 0.66          | 1.25          | 1.48          | 0.00   | 1.65          | 1.13           | 10.50                       | 0.80           | 1.28          | 1.19          | 8.01     | 1.99        | 1.34       | 0.87       | 0.18      | 0.57          | 0.00    |
| 40                 | 0.92          | 1.34          | 4.39          | 0.00   | 2.54          | 1.66           | 13.45                       | 1.39           | 2.12          | 1.77          | 15.48    | 2.49        | 1.34       | 1.12       | 0.28      | 0.75          | 0.00    |
| 50                 | 1.59          | 2.80          | 5.70          | 0.00   | 3.19          | 2.15           | 13.92                       | 2.19           | 3.15          | 3.90          | 15.48    | 2.49        | 1.34       | 1.58       | 0.28      | 1.15          | 0.31    |
| 60                 | 2.71          | 4.12          | 6.90          | 0.00   | 5.01          | 3.05           | 18.62                       | 3.29           | 4.45          | 6.47          | 15.48    | 7.18        | 1.95       | 2.43       | 0.33      | 1.94          | 0.32    |
| 20                 | 3.41          | 6.31          | 9.32          | 0.00   | 6.16          | 4.84           | 19.09                       | 4.72           | 6.11          | 7.99          | 15.48    | 10.04       | 1.95       | 2.66       | 3.21      | 2.50          | 4.08    |
| 80                 | 3.73          | 9.49          | 9.42          | 0.00   | 7.95          | 7.50           | 20.46                       | 6.61           | 8.19          | 11.74         | 15.58    | 10.04       | 1.95       | 4.12       | 12.31     | 3.28          | 4.19    |
| 06                 | 5.46          | 11.74         | 19.46         | 0.00   | 10.94         | 10.56          | 21.62                       | 8.88           | 10.73         | 12.28         | 15.58    | 10.04       | 1.95       | 5.68       | 12.31     | 3.80          | 11.03   |
| 100                | 8.36          | 15.15         | 20.54         | 0.00   | 14.87         | 13.52          | 22.28                       | 12.01          | 14.15         | 19.82         | 15.58    | 10.04       | 1.95       | 6.74       | 14.78     | 5.01          | 13.51   |
| 110                | 11.74         | 19.81         | 23.77         | 0.00   | 18.53         | 16.60          | 22.56                       | 15.59          | 18.26         | 22.34         | 15.58    | 10.06       | 1.95       | 10.82      | 15.76     | 10.60         | 13.74   |
| 120                | 19.20         | 23.65         | 26.25         | 0.00   | 22.12         | 20.10          | 32.66                       | 19.71          | 22.61         | 26.17         | 20.70    | 26.01       | 28.43      | 12.83      | 17.14     | 13.85         | 14.91   |
| 130                | 26.10         | 30.29         | 27.13         | 0.00   | 25.92         | 26.48          | 40.84                       | 24.75          | 27.91         | 28.23         | 20.91    | 37.46       | 28.67      | 19.90      | 17.86     | 21.56         | 15.69   |
| 140                | 37.28         | 38.79         | 30.02         | 0.00   | 30.43         | 32.38          | 59.39                       | 31.05          | 34.23         | 32.22         | 20.91    | 37.46       | 28.67      | 25.19      | 38.37     | 25.39         | 16.47   |
| 150                | 44.61         | 46.13         | 39.03         | 0.60   | 37.02         | 36.89          | 59.90                       | 36.47          | 40.09         | 40.69         | 20.91    | 51.86       | 28.67      | 35.50      | 39.03     | 28.65         | 16.65   |
| 160                | 47.52         | 51.33         | 56.04         | 0.60   | 42.97         | 42.41          | 61.04                       | 42.75          | 46.71         | 54.40         | 20.91    | 59.55       | 28.72      | 40.39      | 63.93     | 36.32         | 16.98   |
| 170                | 54.52         | 56.70         | 68.86         | 09.0   | 50.46         | 46.08          | 64.52                       | 49.33          | 52.39         | 63.53         | 20.91    | 59.55       | 99.59      | 53.27      | 73.79     | 47.94         | 19.09   |
| 180                | 64.97         | 62.42         | 72.74         | 09.0   | 56.76         | 53.86          | 72.76                       | 55.14          | 58.88         | 70.51         | 20.91    | 59.55       | 99.59      | 59.47      | 88.46     | 55.16         | 19.48   |
| 190                | 67.70         | 68.50         | 84.43         | 0.60   | 60.95         | 57.17          | 73.55                       | 61.06          | 64.83         | 76.08         | 41.49    | 59.58       | 99.59      | 64.25      | 94.31     | 61.34         | 19.83   |
| 200                | 69.93         | 81.21         | 88.39         | 0.60   | 66.22         | 63.48          | 74.07                       | 66.77          | 70.86         | 80.30         | 46.73    | 91.73       | 99.59      | 73.06      | 94.43     | 64.92         | 20.01   |
| 210                | 75.49         | 91.05         | 91.57         | 0.60   | 69.92         | 69.29          | 89.77                       | 72.45          | 76.01         | 80.83         | 66.64    | 91.73       | 99.59      | 78.24      | 95.29     | 77.13         | 37.13   |
| 220                | 76.08         | 92.17         | 92.10         | 100.00 | 75.75         | 72.49          | 96.85                       | 77.11          | 80.48         | 84.60         | 66.64    | 91.73       | 99.59      | 80.78      | 95.60     | 79.82         | 37.24   |
| 230                | 81.03         | 93.27         | 96.32         | 100.00 | 82.60         | 78.90          | 98.48                       | 81.16          | 84.62         | 88.83         | 67.66    | 91.73       | 99.59      | 86.35      | 97.74     | 82.58         | 56.38   |
| 240                | 88.58         | 94.96         | 97.16         | 100.00 | 85.44         | 83.55          | 99.23                       | 84.52          | 87.45         | 96.65         | 85.38    | 99.82       | 100.00     | 90.82      | 97.77     | 84.10         | 56.47   |
| 250                | 92.60         | 97.11         | 97.36         | 100.00 | 90.18         | 88.87          | 99.33                       | 87.10          | 89.93         | 97.22         | 85.38    | 99.82       | 100.00     | 96.83      | 98.59     | 84.96         | 56.49   |
| 260                | 92.99         | 97.93         | 97.50         | 100.00 | 90.99         | 91.71          | 99.33                       | 89.50          | 92.55         | 97.51         | 85.38    | 99.82       | 100.00     | 96.83      | 99.41     | 85.62         | 56.56   |
| 270                | 94.04         | 98.22         | 98.13         | 100.00 | 92.57         | 92.62          | <b>09</b> .60               | 91.53          | 94.22         | 98.69         | 85.38    | 99.82       | 100.00     | 97.23      | 99.42     | 86.24         | 58.16   |
| 280                | 94.25         | 98.52         | 98.37         | 100.00 | 92.74         | 93.63          | 99.73                       | 93.07          | 95.62         | 98.99         | 85.38    | 99.82       | 100.00     | 97.24      | 99.56     | 93.83         | 99.79   |
| 290                | 95.12         | 99.05         | 98.38         | 100.00 | 94.51         | 94.61          | 99.92                       | 94.47          | 97.10         | 99.26         | 85.38    | 99.82       | 100.00     | 97.25      | 99.56     | 95.54         | 99.86   |
| 300                | 95.57         | 99.28         | <b>60</b> .06 | 100.00 | 95.62         | 96.25          | 99.92                       | 95.72          | 97.78         | 99.46         | 85.38    | 100.00      | 100.00     | 100.00     | 99.56     | 95.68         | 99.98   |
| 310                | 95.63         | 99.33         | <b>60</b> .66 | 100.00 | 96.39         | 96.76          | 99.96                       | 96.46          | 98.26         | 99.47         | 85.38    | 100.00      | 100.00     | 100.00     | 99.56     | 95.88         | 99.98   |
| 320                | 95.68         | 99.37         | <b>60</b> .66 | 100.00 | 96.47         | 97.24          | 99.96                       | 97.08          | 98.89         | 99.59         | 85.78    | 100.00      | 100.00     | 100.00     | 99.56     | 96.38         | 100.00  |
| 330                | 96.14         | 99.39         | 99.48         | 100.00 | 98.75         | 97.65          | 100.00                      | 97.84          | 99.25         | 99.61         | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 96.85         | 100.00  |
| 340                | 96.14         | 99.39         | 99.48         | 100.00 | 99.32         | 98.76          | 100.00                      | 98.24          | 99.36         | <b>99.69</b>  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 96.89         | 100.00  |
| 350                | 96.14         | 99.40         | 99.48         | 100.00 | 99.36         | 98.87          | 100.00                      | 98.48          | 99.55         | 99.73         | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.78         | 100.00  |
| 360                | 96.39         | 99.45         | 99.67         | 100.00 | 99.42         | 99.46          | 100.00                      | 98.78          | 99.62         | 99.75         | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.79         | 100.00  |
| 370                | 96.39         | 99.48         | 99.67         | 100.00 | 99.44         | 99.54          | 100.00                      | 98.91          | 99.67         | 99.78         | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.81         | 100.00  |
| 380                | 96.39         | 99.48         | 99.67         | 100.00 | 99.44         | 99.54          | 100.00                      | 99.15          | 99.83         | 99.78         | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.81         | 100.00  |
| 390                | 99.97         | 99.99         | 99.95         | 100.00 | 99.67         | 99.89          | 100.00                      | 99.32          | 99.87         | 99.79         | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.81         | 100.00  |
| 400<br>Athor       | 99.97<br>0.02 | 99.99<br>0.01 | 99.95<br>0.05 | 100.00 | 99.67<br>0.33 | 99.89<br>0 1 1 | 100.00                      | 99.37<br>0.62  | 99.87<br>0.12 | 99.97<br>0.02 | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.81<br>0.10 | 100.00  |
|                    | 0.00          | 0.0           | 000           | 00.0   | 00.0          | 5              | 0.0                         | 000            | 2             | 0.00          | 0.00     | 00.0        | 0.00       | 00.0       | 0.00      | 5             | 20.0    |

Table I6.7. Mineral Cumulative Grain Size Distribution (Sample PX1 250/150, Size Fraction -250+150 micron)



| Table I6.8. Mineral ( | Cumulative Grain Size Distribution | (Sample PX1 150/75, | Size Fraction -150+75 micron) |
|-----------------------|------------------------------------|---------------------|-------------------------------|
|                       |                                    |                     |                               |

| Grain Size         |              |               |             |        |        | Mine       | erals (Sample P) | X1_150/75, Si | ze Fractic | n -150+ | 5 micror | ē           |            |            |           |          |         |
|--------------------|--------------|---------------|-------------|--------|--------|------------|------------------|---------------|------------|---------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite   | Chalcopyrite  | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene    | Amphiboles    | Chlorite   | Biotite | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.13         | 0.30          | 0.32        | 0.00   | 1.04   | 0.40       | 0.61             | 0.24          | 0.70       | 0.31    | 2.42     | 4.29        | 5.35       | 0.24       | 0.96      | 0.10     | 0.00    |
| 20                 | 2.05         | 2.44          | 1.41        | 0.00   | 6.11   | 3.11       | 8.47             | 2.07          | 4.86       | 3.67    | 7.99     | 20.69       | 34.24      | 1.51       | 5.86      | 1.51     | 1.61    |
| 30                 | 4.00         | 5.02          | 4.03        | 0.00   | 12.20  | 7.36       | 16.24            | 4.65          | 9.58       | 9.08    | 11.81    | 29.52       | 34.24      | 2.66       | 7.39      | 2.39     | 5.70    |
| 40                 | 8.78         | 8.45          | 10.45       | 0.00   | 18.16  | 13.18      | 23.71            | 8.62          | 15.31      | 15.97   | 11.81    | 34.14       | 34.24      | 4.47       | 8.10      | 3.60     | 7.56    |
| 50                 | 14.36        | 13.79         | 13.52       | 0.00   | 24.90  | 22.18      | 33.58            | 14.29         | 22.34      | 20.23   | 11.85    | 34.14       | 100.00     | 7.72       | 16.69     | 9.01     | 14.65   |
| 60                 | 20.27        | 18.75         | 13.90       | 0.00   | 31.36  | 30.08      | 45.33            | 21.86         | 31.78      | 31.20   | 21.15    | 34.14       | 100.00     | 10.68      | 29.35     | 19.15    | 19.42   |
| 70                 | 26.85        | 33.87         | 21.01       | 0.30   | 38.26  | 38.73      | 64.74            | 31.38         | 42.16      | 37.94   | 22.48    | 34.14       | 100.00     | 16.18      | 38.53     | 23.71    | 25.42   |
| 80                 | 31.84        | 38.25         | 22.87       | 0.30   | 49.67  | 51.01      | 72.00            | 41.53         | 52.14      | 50.63   | 22.48    | 34.33       | 100.00     | 30.04      | 47.05     | 32.79    | 29.14   |
| 06                 | 44.78        | 43.70         | 31.57       | 0.30   | 59.04  | 58.25      | 81.98            | 51.30         | 61.77      | 55.33   | 30.25    | 60.63       | 100.00     | 44.59      | 48.11     | 46.98    | 59.21   |
| 100                | 58.25        | 54.55         | 54.21       | 0.30   | 66.15  | 65.66      | 92.41            | 61.17         | 70.13      | 65.31   | 74.59    | 60.63       | 100.00     | 63.88      | 49.89     | 56.29    | 59.92   |
| 110                | 65.61        | 63.55         | 68.97       | 0.30   | 74.48  | 75.66      | 95.18            | 68.93         | 77.95      | 69.51   | 75.47    | 97.45       | 100.00     | 76.43      | 50.01     | 70.32    | 93.29   |
| 120                | 80.85        | 73.91         | 89.42       | 100.00 | 80.86  | 85.29      | 97.79            | 76.17         | 84.44      | 71.07   | 75.47    | 97.50       | 100.00     | 83.59      | 51.85     | 77.73    | 95.28   |
| 130                | 86.87        | 89.28         | 91.38       | 100.00 | 85.75  | 88.49      | 98.39            | 82.48         | 88.43      | 77.88   | 100.00   | 97.50       | 100.00     | 89.11      | 51.86     | 82.03    | 96.64   |
| 140                | 91.67        | 98.60         | 92.82       | 100.00 | 90.23  | 93.21      | 98.84            | 87.03         | 92.32      | 82.32   | 100.00   | 100.00      | 100.00     | 98.33      | 52.62     | 93.60    | 98.31   |
| 150                | 98.14        | 99.30         | 97.33       | 100.00 | 90.66  | 95.43      | 98.91            | 90.45         | 95.28      | 82.88   | 100.00   | 100.00      | 100.00     | 98.34      | 52.62     | 95.70    | 98.38   |
| 160                | 98.93        | 99.36         | 98.90       | 100.00 | 94.49  | 96.26      | 99.04            | 92.90         | 97.03      | 87.48   | 100.00   | 100.00      | 100.00     | 99.69      | 99.91     | 97.01    | 99.60   |
| 170                | 99.14        | 99.45         | 98.93       | 100.00 | 95.19  | 97.12      | 99.67            | 95.07         | 98.03      | 88.10   | 100.00   | 100.00      | 100.00     | 99.78      | 99.98     | 99.23    | 99.60   |
| 180                | 99.56        | 99.55         | 98.99       | 100.00 | 95.59  | 97.26      | 99.74            | 96.66         | 98.72      | 89.81   | 100.00   | 100.00      | 100.00     | 99.78      | 99.98     | 99.62    | 09.60   |
| 190                | 99.87        | 99.77         | 99.58       | 100.00 | 97.84  | 97.28      | 99.77            | 97.38         | 99.04      | 93.53   | 100.00   | 100.00      | 100.00     | 99.78      | 99.98     | 99.65    | 100.00  |
| 200                | 99.88        | 99.82         | 99.77       | 100.00 | 99.73  | 99.66      | 99.87            | 97.96         | 99.47      | 93.67   | 100.00   | 100.00      | 100.00     | 100.00     | 99.98     | 99.67    | 100.00  |
| 210                | 99.99        | 99.89         | 99.85       | 100.00 | 99.73  | 99.79      | 99.87            | 98.24         | 99.61      | 93.68   | 100.00   | 100.00      | 100.00     | 100.00     | 99.98     | 99.67    | 100.00  |
| 220                | 99.99        | 99.89         | 99.85       | 100.00 | 99.85  | 99.97      | 99.87            | 98.78         | 99.76      | 94.31   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.71    | 100.00  |
| 230                | 99.99        | 99.89         | 99.85       | 100.00 | 99.85  | 99.97      | 99.87            | 98.98         | 99.84      | 94.34   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.71    | 100.00  |
| 240                | 99.99        | 99.89         | 99.85       | 100.00 | 99.85  | 99.97      | 99.87            | 99.27         | 99.86      | 94.34   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.77    | 100.00  |
| 250                | 99.99        | 99.89         | 99.85       | 100.00 | 99.99  | 99.97      | 99.90            | 99.45         | 99.88      | 94.37   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.77    | 100.00  |
| 260                | <u>99.99</u> | 99.90         | 99.85       | 100.00 | 100.00 | 100.00     | 99.90            | 99.68         | 99.93      | 99.95   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.96    | 100.00  |
| 270                | 99.99        | 99.90         | 99.85       | 100.00 | 100.00 | 100.00     | 99.90            | 99.76         | 99.94      | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.96    | 100.00  |
| 280                | <u>99.99</u> | <u> 06.66</u> | 99.85       | 100.00 | 100.00 | 100.00     | 99.94            | 99.81         | 99.94      | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.96    | 100.00  |
| 290                | <u>99.99</u> | 99.90         | 99.85       | 100.00 | 100.00 | 100.00     | 99.94            | 99.82         | 99.94      | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.96    | 100.00  |
| 300                | 100.00       | <u> 99.90</u> | 99.85       | 100.00 | 100.00 | 100.00     | 100.00           | 99.91         | 99.94      | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.97    | 100.00  |
| 310                | 100.00       | 99.90         | 99.85       | 100.00 | 100.00 | 100.00     | 100.00           | 99.95         | 99.94      | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 99.97    | 100.00  |
| 320                | 100.00       | 99.90         | 99.85       | 100.00 | 100.00 | 100.00     | 100.00           | 99.95         | 100.00     | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00       | 99.90         | 99.85       | 100.00 | 100.00 | 100.00     | 100.00           | 99.95         | 100.00     | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00       | 99.90         | 99.85       | 100.00 | 100.00 | 100.00     | 100.00           | 99.95         | 100.00     | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00       | 99.90         | 99.85       | 100.00 | 100.00 | 100.00     | 100.00           | 99.95         | 100.00     | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00       | <u>99.90</u>  | 99.85       | 100.00 | 100.00 | 100.00     | 100.00           | 99.95         | 100.00     | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00       | 99.90         | 99.85       | 100.00 | 100.00 | 100.00     | 100.00           | 99.95         | 100.00     | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00       | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00       | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00       | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00  | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



| Grain Size         |            |              |             |        |        |            | Minerals (Samp | ole PX1 -75, S | ize Fracti | on -75 m | icron) |             |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|----------------|----------------|------------|----------|--------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene  | Amphiboles     | Chlorite   | Biotite  | Quartz | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 19.97      | 19.49        | 5.94        | 100.00 | 48.48  | 18.72      | 6.74           | 22.36          | 33.74      | 18.33    | 41.35  | 19.27       | 0.00       | 33.30      | 85.76     | 21.10    | 85.23   |
| 20                 | 48.62      | 35.14        | 87.56       | 100.00 | 78.27  | 40.22      | 35.75          | 49.51          | 65.23      | 38.04    | 100.00 | 100.00      | 0.00       | 88.30      | 99.28     | 42.96    | 100.00  |
| 30                 | 92.88      | 51.44        | 96.35       | 100.00 | 88.73  | 58.16      | 51.35          | 67.50          | 79.08      | 50.31    | 100.00 | 100.00      | 100.00     | 97.45      | 99.28     | 49.57    | 100.00  |
| 40                 | 100.00     | 53.70        | 98.81       | 100.00 | 94.61  | 63.55      | 79.40          | 80.24          | 88.54      | 72.41    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 50                 | 100.00     | 53.70        | 100.00      | 100.00 | 97.62  | 71.31      | 93.05          | 88.28          | 94.56      | 73.42    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 60                 | 100.00     | 53.70        | 100.00      | 100.00 | 98.25  | 79.66      | 98.09          | 93.55          | 98.01      | 74.06    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 20                 | 100.00     | 53.70        | 100.00      | 100.00 | 98.27  | 84.80      | 99.55          | 96.58          | 98.95      | 99.88    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 80                 | 100.00     | 100.00       | 100.00      | 100.00 | 98.32  | 84.80      | 99.70          | 97.58          | 99.63      | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 06                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 84.80      | 99.70          | 99.21          | 99.75      | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 100                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 99.70          | 99.21          | 99.75      | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 110                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 99.70          | 99.63          | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 120                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 130                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 140                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 150                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 160                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 170                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 180                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 190                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 200                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |

Table I6.9. Mineral Cumulative Grain Size Distribution (Sample PX1 -75, Size Fraction -75 micron)

#### 1.6.2020



L

| Grain Size         |            |              |             |        |        | Miner      | rals (Sample PX; | 2_250/150, Si | ze Fractic | on -250+1 | 50 micro | (L          |            |            |           |          |               |
|--------------------|------------|--------------|-------------|--------|--------|------------|------------------|---------------|------------|-----------|----------|-------------|------------|------------|-----------|----------|---------------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene    | Amphiboles    | Chlorite   | Biotite   | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite       |
| 10                 | 0.00       | 0.00         | 0.00        | 0.00   | 0.73   | 0.00       | 0.00             | 0.01          | 0.04       | 0.00      | 0.00     | 0.01        | 0.00       | 0.00       | 0.64      | 0.00     | 0.00          |
| 20                 | 00.0       | 0.43         | 0.00        | 0.00   | 4.35   | 5.99       | 1.05             | 0.33          | 0.81       | 0.37      | 0.31     | 0.21        | 0.54       | 0.31       | 25.93     | 0.13     | 0.61          |
| 30                 | 00.0       | 1.04         | 0.00        | 0.00   | 4.94   | 5.99       | 4.54             | 0.79          | 1.97       | 1.06      | 0.75     | 0.54        | 0.54       | 0.67       | 34.54     | 0.47     | 0.66          |
| 40                 | 24.88      | 1.20         | 00.0        | 0.00   | 4.94   | 9.53       | 7.36             | 1.42          | 3.15       | 1.92      | 2.26     | 2.49        | 0.69       | 2.00       | 34.54     | 0.86     | 1.16          |
| 50                 | 24.88      | 1.86         | 00.0        | 0.00   | 4.94   | 9.53       | 7.53             | 2.28          | 4.38       | 2.76      | 3.01     | 3.74        | 0.69       | 2.00       | 35.16     | 1.75     | 1.80          |
| 60                 | 29.48      | 3.33         | 00.0        | 0.00   | 4.94   | 17.89      | 11.93            | 3.39          | 6.08       | 4.20      | 3.01     | 4.94        | 0.69       | 8.15       | 52.44     | 2.08     | 3.55          |
| 20                 | 29.48      | 7.90         | 00.0        | 0.00   | 4.94   | 17.89      | 12.50            | 4.97          | 8.45       | 6.45      | 9.25     | 8.15        | 0.69       | 8.15       | 52.44     | 3.29     | 3.83          |
| 80                 | 29.48      | 11.18        | 00.0        | 0.00   | 4.94   | 24.23      | 13.98            | 6.99          | 11.22      | 9.44      | 9.25     | 9.35        | 0.69       | 8.15       | 62.48     | 6.83     | 5.11          |
| 6                  | 29.48      | 11.49        | 0.00        | 0.00   | 4.94   | 24.23      | 24.98            | 9.58          | 14.46      | 11.50     | 13.62    | 9.35        | 0.69       | 9.14       | 64.98     | 8.51     | 13.27         |
| 90                 | 29.48      | 11.83        | 88.83       | 38.35  | 4.94   | 31.94      | 25.19            | 13.10         | 18.13      | 14.97     | 22.78    | 10.12       | 0.69       | 14.01      | 65.03     | 9.73     | 14.00         |
| 110                | 51.80      | 12.25        | 91.92       | 38.35  | 4.94   | 40.11      | 25.19            | 17.28         | 23.60      | 18.56     | 28.46    | 14.56       | 1.04       | 14.01      | 65.03     | 14.59    | 18.58         |
| 120                | 51.80      | 12.68        | 91.92       | 38.35  | 4.94   | 41.47      | 25.19            | 22.16         | 29.59      | 23.91     | 35.08    | 16.15       | 16.73      | 20.23      | 65.58     | 20.15    | 19.68         |
| 130                | 84.49      | 21.55        | 92.67       | 38.35  | 4.94   | 41.47      | 56.68            | 27.68         | 35.76      | 28.90     | 48.70    | 24.93       | 17.52      | 25.35      | 67.56     | 28.31    | 22.08         |
| 140                | 90.40      | 22.61        | 93.31       | 39.64  | 4.94   | 41.47      | 56.87            | 34.05         | 43.18      | 35.19     | 49.18    | 31.55       | 19.82      | 29.21      | 67.68     | 37.25    | 34.22         |
| 150                | 100.00     | 27.76        | 93.31       | 39.64  | 20.81  | 42.85      | 57.16            | 41.00         | 50.02      | 42.50     | 64.30    | 41.70       | 19.88      | 29.21      | 67.74     | 45.01    | 58.24         |
| 160                | 100.00     | 38.30        | 93.31       | 39.64  | 100.00 | 46.39      | 57.24            | 48.13         | 56.90      | 51.28     | 71.95    | 42.79       | 19.88      | 29.21      | 71.02     | 51.92    | 61.23         |
| 170                | 100.00     | 38.76        | 93.31       | 39.64  | 100.00 | 49.09      | 58.68            | 54.94         | 63.42      | 59.78     | 72.28    | 51.39       | 19.88      | 59.67      | 74.93     | 58.87    | 62.01         |
| 180                | 100.00     | 39.04        | 93.83       | 39.64  | 100.00 | 52.40      | 58.68            | 61.30         | 69.49      | 66.83     | 89.10    | 59.11       | 19.88      | 74.33      | 74.93     | 68.68    | 66.65         |
| 190                | 100.00     | 69.89        | 93.83       | 95.48  | 100.00 | 52.40      | 58.68            | 67.69         | 75.90      | 70.57     | 91.36    | 62.87       | 92.10      | 74.33      | 76.01     | 72.20    | 87.90         |
| 200                | 100.00     | 70.05        | 93.83       | 95.48  | 100.00 | 58.55      | 58.68            | 72.72         | 79.37      | 76.79     | 91.43    | 62.87       | 92.10      | 88.30      | 93.36     | 80.51    | 92.06         |
| 210                | 100.00     | 70.51        | 94.12       | 95.48  | 100.00 | 58.55      | 58.85            | 78.01         | 83.49      | 80.63     | 91.43    | 62.90       | 92.68      | 97.21      | 98.93     | 84.20    | 92.60         |
| 220                | 100.00     | 70.58        | 94.12       | 95.48  | 100.00 | 58.55      | 58.85            | 82.05         | 87.17      | 86.34     | 98.26    | 73.31       | 92.68      | 97.21      | 98.93     | 84.73    | 93.72         |
| 230                | 100.00     | 71.98        | 94.12       | 95.48  | 100.00 | 98.91      | 58.85            | 85.50         | 89.69      | 89.97     | 98.26    | 73.31       | 92.68      | 97.21      | 98.93     | 86.48    | 93.96         |
| 240                | 100.00     | 72.39        | 94.12       | 95.48  | 100.00 | 100.00     | 58.85            | 88.32         | 92.00      | 92.20     | 99.25    | 80.54       | 92.68      | 97.21      | 98.93     | 89.39    | 94.58         |
| 250                | 100.00     | 85.68        | 94.12       | 95.48  | 100.00 | 100.00     | 100.00           | 90.69         | 93.97      | 95.45     | 99.91    | 90.27       | 99.97      | 100.00     | 98.93     | 93.53    | 96.09         |
| 260                | 100.00     | 85.73        | 94.12       | 95.48  | 100.00 | 100.00     | 100.00           | 92.55         | 95.23      | 95.58     | 100.00   | 92.92       | 99.97      | 100.00     | 98.93     | 98.14    | 96.38         |
| 270                | 100.00     | 85.74        | 94.12       | 95.48  | 100.00 | 100.00     | 100.00           | 94.00         | 96.86      | 96.50     | 100.00   | 92.92       | 99.97      | 100.00     | 99.19     | 98.14    | 98.33         |
| 280                | 100.00     | 99.20        | 94.12       | 95.48  | 100.00 | 100.00     | 100.00           | 95.15         | 97.48      | 96.57     | 100.00   | 100.00      | 100.00     | 100.00     | 99.19     | 98.15    | 98.33         |
| 290                | 100.00     | 99.94        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 96.08         | 97.78      | 97.17     | 100.00   | 100.00      | 100.00     | 100.00     | 99.31     | 98.15    | 98.66         |
| 300                | 100.00     | 99.98        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 96.99         | 98.54      | 97.75     | 100.00   | 100.00      | 100.00     | 100.00     | 99.31     | 98.15    | 99.05         |
| 310                | 100.00     | 99.98        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 97.71         | 98.89      | 98.76     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 98.15    | 99.05         |
| 320                | 100.00     | 99.99        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 97.99         | 98.95      | 98.78     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 98.17    | 99.99         |
| 330                | 100.00     | 99.99        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.37         | 99.24      | 98.82     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 98.17    | 99.99         |
| 340                | 100.00     | 99.99        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.81         | 99.38      | 98.83     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.99         |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.10         | 99.45      | 98.85     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.99         |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.38         | 99.72      | 98.86     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.99         |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.55         | 99.80      | 98.86     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.99         |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.70         | 99.84      | 98.87     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.99         |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.78         | 99.84      | 98.87     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.99         |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.86         | 99.84      | 98.87     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | <u> 66.66</u> |
| Other              | 0.00       | 0.00         | 0.00        | 0.00   | 0.00   | 0.00       | 0.00             | 0.14          | 0.16       | 1.13      | 0.00     | 0.00        | 0.00       | 0.00       | 0.00      | 0.00     | 0.01          |



| Table I6.11. Mineral Cumulative Grain Size Distribution | n (Sample PX2 150/75, Size Fraction -150+75 micron) |
|---------------------------------------------------------|-----------------------------------------------------|
|---------------------------------------------------------|-----------------------------------------------------|

| Grain Size         |               |             |             |        |        | Min        | erals (Sample P) | X2_150/75, Si | ze Fractio | on -150+7 | 5 micror | -           |            |            |           |          |         |
|--------------------|---------------|-------------|-------------|--------|--------|------------|------------------|---------------|------------|-----------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite CI | halcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene    | Amphiboles    | Chlorite   | Biotite   | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 |               | 0.26        | 0.00        | 0.00   | 2.63   | 0.00       | 0.40             | 0.18          | 0.55       | 0.17      | 0.11     | 0.06        | 0.00       | 1.58       | 1.12      | 0.11     | 0.15    |
| 20                 |               | 0.57        | 0.00        | 1.41   | 15.40  | 0.00       | 5.33             | 1.61          | 4.06       | 2.15      | 1.28     | 0.44        | 2.81       | 3.67       | 9.78      | 0.82     | 0.49    |
| 30                 |               | 1.89        | 0.00        | 1.41   | 20.87  | 3.64       | 10.66            | 3.69          | 8.21       | 4.91      | 2.40     | 0.70        | 12.28      | 11.80      | 10.19     | 2.05     | 1.18    |
| 40                 |               | 6.89        | 0.00        | 1.41   | 20.87  | 6.46       | 14.06            | 6.85          | 13.86      | 8.88      | 9.00     | 2.32        | 12.28      | 18.24      | 10.82     | 5.99     | 1.75    |
| 50                 |               | 8.11        | 0.00        | 1.41   | 63.38  | 47.40      | 24.01            | 11.92         | 21.04      | 16.46     | 15.17    | 11.33       | 59.99      | 36.05      | 16.19     | 11.19    | 5.55    |
| 60                 |               | 26.15       | 0.00        | 1.41   | 63.38  | 56.72      | 53.72            | 19.24         | 30.41      | 25.57     | 23.18    | 14.08       | 64.77      | 36.05      | 18.72     | 18.08    | 14.28   |
| 20                 |               | 32.27       | 3.74        | 1.41   | 80.09  | 59.19      | 54.81            | 28.64         | 40.70      | 35.76     | 24.85    | 28.30       | 64.77      | 36.05      | 20.62     | 24.70    | 16.47   |
| 80                 |               | 37.39       | 40.31       | 1.41   | 80.09  | 64.04      | 55.89            | 39.25         | 52.81      | 46.70     | 34.57    | 35.20       | 64.77      | 36.05      | 87.89     | 36.91    | 35.86   |
| 06                 |               | 41.41       | 40.31       | 1.41   | 80.09  | 65.65      | 79.87            | 49.79         | 62.54      | 57.45     | 74.99    | 53.54       | 65.01      | 42.35      | 88.56     | 45.04    | 36.25   |
| 100                |               | 47.89       | 40.31       | 1.98   | 80.09  | 65.65      | 94.30            | 59.87         | 71.57      | 66.17     | 83.13    | 70.44       | 65.01      | 42.35      | 88.96     | 53.15    | 61.15   |
| 110                |               | 65.57       | 43.58       | 1.98   | 100.00 | 65.65      | 95.21            | 68.67         | 79.20      | 72.91     | 99.48    | 78.86       | 65.19      | 42.35      | 97.03     | 68.51    | 61.50   |
| 120                |               | 68.44       | 43.58       | 1.98   | 100.00 | 96.77      | 95.32            | 76.30         | 84.37      | 81.54     | 99.48    | 82.13       | 65.97      | 42.35      | 97.10     | 75.65    | 80.69   |
| 130                |               | 75.65       | 43.58       | 1.98   | 100.00 | 96.77      | 95.35            | 81.75         | 88.83      | 85.38     | 99.48    | 100.00      | 65.97      | 42.35      | 97.99     | 82.65    | 80.87   |
| 140                |               | 76.00       | 43.58       | 1.98   | 100.00 | 96.77      | 95.35            | 86.62         | 92.08      | 88.49     | 99.57    | 100.00      | 65.97      | 42.35      | 100.00    | 85.57    | 81.60   |
| 150                |               | 76.18       | 43.58       | 100.00 | 100.00 | 96.77      | 99.10            | 90.48         | 94.81      | 91.20     | 99.63    | 100.00      | 100.00     | 100.00     | 100.00    | 88.68    | 81.99   |
| 160                |               | 99.19       | 49.30       | 100.00 | 100.00 | 96.77      | 99.12            | 92.99         | 96.24      | 93.47     | 99.63    | 100.00      | 100.00     | 100.00     | 100.00    | 95.14    | 98.86   |
| 170                |               | 99.71       | 49.30       | 100.00 | 100.00 | 100.00     | 99.12            | 95.08         | 97.61      | 96.05     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 96.75    | 98.89   |
| 180                |               | 99.71       | 49.30       | 100.00 | 100.00 | 100.00     | 99.12            | 96.40         | 98.23      | 98.66     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 96.75    | 99.74   |
| 190                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 97.33         | 98.70      | 99.89     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.74   |
| 200                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 97.94         | 99.18      | 99.90     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.74   |
| 210                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 98.51         | 99.49      | 99.95     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 220                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | <u> 99.00</u> | 99.75      | 99.98     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 99.34         | 99.87      | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 99.52         | 99.87      | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 99.57         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 99.64         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 99.67         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 99.79         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 99.82         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 99.84         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                |               | 99.74       | 49.30       | 100.00 | 100.00 | 100.00     | 100.00           | 99.86         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                |               | 100.00      | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.92         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                |               | 100.00      | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.94         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                |               | 100.00      | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.94         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                |               | 100.00      | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.94         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                |               | 100.00      | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.94         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                |               | 100.00      | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.95         | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                |               | 100.00      | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                |               | 100.00      | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                |               | 100.00      | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



| Grain Size         |            |              |             |        |      |            | Minerals (Samp | ole PX2 -75, Si | ze Fracti | on -75 m | icron) |             |            |            |           |          |         |  |
|--------------------|------------|--------------|-------------|--------|------|------------|----------------|-----------------|-----------|----------|--------|-------------|------------|------------|-----------|----------|---------|--|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc | Serpentine | Clinopyroxene  | Amphiboles      | Chlorite  | Biotite  | Quartz | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |  |
| 10                 | 100.00     | 36.57        |             |        |      | 20.91      | 0.00           | 29.62           | 37.90     | 26.17    | 13.87  | 14.49       | 24.69      | 100.00     | 53.23     | 28.82    | 85.71   |  |
| 20                 | 100.00     | 100.00       |             |        |      | 100.00     | 86.53          | 60.74           | 72.75     | 65.77    | 100.00 | 41.68       | 51.54      | 100.00     | 61.70     | 42.76    | 100.00  |  |
| 30                 | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 75.35           | 86.24     | 84.77    | 100.00 | 100.00      | 100.00     | 100.00     | 61.70     | 100.00   | 100.00  |  |
| 40                 | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 83.98           | 93.82     | 94.29    | 100.00 | 100.00      | 100.00     | 100.00     | 61.70     | 100.00   | 100.00  |  |
| 50                 | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 91.27           | 96.63     | 98.13    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 60                 | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 94.54           | 98.81     | 98.80    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 70                 | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 97.28           | 99.16     | 99.08    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 80                 | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 97.90           | 99.34     | 99.08    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 06                 | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 98.68           | 99.67     | 99.40    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 100                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 98.93           | 99.67     | 99.40    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 110                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 99.33           | 99.67     | 99.40    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 120                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 99.52           | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 130                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 140                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 150                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 160                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 170                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 180                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 190                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 200                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 210                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 220                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 230                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 240                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 250                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 260                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 270                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 280                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 290                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 300                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 310                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 320                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 330                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 340                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 350                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 360                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 370                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 380                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 390                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |
| 400                | 100.00     | 100.00       |             |        |      | 100.00     | 100.00         | 100.00          | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |  |

Table I6.12. Mineral Cumulative Grain Size Distribution (Sample PX2 -75, Size Fraction -75 micron)



Geological Survey of Finland

| Table I6.13. Mineral Cumulative Grain Size Distributio | n (Sample MS1 250/150, Size Fraction -250+150 micron) |
|--------------------------------------------------------|-------------------------------------------------------|
|--------------------------------------------------------|-------------------------------------------------------|

| Grain Size         |            |              |             |        |        | Miner      | als (Sample MS | 1 250/150, Si | ze Fractio | on -250+ | 150 micro | (uc         |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|----------------|---------------|------------|----------|-----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene  | Amphiboles    | Chlorite   | Biotite  | Quartz    | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.00       | 0.00         | 00.00       | 0.04   | 0.00   | 0.00       | 0.00           | 0.01          | 0.01       | 0.05     | 0.01      | 0.00        | 0.00       | 0.00       | 0.00      | 0.00     | 0.22    |
| 20                 | 0.13       | 09.0         | 0.06        | 0.20   | 4.76   | 0.00       | 0.00           | 0.15          | 0.64       | 0.54     | 0.22      | 0.17        | 0.33       | 0.24       | 13.70     | 0.00     | 0.76    |
| 30                 | 0.39       | 1.10         | 0.64        | 0.66   | 4.76   | 17.44      | 9.20           | 0.46          | 1.26       | 1.52     | 0.57      | 0.46        | 0.59       | 2.67       | 38.72     | 1.39     | 0.76    |
| 40                 | 0.83       | 1.68         | 1.65        | 1.46   | 4.76   | 17.44      | 9.20           | 0.88          | 2.19       | 2.75     | 1.13      | 0.91        | 1.16       | 3.52       | 39.23     | 1.50     | 0.76    |
| 50                 | 1.04       | 2.72         | 4.38        | 3.39   | 7.53   | 17.44      | 9.20           | 1.51          | 3.29       | 4.05     | 1.71      | 1.59        | 2.02       | 8.93       | 45.99     | 1.59     | 2.82    |
| 09                 | 2.62       | 3.04         | 6.21        | 3.51   | 7.53   | 17.44      | 9.20           | 2.41          | 4.96       | 5.41     | 2.70      | 2.49        | 3.26       | 8.93       | 47.14     | 3.12     | 6.89    |
| 20                 | 5.07       | 4.39         | 7.97        | 3.53   | 7.53   | 17.86      | 9.20           | 3.69          | 6.85       | 7.76     | 4.17      | 3.65        | 4.49       | 8.93       | 47.14     | 4.92     | 6.93    |
| 80                 | 6.32       | 5.83         | 10.88       | 5.38   | 7.53   | 17.86      | 9.20           | 5.30          | 10.13      | 11.51    | 6.02      | 5.29        | 6.20       | 10.36      | 57.47     | 4.95     | 7.05    |
| 06                 | 10.36      | 8.43         | 11.75       | 10.79  | 9.54   | 17.86      | 9.20           | 7.32          | 12.93      | 15.09    | 8.60      | 7.19        | 10.32      | 10.36      | 57.47     | 8.70     | 8.34    |
| 100                | 13.10      | 10.71        | 12.50       | 13.68  | 9.54   | 17.86      | 9.20           | 9.94          | 16.39      | 18.49    | 11.17     | 10.11       | 14.50      | 10.46      | 57.47     | 12.48    | 11.48   |
| 110                | 15.99      | 15.62        | 14.40       | 13.68  | 9.97   | 17.86      | 9.20           | 13.33         | 20.04      | 23.85    | 13.83     | 13.34       | 19.94      | 16.15      | 61.64     | 14.67    | 11.79   |
| 120                | 18.02      | 19.53        | 18.28       | 20.34  | 98.70  | 19.03      | 9.20           | 17.47         | 23.59      | 29.75    | 17.60     | 17.57       | 22.93      | 16.24      | 62.14     | 18.71    | 12.88   |
| 130                | 19.46      | 23.52        | 20.90       | 27.22  | 98.70  | 32.00      | 9.20           | 21.99         | 28.42      | 36.51    | 22.95     | 22.13       | 32.21      | 16.65      | 64.15     | 22.32    | 31.70   |
| 140                | 27.37      | 28.55        | 24.84       | 39.59  | 98.70  | 33.88      | 9.20           | 27.44         | 34.36      | 42.62    | 29.37     | 27.58       | 38.11      | 25.93      | 79.39     | 27.35    | 34.68   |
| 150                | 38.04      | 34.55        | 30.75       | 44.65  | 98.70  | 33.88      | 10.43          | 32.88         | 37.75      | 46.76    | 35.65     | 33.34       | 45.84      | 68.77      | 79.85     | 36.71    | 35.97   |
| 160                | 47.01      | 43.07        | 39.89       | 48.38  | 98.70  | 33.88      | 96.36          | 39.06         | 43.49      | 52.51    | 42.05     | 40.49       | 48.66      | 89.87      | 91.07     | 57.13    | 41.06   |
| 170                | 59.16      | 52.35        | 41.48       | 55.27  | 98.70  | 34.42      | 96.59          | 44.74         | 48.08      | 60.32    | 48.92     | 46.79       | 55.14      | 89.98      | 93.02     | 62.84    | 44.99   |
| 180                | 62.59      | 62.23        | 70.25       | 59.35  | 98.70  | 34.42      | 97.00          | 50.61         | 53.74      | 65.70    | 54.94     | 52.90       | 61.37      | 90.02      | 93.02     | 68.33    | 45.68   |
| 190                | 64.84      | 68.62        | 77.61       | 65.14  | 99.26  | 34.42      | 97.00          | 56.57         | 57.73      | 72.49    | 62.83     | 58.52       | 73.07      | 90.17      | 94.80     | 70.69    | 49.96   |
| 200                | 71.02      | 72.61        | 84.63       | 78.56  | 100.00 | 96.13      | 97.00          | 62.23         | 63.65      | 76.46    | 69.43     | 65.30       | 75.69      | 90.69      | 95.93     | 81.40    | 51.67   |
| 210                | 82.34      | 75.34        | 89.99       | 91.59  | 100.00 | 96.13      | 97.00          | 67.28         | 68.93      | 79.80    | 75.01     | 71.90       | 80.09      | 90.79      | 96.47     | 85.04    | 52.48   |
| 220                | 82.57      | 78.03        | 90.79       | 91.65  | 100.00 | 100.00     | 97.00          | 72.50         | 73.23      | 84.26    | 79.76     | 76.42       | 81.17      | 97.97      | 96.47     | 86.03    | 53.38   |
| 230                | 89.49      | 84.39        | 92.15       | 92.86  | 100.00 | 100.00     | 97.00          | 76.58         | 76.86      | 89.46    | 83.18     | 83.11       | 86.70      | 98.83      | 97.40     | 89.25    | 54.96   |
| 240                | 96.08      | 88.95        | 94.69       | 92.88  | 100.00 | 100.00     | 97.00          | 80.17         | 81.64      | 92.69    | 86.27     | 85.56       | 87.92      | 98.83      | 98.83     | 90.44    | 55.52   |
| 250                | 96.73      | 90.78        | 95.37       | 92.88  | 100.00 | 100.00     | 97.00          | 83.66         | 84.00      | 94.84    | 90.69     | 88.45       | 96.18      | 99.30      | 98.83     | 95.66    | 55.90   |
| 260                | 97.45      | 91.56        | 97.55       | 92.93  | 100.00 | 100.00     | 99.68          | 86.34         | 85.85      | 95.37    | 92.55     | 90.94       | 97.31      | 99.30      | 98.83     | 96.00    | 56.87   |
| 270                | 98.30      | 92.28        | 97.99       | 92.94  | 100.00 | 100.00     | 99.68          | 88.66         | 88.55      | 96.71    | 94.58     | 93.45       | 98.06      | 99.36      | 99.33     | 96.67    | 56.96   |
| 280                | 98.56      | 95.44        | 97.99       | 93.06  | 100.00 | 100.00     | 99.68          | 90.78         | 92.54      | 98.10    | 96.00     | 95.34       | 98.34      | 99.54      | 99.33     | 98.58    | 57.07   |
| 290                | 99.01      | 95.91        | 98.44       | 99.34  | 100.00 | 100.00     | 99.68          | 92.19         | 93.14      | 98.30    | 96.43     | 96.86       | 98.43      | 99.54      | 99.33     | 98.58    | 57.07   |
| 300                | 99.23      | 97.65        | 98.72       | 99.34  | 100.00 | 100.00     | 100.00         | 93.75         | 94.13      | 98.88    | 97.55     | 97.49       | 98.49      | 99.60      | 99.33     | 98.92    | 95.76   |
| 310                | 99.42      | 98.14        | 99.34       | 99.36  | 100.00 | 100.00     | 100.00         | 95.01         | 95.03      | 99.18    | 98.32     | 97.99       | 99.58      | 99.94      | 99.33     | 99.21    | 95.76   |
| 320                | 99.78      | 98.33        | 99.50       | 99.36  | 100.00 | 100.00     | 100.00         | 96.03         | 95.16      | 99.24    | 98.52     | 98.55       | 99.91      | 99.94      | 99.33     | 99.25    | 95.79   |
| 330                | 99.81      | 98.59        | 99.63       | 99.36  | 100.00 | 100.00     | 100.00         | 96.66         | 98.05      | 99.25    | 98.60     | 99.11       | 99.92      | 100.00     | 100.00    | 99.25    | 95.92   |
| 340                | 99.84      | 99.10        | 99.64       | 99.36  | 100.00 | 100.00     | 100.00         | 97.35         | 98.62      | 99.26    | 98.97     | 99.37       | 100.00     | 100.00     | 100.00    | 99.25    | 96.14   |
| 350                | 99.84      | 99.33        | 99.66       | 99.36  | 100.00 | 100.00     | 100.00         | 97.90         | 98.68      | 99.28    | 99.12     | 99.53       | 100.00     | 100.00     | 100.00    | 99.25    | 96.35   |
| 360                | 100.00     | 99.61        | 99.73       | 100.00 | 100.00 | 100.00     | 100.00         | 98.49         | 98.95      | 99.82    | 99.27     | 99.75       | 100.00     | 100.00     | 100.00    | 99.84    | 96.35   |
| 370                | 100.00     | 99.63        | 99.73       | 100.00 | 100.00 | 100.00     | 100.00         | 98.82         | 99.01      | 99.83    | 99.31     | 99.77       | 100.00     | 100.00     | 100.00    | 99.84    | 99.91   |
| 380                | 100.00     | 99.80        | 99.83       | 100.00 | 100.00 | 100.00     | 100.00         | 99.07         | 99.01      | 99.83    | 99.37     | 99.77       | 100.00     | 100.00     | 100.00    | 100.00   | 99.95   |
| 390                | 100.00     | 99.92        | 99.83       | 100.00 | 100.00 | 100.00     | 100.00         | 99.20         | 99.01      | 99.92    | 99.38     | 99.77       | 100.00     | 100.00     | 100.00    | 100.00   | 99.95   |
| 400                | 100.00     | 99.92        | 99.83       | 100.00 | 100.00 | 100.00     | 100.00         | 99.41         | 99.10      | 99.99    | 99.76     | 99.77       | 100.00     | 100.00     | 100.00    | 100.00   | 99.95   |
| Other              | 0.00       | 0.08         | 0.17        | 0.00   | 0.00   | 0.00       | 0.00           | 0.59          | 0.90       | 0.01     | 0.24      | 0.23        | 0.00       | 0.00       | 0.00      | 0.00     | 0.05    |



| lsp | ဖ | 5  | <u></u> | 70  | 48  | 82 | 40    | 64 | 8 | 84 | 20 |
|-----|---|----|---------|-----|-----|----|-------|----|---|----|----|
|     |   | () | ~       | • • | · · |    | · · · |    |   |    | _  |

| Grain Size         |            |              |             |         |        | Min        | erals (Sample M | S1_150/75, S | ze Fractic | n -150+7      | 5 micron |             |            |            |           |          |         |
|--------------------|------------|--------------|-------------|---------|--------|------------|-----------------|--------------|------------|---------------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite  | Talc   | Serpentine | Clinopyroxene   | Amphiboles   | Chlorite   | Biotite       | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.18       | 0.67         | 0.28        | 0.26    | 21.24  | 5.59       | 1.96            | 0.23         | 1.33       | 0.65          | 0.26     | 0.19        | 0.26       | 0.19       | 12.16     | 0.28     | 0.35    |
| 20                 | 1.12       | 3.20         | 2.49        | 1.35    | 63.44  | 5.91       | 5.69            | 1.34         | 5.40       | 3.61          | 1.68     | 1.19        | 2.29       | 2.77       | 41.05     | 1.43     | 1.41    |
| 30                 | 3.25       | 5.81         | 4.14        | 2.27    | 69.86  | 12.58      | 5.69            | 3.22         | 9.97       | 8.07          | 3.88     | 2.92        | 5.13       | 3.03       | 47.33     | 5.22     | 2.06    |
| 40                 | 60.9       | 10.50        | 8.55        | 5.01    | 72.38  | 15.57      | 82.14           | 6.67         | 15.50      | 14.36         | 7.21     | 5.85        | 11.70      | 4.45       | 47.73     | 12.13    | 3.60    |
| 50                 | 9.21       | 17.28        | 18.56       | 11.00   | 72.62  | 15.98      | 86.50           | 12.18        | 22.70      | 21.53         | 12.42    | 10.88       | 15.48      | 11.18      | 51.68     | 25.67    | 10.91   |
| 60                 | 19.10      | 24.92        | 28.58       | 18.89   | 72.62  | 17.08      | 86.60           | 19.86        | 32.99      | 31.84         | 20.49    | 17.18       | 20.82      | 14.96      | 52.81     | 39.43    | 11.82   |
| 70                 | 29.42      | 32.55        | 35.18       | 27.91   | 95.79  | 62.70      | 86.60           | 29.26        | 42.91      | 43.29         | 30.36    | 27.06       | 30.40      | 24.90      | 53.21     | 44.53    | 26.03   |
| 80                 | 40.31      | 43.05        | 54.54       | 49.20   | 97.66  | 79.26      | 89.41           | 39.77        | 52.75      | 53.28         | 40.35    | 37.36       | 41.64      | 33.13      | 57.00     | 52.66    | 38.80   |
| 06                 | 48.72      | 55.81        | 85.77       | 54.18   | 97.66  | 81.00      | 91.79           | 49.90        | 62.85      | 62.77         | 51.33    | 49.13       | 48.81      | 49.65      | 57.41     | 69.51    | 41.91   |
| 100                | 63.89      | 61.90        | 87.67       | 58.12   | 97.66  | 87.04      | 91.79           | 59.86        | 70.82      | 73.36         | 60.82    | 60.87       | 55.84      | 65.51      | 91.98     | 81.32    | 54.17   |
| 110                | 75.28      | 69.18        | 89.36       | 69.88   | 98.61  | 97.21      | 91.79           | 68.15        | 78.72      | 80.06         | 71.35    | 69.28       | 62.50      | 68.83      | 93.58     | 84.86    | 54.38   |
| 120                | 81.62      | 86.63        | 92.34       | 83.13   | 98.61  | 99.45      | 91.96           | 75.56        | 84.06      | 85.88         | 77.85    | 76.90       | 64.96      | 76.48      | 96.53     | 93.95    | 67.49   |
| 130                | 91.34      | 90.68        | 94.17       | 83.64   | 99.14  | 99.77      | 94.87           | 81.86        | 90.38      | 90.28         | 83.68    | 85.25       | 75.82      | 88.83      | 96.53     | 98.77    | 68.22   |
| 140                | 93.57      | 95.90        | 95.75       | 93.81   | 99.14  | 100.00     | 94.87           | 86.86        | 92.75      | 93.83         | 88.31    | 90.24       | 77.97      | 88.91      | 99.29     | 98.86    | 82.28   |
| 150                | 95.60      | 96.90        | 96.94       | 98.91   | 100.00 | 100.00     | 94.87           | 90.28        | 95.68      | 95.35         | 91.68    | 93.90       | 81.14      | 98.73      | 99.61     | 99.32    | 83.54   |
| 160                | 96.14      | 97.60        | 99.59       | 98.91   | 100.00 | 100.00     | 95.12           | 92.85        | 97.25      | 96.59         | 93.75    | 95.69       | 81.35      | 98.73      | 99.61     | 99.43    | 83.72   |
| 170                | 99.84      | 98.04        | 99.69       | 98.91   | 100.00 | 100.00     | 95.12           | 94.83        | 97.75      | 97.93         | 95.74    | 96.60       | 90.43      | 98.76      | 99.61     | 99.72    | 99.72   |
| 180                | 99.84      | 98.22        | 99.74       | 99.77   | 100.00 | 100.00     | 100.00          | 96.00        | 97.99      | 98.49         | 97.54    | 97.43       | 99.00      | 98.76      | 99.82     | 99.72    | 99.83   |
| 190                | 99.91      | 98.52        | 99.75       | 99.77   | 100.00 | 100.00     | 100.00          | 96.91        | 98.33      | 98.90         | 98.56    | 98.35       | 99.96      | 100.00     | 100.00    | 99.72    | 99.83   |
| 200                | 99.92      | 98.52        | 99.75       | 99.77   | 100.00 | 100.00     | 100.00          | 97.72        | 99.01      | 98.94         | 99.23    | 98.70       | 99.96      | 100.00     | 100.00    | 99.72    | 99.83   |
| 210                | 100.00     | 98.53        | 99.98       | 99.77   | 100.00 | 100.00     | 100.00          | 98.30        | 99.37      | 96.96         | 99.39    | 99.31       | 100.00     | 100.00     | 100.00    | 99.72    | 99.83   |
| 220                | 100.00     | 99.83        | 99.98       | 99.77   | 100.00 | 100.00     | 100.00          | 98.73        | 99.58      | 99.97         | 99.46    | 99.52       | 100.00     | 100.00     | 100.00    | 100.00   | 99.93   |
| 230                | 100.00     | 99.83        | 99.98       | 100.00  | 100.00 | 100.00     | 100.00          | 99.02        | 99.58      | 99.98         | 99.49    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.93   |
| 240                | 100.00     | 99.84        | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.31        | 99.58      | 99.98         | 99.64    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 99.84        | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.51        | 99.71      | <u> 66.99</u> | 99.95    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 66.66        | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.71        | 99.71      | <b>66</b> .66 | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 66.66        | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.76        | 99.71      | <b>66</b> .66 | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.84        | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.88        | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.92        | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.95        | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.95        | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.95        | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.95        | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.95        | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 99.95        | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 100.00       | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 100.00       | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00  | 100.00 | 100.00     | 100.00          | 100.00       | 100.00     | 100.00        | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.001    | 100.001      | 100.001     | 100.001 | 00.001 | 00.001     | 100.001         | 00.001       | 100.001    | 100.00        | 100.00   | 00.001      | 100.00     | 00.001     | 100.00    | 100.00   | 100.00  |

Table I6.14. Mineral Cumulative Grain Size Distribution (Sample MS1 150/75, Size Fraction -150+75 micron)



| Grain Size         |            |              |             |        |        |            | Minerals (Samp | le MS1 -75, S | ize Fracti | on -75 m | cron)  |             |            |            |           |          | Γ       |
|--------------------|------------|--------------|-------------|--------|--------|------------|----------------|---------------|------------|----------|--------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene  | Amphiboles    | Chlorite   | Biotite  | Quartz | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 17.99      | 17.08        | 15.61       | 16.13  | 7.93   | 43.43      | 9.30           | 18.22         | 37.31      | 20.85    | 16.80  | 13.48       | 9.24       | 24.18      | 98.17     | 23.48    | 28.59   |
| 20                 | 45.93      | 41.07        | 49.37       | 44.32  | 11.99  | 100.00     | 100.00         | 40.88         | 69.08      | 47.02    | 41.82  | 36.88       | 19.79      | 48.99      | 98.17     | 96.88    | 94.60   |
| 30                 | 62.33      | 55.69        | 66.24       | 100.00 | 11.99  | 100.00     | 100.00         | 57.00         | 80.81      | 65.16    | 67.28  | 57.22       | 33.17      | 55.59      | 99.14     | 100.00   | 94.60   |
| 40                 | 90.06      | 75.70        | 93.30       | 100.00 | 11.99  | 100.00     | 100.00         | 70.56         | 88.74      | 78.23    | 79.97  | 75.50       | 36.03      | 55.59      | 99.14     | 100.00   | 94.60   |
| 50                 | 100.00     | 80.58        | 94.63       | 100.00 | 100.00 | 100.00     | 100.00         | 80.40         | 94.77      | 85.12    | 86.86  | 81.94       | 43.21      | 100.00     | 100.00    | 100.00   | 94.60   |
| 60                 | 100.00     | 90.02        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 88.87         | 97.76      | 91.65    | 90.91  | 87.48       | 65.92      | 100.00     | 100.00    | 100.00   | 96.11   |
| 70                 | 100.00     | 97.97        | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 93.80         | 99.66      | 95.38    | 94.55  | 97.79       | 92.58      | 100.00     | 100.00    | 100.00   | 100.00  |
| 80                 | 100.00     | 99.44        | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 96.28         | 99.66      | 95.38    | 98.33  | 99.19       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 06                 | 100.00     | 06.66        | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 97.43         | 99.74      | 95.38    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 100                | 100.00     | 06.66        | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 98.60         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 110                | 100.00     | 99.98        | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 99.14         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 120                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 99.61         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 130                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 99.61         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 140                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 99.61         | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 150                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 160                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 170                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 180                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 190                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 1 00.00    | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 200                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |

Table I6.15. Mineral Cumulative Grain Size Distribution (Sample MS1 -75, Size Fraction -75 micron)

| Table I6.16. Mineral Cumulative Grain Size Distribution | (Sample MS2 250/150, Size Fraction -250+150 micron) |
|---------------------------------------------------------|-----------------------------------------------------|
|---------------------------------------------------------|-----------------------------------------------------|

| Grain Size         |            |              |             |        |        | Miner      | als (Sample MS: | 2_250/150, Si | ze Fracti     | on -250+1 | 50 micro | (uc         |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|-----------------|---------------|---------------|-----------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene   | Amphiboles    | Chlorite      | Biotite   | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.01       | 0.03         | 0.05        | 0.00   | 3.02   | 0.00       | 0.00            | 0.02          | 0.08          | 0.06      | 0.00     | 0.00        | 0.02       | 0.00       | 0.00      | 0.00     | 0.00    |
| 20                 | 0.26       | 0.66         | 0.75        | 1.35   | 8.45   | 0.23       | 15.55           | 0.49          | 1.39          | 1.00      | 0.19     | 0.23        | 0.42       | 0.00       | 24.53     | 0.00     | 0.21    |
| 30                 | 1.24       | 1.42         | 2.18        | 1.35   | 8.45   | 0.23       | 66.11           | 1.20          | 3.03          | 2.56      | 0.71     | 0.71        | 1.19       | 0.00       | 36.12     | 0.00     | 0.21    |
| 40                 | 2.01       | 1.88         | 4.46        | 1.35   | 8.45   | 0.23       | 68.41           | 2.07          | 4.67          | 4.81      | 1.31     | 1.38        | 1.73       | 0.00       | 36.12     | 0.00     | 0.37    |
| 50                 | 3.38       | 3.22         | 4.71        | 1.35   | 56.81  | 19.62      | 68.41           | 3.11          | 6.08          | 7.06      | 2.13     | 2.17        | 2.39       | 0.00       | 36.12     | 0.00     | 0.37    |
| 60                 | 4.22       | 4.16         | 4.88        | 1.35   | 56.81  | 19.62      | 68.41           | 4.44          | 7.83          | 10.07     | 3.29     | 3.33        | 4.15       | 0.00       | 39.86     | 0.00     | 7.30    |
| 70                 | 6.35       | 7.76         | 5.05        | 4.86   | 56.81  | 19.62      | 68.41           | 6.21          | 10.22         | 13.94     | 4.73     | 4.77        | 6.07       | 0.00       | 51.38     | 0.00     | 7.35    |
| 80                 | 8.68       | 10.57        | 8.57        | 14.05  | 56.81  | 19.62      | 68.41           | 8.36          | 12.83         | 17.76     | 6.21     | 6.64        | 7.51       | 0.00       | 51.38     | 0.00     | 7.45    |
| 06                 | 8.91       | 14.82        | 9.03        | 19.27  | 56.81  | 19.62      | 68.41           | 11.17         | 16.41         | 21.94     | 8.93     | 8.99        | 10.56      | 0.00       | 58.60     | 0.00     | 7.56    |
| 100                | 12.20      | 17.18        | 12.39       | 45.18  | 56.81  | 19.62      | 85.73           | 13.77         | 20.55         | 26.84     | 12.13    | 11.90       | 12.60      | 0.00       | 58.60     | 0.00     | 8.00    |
| 110                | 22.94      | 19.77        | 13.20       | 45.86  | 57.21  | 19.62      | 85.73           | 17.96         | 24.66         | 31.88     | 15.94    | 15.52       | 15.80      | 0.00       | 59.62     | 0.00     | 21.96   |
| 120                | 27.57      | 25.26        | 14.10       | 45.86  | 64.30  | 21.34      | 85.73           | 23.36         | 30.12         | 38.79     | 20.51    | 19.96       | 20.56      | 0.00       | 59.62     | 0.95     | 22.71   |
| 130                | 30.35      | 31.74        | 25.13       | 51.82  | 68.32  | 21.34      | 94.86           | 28.09         | 36.29         | 44.70     | 26.32    | 25.09       | 25.85      | 0.00       | 81.78     | 9.12     | 25.61   |
| 140                | 34.70      | 39.32        | 68.24       | 90.52  | 73.66  | 21.34      | 95.28           | 34.67         | 41.36         | 50.86     | 32.74    | 30.94       | 32.89      | 0.00       | 82.16     | 9.12     | 50.34   |
| 150                | 39.63      | 42.39        | 68.72       | 90.58  | 73.66  | 21.34      | 95.28           | 41.31         | 48.58         | 58.23     | 39.72    | 37.49       | 38.73      | 27.78      | 83.29     | 76.22    | 51.95   |
| 160                | 47.06      | 44.44        | 69.20       | 90.58  | 73.66  | 21.34      | 95.28           | 47.83         | 53.95         | 63.01     | 45.90    | 44.63       | 47.34      | 27.78      | 84.53     | 76.22    | 53.87   |
| 170                | 53.04      | 55.78        | 69.54       | 91.50  | 73.66  | 100.00     | 95.28           | 54.10         | 60.55         | 69.74     | 53.84    | 53.00       | 54.41      | 27.78      | 85.48     | 76.22    | 55.06   |
| 180                | 55.81      | 58.40        | 69.80       | 91.59  | 73.66  | 100.00     | 95.28           | 60.07         | 67.10         | 75.00     | 59.30    | 60.08       | 63.99      | 27.78      | 86.83     | 76.22    | 86.34   |
| 190                | 56.20      | 69.96        | 70.12       | 94.26  | 74.00  | 100.00     | 96.93           | 65.64         | 74.52         | 79.30     | 65.50    | 66.91       | 67.98      | 27.78      | 88.47     | 76.22    | 86.46   |
| 200                | 68.47      | 79.13        | 73.56       | 94.75  | 77.42  | 100.00     | 96.93           | 71.68         | 78.85         | 83.71     | 71.44    | 73.00       | 73.85      | 27.78      | 88.47     | 76.22    | 88.38   |
| 210                | 70.91      | 80.68        | 74.29       | 95.19  | 77.75  | 100.00     | 98.73           | 77.26         | 83.11         | 87.22     | 75.97    | 78.48       | 78.19      | 27.78      | 88.47     | 76.22    | 97.05   |
| 220                | 82.57      | 82.66        | 74.55       | 95.27  | 86.35  | 100.00     | 98.73           | 81.68         | 86.60         | 89.61     | 80.49    | 83.52       | 81.93      | 27.78      | 89.07     | 76.22    | 99.60   |
| 230                | 83.84      | 84.65        | 75.14       | 95.43  | 86.35  | 100.00     | 98.73           | 85.91         | 88.63         | 91.42     | 84.89    | 87.37       | 88.14      | 100.00     | 89.75     | 100.00   | 99.82   |
| 240                | 83.93      | 85.53        | 75.17       | 95.43  | 86.35  | 100.00     | 98.73           | 88.69         | 91.38         | 93.26     | 89.58    | 90.37       | 90.75      | 100.00     | 91.64     | 100.00   | 99.93   |
| 250                | 84.04      | 98.56        | 75.90       | 96.37  | 86.35  | 100.00     | 98.73           | 91.55         | 93.61         | 96.13     | 92.67    | 92.98       | 92.82      | 100.00     | 91.64     | 100.00   | 99.98   |
| 260                | 85.15      | 99.14        | 77.23       | 98.72  | 86.35  | 100.00     | 98.73           | 93.76         | 95.44         | 97.22     | 94.89    | 95.18       | 95.04      | 100.00     | 94.37     | 100.00   | 99.98   |
| 270                | 85.15      | 99.41        | 77.23       | 98.90  | 86.35  | 100.00     | 98.73           | 95.15         | 96.78         | 98.30     | 96.40    | 96.44       | 97.78      | 100.00     | 94.37     | 100.00   | 100.00  |
| 280                | 99.61      | 99.80        | 99.63       | 98.90  | 87.29  | 100.00     | 100.00          | 96.10         | 97.39         | 98.72     | 97.82    | 97.38       | 98.31      | 100.00     | 96.07     | 100.00   | 100.00  |
| 290                | 99.61      | 99.80        | 99.63       | 98.90  | 87.29  | 100.00     | 100.00          | 96.68         | 98.31         | 99.19     | 98.02    | 98.03       | 99.32      | 100.00     | 96.07     | 100.00   | 100.00  |
| 300                | 99.61      | 99.81        | 99.63       | 98.90  | 87.29  | 100.00     | 100.00          | 97.56         | 99.01         | 99.35     | 98.67    | 98.64       | 99.50      | 100.00     | 97.29     | 100.00   | 100.00  |
| 310                | 99.61      | 99.81        | 99.63       | 98.90  | 87.29  | 100.00     | 100.00          | 98.15         | 99.23         | 99.36     | 98.74    | 99.02       | 99.51      | 100.00     | 97.29     | 100.00   | 100.00  |
| 320                | 99.65      | 99.81        | 99.65       | 98.97  | 87.29  | 100.00     | 100.00          | 98.49         | 99.42         | 99.42     | 98.77    | 99.38       | 99.78      | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 99.65      | 99.82        | 99.65       | 98.97  | 100.00 | 100.00     | 100.00          | 98.65         | 99.60         | 99.46     | 99.35    | 99.52       | 99.80      | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 66.66       | 100.00 | 100.00 | 100.00     | 100.00          | 98.87         | 99.63         | 99.57     | 99.42    | 99.66       | 96.96      | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 99.99       | 100.00 | 100.00 | 100.00     | 100.00          | 99.22         | 99.65         | 99.82     | 99.93    | 99.80       | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 99.99       | 100.00 | 100.00 | 100.00     | 100.00          | 99.37         | 99.65         | 99.99     | 99.93    | 99.96       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.44         | 99.65         | 99.99     | 99.93    | 99.96       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.51         | 99.71         | 99.99     | 99.93    | 99.96       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.54         | 99.90         | 100.00    | 99.93    | 99.97       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.65         | <b>06</b> .66 | 100.00    | 99.94    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| Other              | 0.00       | 0.00         | 0.00        | 0.00   | 0.00   | 0.00       | 0.00            | 0.35          | 0.10          | 0.00      | 0.06     | 0.00        | 0.00       | 0.00       | 0.00      | 0.00     | 0.00    |



| Grain Size         |            |               |             |        |        | Mi         | nerals (Sample N | /IS2_150/75, Si | ze Fractio | on -150+7 | 5 micron |             |            |            |           |          |         |
|--------------------|------------|---------------|-------------|--------|--------|------------|------------------|-----------------|------------|-----------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite  | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene    | Amphiboles      | Chlorite   | Biotite   | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.39       | 0.64          | 0.98        | 0.00   | 3.56   | 2.30       | 4.10             | 0.59            | 1.77       | 0.85      | 0.31     | 0.27        | 0.47       | 2.34       | 30.99     | 0.00     | 0.17    |
| 20                 | 1.37       | 2.94          | 2.12        | 2.45   | 13.12  | 2.30       | 25.06            | 2.29            | 6.34       | 4.08      | 1.36     | 1.42        | 2.89       | 21.56      | 62.97     | 0.00     | 2.22    |
| 30                 | 2.18       | 5.11          | 3.80        | 4.04   | 51.63  | 13.94      | 37.02            | 4.55            | 11.74      | 9.03      | 3.12     | 3.37        | 5.54       | 21.56      | 79.41     | 96.35    | 3.46    |
| 40                 | 4.67       | 8.46          | 4.76        | 6.49   | 51.63  | 17.00      | 37.02            | 8.49            | 18.00      | 16.43     | 6.31     | 6.42        | 10.49      | 72.61      | 93.95     | 96.35    | 5.02    |
| 50                 | 6.17       | 11.47         | 11.05       | 18.74  | 67.63  | 17.15      | 40.00            | 13.56           | 26.05      | 26.46     | 10.74    | 11.18       | 14.91      | 72.61      | 94.23     | 96.35    | 5.02    |
| 60                 | 11.98      | 20.52         | 19.14       | 18.80  | 74.72  | 17.34      | 88.04            | 21.34           | 35.88      | 37.54     | 17.76    | 18.35       | 23.64      | 100.00     | 94.38     | 96.35    | 5.11    |
| 20                 | 16.12      | 30.31         | 25.31       | 27.51  | 78.83  | 100.00     | 91.59            | 31.11           | 45.55      | 49.19     | 28.10    | 28.70       | 31.89      | 100.00     | 96.35     | 96.35    | 5.40    |
| 80                 | 27.31      | 38.91         | 35.03       | 36.58  | 82.00  | 100.00     | 95.32            | 42.23           | 56.63      | 59.98     | 40.90    | 39.99       | 41.53      | 100.00     | 98.68     | 96.35    | 25.91   |
| 06                 | 45.09      | 56.42         | 68.16       | 48.82  | 86.51  | 100.00     | 95.76            | 52.75           | 65.69      | 69.91     | 54.93    | 52.54       | 56.57      | 100.00     | 98.81     | 96.35    | 36.07   |
| 100                | 61.36      | 65.66         | 73.97       | 58.48  | 86.74  | 100.00     | 99.93            | 61.80           | 72.83      | 78.34     | 63.84    | 63.08       | 64.21      | 100.00     | 98.88     | 96.35    | 36.36   |
| 110                | 62.11      | 66.45         | 92.35       | 91.43  | 99.71  | 100.00     | 99.93            | 70.08           | 79.77      | 85.18     | 74.16    | 72.94       | 72.75      | 100.00     | 99.19     | 96.35    | 67.17   |
| 120                | 70.21      | 73.05         | 92.58       | 96.93  | 99.71  | 100.00     | 100.00           | 77.47           | 85.71      | 89.44     | 82.42    | 81.16       | 78.76      | 100.00     | 99.87     | 100.00   | 75.80   |
| 130                | 84.82      | 84.30         | 95.80       | 96.93  | 100.00 | 100.00     | 100.00           | 82.52           | 90.55      | 92.90     | 89.11    | 87.81       | 85.90      | 100.00     | 99.87     | 100.00   | 75.84   |
| 140                | 91.05      | 89.97         | 96.41       | 97.12  | 100.00 | 100.00     | 100.00           | 86.61           | 93.94      | 95.04     | 92.56    | 92.18       | 88.92      | 100.00     | 99.87     | 100.00   | 83.27   |
| 150                | 99.49      | 94.29         | 98.56       | 97.12  | 100.00 | 100.00     | 100.00           | 90.19           | 95.61      | 96.52     | 94.78    | 95.26       | 91.46      | 100.00     | 100.00    | 100.00   | 99.97   |
| 160                | 99.74      | 94.68         | 98.78       | 100.00 | 100.00 | 100.00     | 100.00           | 92.05           | 96.61      | 98.09     | 96.78    | 97.36       | 95.21      | 100.00     | 100.00    | 100.00   | 99.97   |
| 170                | 99.74      | 95.00         | 98.97       | 100.00 | 100.00 | 100.00     | 100.00           | 94.75           | 98.35      | 98.87     | 97.70    | 98.42       | 99.82      | 100.00     | 100.00    | 100.00   | 99.97   |
| 180                | 100.00     | 66.66         | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 96.43           | 99.04      | 99.48     | 99.57    | 99.16       | 99.96      | 100.00     | 100.00    | 100.00   | 99.97   |
| 190                | 100.00     | <u> 66.99</u> | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 97.49           | 99.47      | 99.81     | 99.68    | 99.51       | 100.00     | 100.00     | 100.00    | 100.00   | 99.97   |
| 200                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.22           | 99.54      | 99.81     | 99.99    | 99.60       | 100.00     | 100.00     | 100.00    | 100.00   | 99.97   |
| 210                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.38           | 99.54      | 99.81     | 99.99    | 99.75       | 100.00     | 100.00     | 100.00    | 100.00   | 99.97   |
| 220                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.85           | 99.89      | 99.82     | 99.99    | 99.85       | 100.00     | 100.00     | 100.00    | 100.00   | 99.97   |
| 230                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.17           | 99.93      | 99.82     | 99.99    | 99.92       | 100.00     | 100.00     | 100.00    | 100.00   | 99.97   |
| 240                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.66           | 96.96      | 99.91     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.97   |
| 250                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.86           | 99.97      | 99.91     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 99.97   |
| 260                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 99.98      | 99.91     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 99.98      | 99.91     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 99.98      | 99.91     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 99.98      | 99.91     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 99.98      | 99.91     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 99.98      | 99.91     | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00          | 100.00     | 100.00    | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



| Grain Size         |            |              |             |        |        |            | Minerals (Sampl | e MS2 -75, Si | ze Fracti | on -75 m | cron)  |             |            |            |           |          | Γ       |
|--------------------|------------|--------------|-------------|--------|--------|------------|-----------------|---------------|-----------|----------|--------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene   | Amphiboles    | Chlorite  | Biotite  | Quartz | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 7.86       | 17.98        | 10.64       | 20.33  | 100.00 | 0.00       | 0.00            | 21.41         | 29.85     | 15.36    | 11.17  | 12.85       | 23.75      | 100.00     | 59.65     | 100.00   | 19.13   |
| 20                 | 26.89      | 30.70        | 50.78       | 100.00 | 100.00 | 0.00       | 71.18           | 47.23         | 63.08     | 38.89    | 34.87  | 35.90       | 44.78      | 100.00     | 99.64     | 100.00   | 37.46   |
| 30                 | 73.45      | 73.66        | 61.52       | 100.00 | 100.00 | 0.00       | 71.18           | 63.26         | 80.94     | 55.92    | 54.88  | 56.38       | 67.20      | 100.00     | 100.00    | 100.00   | 54.11   |
| 40                 | 83.53      | 88.02        | 80.58       | 100.00 | 100.00 | 0.00       | 71.18           | 77.31         | 90.47     | 67.84    | 71.38  | 74.13       | 77.55      | 100.00     | 100.00    | 100.00   | 54.11   |
| 50                 | 100.00     | 88.12        | 83.03       | 100.00 | 100.00 | 100.00     | 100.00          | 86.66         | 95.42     | 80.45    | 85.45  | 87.53       | 90.77      | 100.00     | 100.00    | 100.00   | 98.51   |
| 60                 | 100.00     | 99.58        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 92.73         | 98.14     | 87.99    | 92.87  | 92.54       | 95.19      | 100.00     | 100.00    | 100.00   | 98.51   |
| 20                 | 100.00     | 99.58        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 96.83         | 98.63     | 94.24    | 96.09  | 95.48       | 96.24      | 100.00     | 100.00    | 100.00   | 98.51   |
| 80                 | 100.00     | 99.58        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 98.63         | 99.71     | 98.31    | 100.00 | 98.47       | 98.34      | 100.00     | 100.00    | 100.00   | 98.51   |
| 06                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.29         | 99.95     | 99.33    | 100.00 | 99.40       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 100                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.29         | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 110                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 120                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 130                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 140                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 150                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 160                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 170                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 180                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 190                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 200                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00    | 100.00   | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |

Table I6.18. Mineral Cumulative Grain Size Distribution (Sample MS2 -75, Size Fraction -75 micron)



| Grain Size         |            |              |             |        |        | Miner      | als (Sample TZ | 1_250/150, Si | ze Fractic | on -250+1 | 50 micro | (ui         |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|----------------|---------------|------------|-----------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene  | Amphiboles    | Chlorite   | Biotite   | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.00       | 0.02         | 0.01        | 0.00   | 0.00   | 0.00       | 00.0           | 0.01          | 0.03       | 0.05      | 0.00     | 0.00        | 0.01       | 0.00       | 2.09      | 0.00     | 0.00    |
| 20                 | 0.39       | 09.0         | 0.71        | 0.57   | 0.00   | 0.00       | 28.08          | 0.33          | 0.92       | 0.99      | 0.27     | 0.17        | 0.36       | 0.51       | 15.26     | 0.00     | 0.49    |
| 30                 | 0.74       | 1.77         | 2.38        | 0.70   | 36.25  | 0.00       | 28.08          | 0.90          | 2.12       | 2.61      | 0.87     | 0.58        | 1.30       | 0.51       | 31.48     | 0.00     | 3.37    |
| 40                 | 1.18       | 3.20         | 4.11        | 0.81   | 36.25  | 0.00       | 28.08          | 1.67          | 3.51       | 4.34      | 1.59     | 1.13        | 2.45       | 0.51       | 31.48     | 0.00     | 5.08    |
| 50                 | 2.48       | 4.45         | 5.75        | 1.17   | 36.25  | 0.17       | 28.08          | 2.71          | 4.83       | 6.87      | 2.57     | 1.90        | 4.40       | 0.51       | 75.31     | 0.00     | 5.16    |
| 60                 | 3.90       | 5.72         | 7.04        | 1.18   | 36.25  | 0.17       | 28.08          | 4.05          | 6.18       | 10.18     | 3.96     | 3.05        | 6.43       | 7.82       | 75.31     | 0.00     | 8.57    |
| 70                 | 5.51       | 7.33         | 9.40        | 1.69   | 36.25  | 0.17       | 28.08          | 5.77          | 8.35       | 13.97     | 5.85     | 4.60        | 8.27       | 13.57      | 81.18     | 0.00     | 12.76   |
| 80                 | 6.30       | 9.75         | 11.33       | 2.79   | 36.25  | 46.81      | 28.08          | 8.12          | 11.22      | 17.46     | 8.19     | 6.59        | 10.22      | 15.25      | 83.12     | 3.96     | 22.44   |
| 06                 | 8.95       | 12.22        | 12.94       | 4.76   | 36.25  | 48.66      | 28.08          | 10.88         | 14.59      | 22.48     | 11.16    | 9.08        | 14.14      | 15.43      | 90.93     | 3.96     | 22.57   |
| 100                | 9.40       | 15.12        | 15.07       | 4.87   | 38.53  | 48.66      | 28.08          | 13.91         | 18.26      | 27.22     | 14.38    | 12.22       | 16.73      | 15.85      | 91.89     | 3.96     | 23.02   |
| 110                | 16.68      | 20.03        | 16.76       | 6.57   | 38.53  | 48.90      | 28.08          | 18.34         | 22.58      | 32.54     | 18.61    | 16.32       | 20.46      | 15.85      | 92.33     | 6.10     | 27.99   |
| 120                | 22.80      | 26.33        | 21.84       | 23.87  | 38.53  | 48.90      | 36.20          | 23.14         | 27.34      | 39.35     | 22.95    | 20.50       | 24.90      | 45.63      | 92.33     | 6.10     | 32.78   |
| 130                | 32.55      | 30.70        | 24.62       | 27.12  | 38.53  | 48.90      | 36.20          | 28.85         | 32.57      | 44.56     | 28.53    | 25.79       | 29.82      | 46.02      | 92.72     | 23.50    | 39.80   |
| 140                | 42.18      | 34.67        | 27.06       | 34.52  | 38.53  | 48.90      | 36.20          | 35.10         | 38.20      | 52.23     | 35.27    | 31.75       | 37.54      | 81.73      | 93.40     | 23.50    | 47.38   |
| 150                | 46.23      | 40.71        | 42.56       | 42.37  | 41.42  | 50.41      | 36.20          | 40.88         | 43.62      | 57.82     | 42.30    | 37.99       | 44.21      | 82.02      | 95.91     | 25.46    | 51.63   |
| 160                | 50.15      | 48.20        | 50.48       | 46.70  | 41.91  | 53.29      | 40.70          | 46.64         | 51.70      | 63.72     | 49.35    | 44.60       | 51.45      | 84.25      | 96.17     | 33.65    | 55.38   |
| 170                | 53.70      | 54.87        | 56.34       | 62.66  | 42.51  | 53.45      | 60.45          | 54.33         | 58.19      | 70.73     | 57.21    | 51.10       | 59.72      | 85.82      | 97.13     | 90.67    | 73.28   |
| 180                | 59.24      | 61.54        | 60.28       | 62.84  | 42.51  | 53.45      | 74.43          | 60.86         | 64.42      | 77.18     | 63.70    | 58.33       | 65.12      | 88.85      | 97.52     | 92.39    | 76.25   |
| 190                | 62.97      | 66.38        | 63.21       | 72.01  | 44.23  | 53.45      | 85.25          | 66.62         | 70.44      | 81.32     | 70.03    | 65.09       | 72.15      | 88.85      | 98.40     | 92.39    | 78.34   |
| 200                | 70.73      | 73.92        | 81.49       | 84.52  | 81.26  | 53.45      | 85.25          | 72.19         | 76.10      | 85.80     | 75.20    | 71.64       | 79.12      | 90.43      | 98.62     | 92.83    | 80.34   |
| 210                | 78.56      | 80.55        | 83.14       | 84.68  | 81.26  | 53.45      | 95.62          | 76.87         | 80.05      | 89.84     | 80.82    | 77.47       | 81.59      | 91.04      | 99.51     | 96.26    | 89.03   |
| 220                | 86.56      | 87.78        | 88.34       | 85.34  | 81.26  | 57.53      | 97.43          | 81.51         | 83.87      | 93.55     | 85.00    | 82.43       | 85.62      | 91.42      | 99.73     | 97.75    | 91.71   |
| 230                | 87.36      | 89.36        | 89.82       | 97.59  | 85.46  | 100.00     | 97.43          | 85.38         | 88.56      | 96.02     | 89.29    | 86.31       | 87.53      | 92.86      | 99.73     | 97.75    | 94.60   |
| 240                | 94.97      | 90.25        | 91.73       | 97.60  | 85.46  | 100.00     | 100.00         | 88.28         | 91.11      | 97.10     | 91.68    | 89.72       | 89.83      | 98.97      | 99.73     | 97.75    | 94.98   |
| 250                | 96.36      | 94.40        | 92.18       | 97.73  | 100.00 | 100.00     | 100.00         | 90.90         | 93.69      | 98.20     | 93.92    | 92.44       | 94.74      | 99.09      | 99.73     | 100.00   | 95.30   |
| 260                | 97.62      | 96.39        | 93.04       | 97.80  | 100.00 | 100.00     | 100.00         | 92.97         | 95.52      | 98.86     | 95.14    | 94.52       | 95.74      | 99.09      | 99.73     | 100.00   | 95.62   |
| 270                | 98.58      | 96.87        | 95.58       | 97.80  | 100.00 | 100.00     | 100.00         | 94.53         | 96.93      | 99.53     | 96.32    | 96.11       | 98.17      | 99.42      | 99.73     | 100.00   | 97.39   |
| 280                | 98.68      | 98.09        | 95.75       | 97.84  | 100.00 | 100.00     | 100.00         | 95.52         | 97.68      | 99.69     | 97.59    | 97.26       | 98.96      | 99.64      | 100.00    | 100.00   | 98.14   |
| 290                | 98.78      | 98.64        | 95.89       | 97.84  | 100.00 | 100.00     | 100.00         | 96.39         | 98.26      | 99.78     | 98.04    | 98.07       | 99.22      | 99.70      | 100.00    | 100.00   | 98.21   |
| 300                | 99.73      | 98.83        | 98.16       | 97.84  | 100.00 | 100.00     | 100.00         | 97.28         | 98.58      | 99.89     | 98.39    | 98.82       | 99.30      | 99.82      | 100.00    | 100.00   | 98.23   |
| 310                | 99.90      | 99.14        | 98.25       | 97.84  | 100.00 | 100.00     | 100.00         | 98.03         | 98.95      | 99.94     | 99.10    | 99.37       | 99.45      | 99.82      | 100.00    | 100.00   | 99.29   |
| 320                | 99.95      | 99.56        | 99.96       | 98.04  | 100.00 | 100.00     | 100.00         | 98.38         | 99.18      | 99.97     | 99.25    | 99.64       | 99.95      | 100.00     | 100.00    | 100.00   | 99.36   |
| 330                | 100.00     | 99.81        | 99.99       | 98.04  | 100.00 | 100.00     | 100.00         | 98.91         | 99.26      | 99.98     | 99.57    | 99.76       | 99.95      | 100.00     | 100.00    | 100.00   | 99.90   |
| 340                | 100.00     | 99.81        | 99.99       | 98.04  | 100.00 | 100.00     | 100.00         | 99.18         | 99.41      | 99.98     | 99.58    | 99.76       | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 99.81        | 99.99       | 98.04  | 100.00 | 100.00     | 100.00         | 99.28         | 99.43      | 99.98     | 99.63    | 99.79       | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 99.98        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 99.68         | 99.47      | 99.98     | 99.95    | 99.84       | 99.99      | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 99.98        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 99.81         | 99.47      | 99.99     | 99.98    | 99.94       | 99.99      | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 99.95         | 99.49      | 100.00    | 99.98    | 99.97       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 99.49      | 100.00    | 100.00   | 99.97       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00         | 100.00        | 100.00     | 100.00    | 100.00   | 99.97       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| Other              | 0.00       | 0.00         | 0.00        | 0.00   | 0.00   | 0.00       | 0.00           | 0.00          | 0.00       | 0.00      | 0.00     | 0.03        | 0.00       | 0.00       | 0.00      | 0.00     | 0.00    |



| Grain Size         |            |              |             |        |        | Min        | erals (Sample T | z1_150/75, Si | ze Fractic | n -150+7 | 5 micron |             |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|-----------------|---------------|------------|----------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene   | Amphiboles    | Chlorite   | Biotite  | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.58       | 0.87         | 0.68        | 0.25   | 1.94   | 1.50       | 4.17            | 0.43          | 1.56       | 0.88     | 0.34     | 0.29        | 0.71       | 4.09       | 13.20     | 0.00     | 0.83    |
| 20                 | 2.22       | 3.19         | 2.42        | 1.75   | 7.09   | 2.98       | 10.98           | 1.90          | 5.95       | 3.81     | 1.61     | 1.39        | 2.66       | 13.18      | 24.57     | 12.21    | 4.46    |
| 30                 | 5.04       | 5.59         | 2.98        | 3.76   | 12.53  | 2.98       | 11.23           | 4.00          | 10.23      | 8.31     | 3.76     | 3.18        | 6.01       | 26.80      | 30.75     | 12.21    | 6.00    |
| 40                 | 7.36       | 8.59         | 6.71        | 5.19   | 12.57  | 3.72       | 11.23           | 7.44          | 14.98      | 15.27    | 6.63     | 6.15        | 11.05      | 34.27      | 35.23     | 12.21    | 22.46   |
| 50                 | 15.06      | 13.47        | 9.32        | 11.10  | 13.58  | 5.89       | 11.23           | 12.71         | 21.67      | 23.85    | 11.88    | 11.00       | 15.87      | 34.27      | 36.18     | 25.14    | 23.53   |
| 60                 | 21.02      | 23.29        | 9.95        | 14.42  | 29.52  | 9.60       | 11.23           | 20.42         | 31.21      | 34.52    | 19.56    | 18.22       | 25.38      | 60.43      | 48.77     | 25.14    | 43.93   |
| 70                 | 31.63      | 32.39        | 24.27       | 28.37  | 30.07  | 19.31      | 13.23           | 29.67         | 40.86      | 46.39    | 29.11    | 27.71       | 34.70      | 80.87      | 52.25     | 30.78    | 51.27   |
| 80                 | 46.56      | 41.85        | 31.14       | 30.29  | 80.13  | 19.31      | 15.05           | 40.70         | 51.52      | 58.71    | 41.57    | 38.76       | 48.02      | 93.47      | 56.27     | 30.78    | 68.93   |
| 06                 | 54.91      | 54.27        | 40.56       | 42.75  | 99.78  | 20.80      | 15.05           | 51.22         | 62.09      | 69.47    | 53.53    | 50.82       | 57.27      | 97.40      | 57.30     | 79.50    | 72.11   |
| 100                | 63.99      | 68.60        | 52.81       | 46.17  | 99.83  | 23.76      | 16.93           | 60.65         | 70.11      | 77.22    | 63.51    | 61.45       | 72.07      | 98.06      | 80.75     | 79.50    | 74.30   |
| 110                | 70.06      | 75.69        | 61.66       | 86.24  | 99.89  | 97.00      | 17.09           | 69.40         | 77.81      | 84.48    | 72.95    | 70.90       | 81.33      | 98.06      | 98.31     | 79.50    | 77.53   |
| 120                | 86.12      | 79.18        | 72.00       | 96.79  | 99.89  | 97.67      | 17.54           | 76.75         | 85.00      | 89.27    | 80.70    | 78.43       | 87.17      | 98.18      | 98.78     | 79.50    | 81.86   |
| 130                | 91.06      | 88.94        | 74.37       | 96.79  | 100.00 | 00.06      | 17.54           | 82.24         | 88.98      | 92.78    | 86.16    | 85.11       | 90.75      | 99.83      | 98.89     | 95.56    | 86.26   |
| 140                | 93.72      | 91.47        | 81.71       | 99.19  | 100.00 | 00.06      | 100.00          | 87.29         | 92.71      | 95.67    | 90.68    | 89.86       | 95.84      | 100.00     | 99.13     | 95.56    | 86.81   |
| 150                | 94.39      | 96.93        | 89.87       | 100.00 | 100.00 | 99.00      | 100.00          | 91.34         | 95.36      | 97.87    | 94.40    | 92.85       | 98.07      | 100.00     | 99.76     | 95.56    | 87.69   |
| 160                | 94.88      | 98.11        | 99.23       | 100.00 | 100.00 | 00.06      | 100.00          | 93.72         | 97.07      | 98.49    | 96.09    | 95.81       | 99.26      | 100.00     | 99.86     | 100.00   | 96.61   |
| 170                | 94.96      | 98.62        | 99.26       | 100.00 | 100.00 | 00.06      | 100.00          | 95.39         | 97.49      | 99.39    | 97.22    | 97.17       | 99.51      | 100.00     | 100.00    | 100.00   | 97.09   |
| 180                | 99.43      | 99.10        | 99.58       | 100.00 | 100.00 | 100.00     | 100.00          | 96.57         | 98.27      | 99.74    | 98.03    | 98.13       | 99.63      | 100.00     | 100.00    | 100.00   | 97.67   |
| 190                | 99.66      | 99.38        | 99.67       | 100.00 | 100.00 | 100.00     | 100.00          | 97.47         | 98.48      | 99.95    | 98.84    | 98.73       | 99.74      | 100.00     | 100.00    | 100.00   | 97.67   |
| 200                | 99.83      | 99.83        | 99.74       | 100.00 | 100.00 | 100.00     | 100.00          | 98.16         | 98.74      | 99.95    | 99.20    | 99.25       | 99.75      | 100.00     | 100.00    | 100.00   | 99.95   |
| 210                | 99.85      | 99.85        | 99.93       | 100.00 | 100.00 | 100.00     | 100.00          | 98.60         | 99.33      | 99.96    | 99.58    | 99.52       | 99.89      | 100.00     | 100.00    | 100.00   | 99.95   |
| 220                | 99.85      | 99.85        | 99.93       | 100.00 | 100.00 | 100.00     | 100.00          | 99.02         | 99.87      | 99.99    | 99.87    | 99.61       | 99.89      | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                | 99.85      | 99.99        | 99.93       | 100.00 | 100.00 | 100.00     | 100.00          | 99.21         | 99.87      | 99.99    | 99.91    | 99.61       | 99.89      | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 99.85      | 99.99        | 99.93       | 100.00 | 100.00 | 100.00     | 100.00          | 99.56         | 99.93      | 99.99    | 99.99    | 99.71       | 99.89      | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 99.85      | <u>99.99</u> | 99.93       | 100.00 | 100.00 | 100.00     | 100.00          | 99.67         | 99.93      | 99.99    | 99.99    | 99.77       | 99.89      | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.87         | 99.97      | 100.00   | 100.00   | 96.96       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.95         | 99.98      | 100.00   | 100.00   | 96.96       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.95         | 99.98      | 100.00   | 100.00   | 99.96       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.95         | 99.98      | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.95         | 99.98      | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.95         | 99.98      | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.95         | 99.98      | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00        | 100.00     | 100.00   | 100.00   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



| Grain Size         |            |              |             |        |        |            | Minerals (Sam | ple TZ1 -75, Si | ze Fracti | on -75 mì | cron)  |             |            |            |           |          | Γ       |
|--------------------|------------|--------------|-------------|--------|--------|------------|---------------|-----------------|-----------|-----------|--------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene | Amphiboles      | Chlorite  | Biotite   | Quartz | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 8.27       | 26.18        | 33.51       | 7.78   | 72.94  | 5.75       | 100.00        | 15.87           | 27.00     | 18.68     | 11.35  | 14.05       | 17.53      | 37.10      | 69.81     | 0.00     | 18.01   |
| 20                 | 37.98      | 61.34        | 89.60       | 13.00  | 100.00 | 41.95      | 100.00        | 40.34           | 61.93     | 43.04     | 35.56  | 36.85       | 42.73      | 78.65      | 98.68     | 100.00   | 85.73   |
| 30                 | 53.05      | 81.71        | 98.61       | 40.05  | 100.00 | 70.69      | 100.00        | 58.75           | 79.23     | 69.21     | 57.28  | 57.05       | 68.53      | 78.65      | 100.00    | 100.00   | 100.00  |
| 40                 | 69.66      | 90.92        | 99.22       | 46.60  | 100.00 | 70.69      | 100.00        | 74.70           | 87.63     | 83.18     | 74.52  | 72.68       | 82.97      | 78.65      | 100.00    | 100.00   | 100.00  |
| 50                 | 70.35      | 91.49        | 99.22       | 46.60  | 100.00 | 70.69      | 100.00        | 85.03           | 95.15     | 94.60     | 86.58  | 84.46       | 92.49      | 78.65      | 100.00    | 100.00   | 100.00  |
| 60                 | 81.06      | 98.27        | 100.00      | 46.60  | 100.00 | 70.69      | 100.00        | 92.28           | 97.80     | 99.93     | 90.63  | 90.07       | 97.58      | 78.65      | 100.00    | 100.00   | 100.00  |
| 20                 | 99.15      | 99.05        | 100.00      | 46.60  | 100.00 | 100.00     | 100.00        | 95.52           | 99.83     | 100.00    | 95.63  | 95.93       | 99.74      | 100.00     | 100.00    | 100.00   | 100.00  |
| 80                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 97.91           | 99.89     | 100.00    | 98.21  | 98.40       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 06                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 98.57           | 100.00    | 100.00    | 99.87  | 99.04       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 100                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 99.72       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 110                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 120                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 130                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 140                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 150                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 160                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 170                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 180                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 190                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 200                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |

Table I6.21. Mineral Cumulative Grain Size Distribution (Sample TZ1 -75, Size Fraction -75 micron)

Geological Survey of Finland



| Grain Size         |            |              |              |        |        | Mine       | rals (Sample TZ | 2_250/150, Siz | e Fractio | າ -250+15 | 0 micron | (           |            |            |           |          |         |
|--------------------|------------|--------------|--------------|--------|--------|------------|-----------------|----------------|-----------|-----------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite  | Pyrite | Talc   | Serpentine | Clinopyroxene   | Amphiboles     | Chlorite  | Biotite   | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.01       | 0.00         | 00.0         | 0.00   | 0.00   | 00.0       | 0.00            | 0.02           | 0.10      | 0.10      | 0.01     | 0.01        | 0.01       | 0.00       | 0.00      | 0.00     | 0.00    |
| 20                 | 0.32       | 0.72         | 0.62         | 0.00   | 4.25   | 0.00       | 11.25           | 0.45           | 1.29      | 1.28      | 0.36     | 0.23        | 0.61       | 2.57       | 40.09     | 0.00     | 0.00    |
| 30                 | 0.70       | 1.44         | 0.67         | 0.78   | 4.25   | 0.37       | 15.95           | 1.04           | 2.64      | 3.08      | 0.88     | 0.63        | 1.52       | 2.57       | 45.10     | 0.00     | 0.77    |
| 40                 | 1.28       | 2.29         | 1.02         | 0.78   | 8.67   | 3.42       | 30.33           | 1.71           | 3.74      | 5.05      | 1.60     | 1.17        | 2.05       | 20.85      | 46.18     | 0.00     | 1.50    |
| 50                 | 1.80       | 2.83         | 4.92         | 2.63   | 14.78  | 3.42       | 30.33           | 2.78           | 5.10      | 7.38      | 2.54     | 1.95        | 2.76       | 20.85      | 50.43     | 0.00     | 2.72    |
| 60                 | 2.99       | 4.09         | 6.31         | 2.66   | 14.78  | 3.59       | 30.48           | 4.00           | 6.98      | 9.56      | 3.60     | 3.02        | 3.95       | 20.85      | 50.63     | 0.00     | 3.82    |
| 70                 | 3.59       | 6.88         | 10.27        | 6.11   | 14.78  | 3.59       | 30.48           | 5.78           | 9.01      | 12.37     | 5.08     | 4.41        | 5.75       | 20.85      | 83.39     | 0.00     | 5.27    |
| 80                 | 5.38       | 12.52        | 15.61        | 6.24   | 15.42  | 3.59       | 30.48           | 8.03           | 11.66     | 16.21     | 7.41     | 6.28        | 7.14       | 20.85      | 84.01     | 0.00     | 5.36    |
| 06                 | 8.31       | 14.84        | 16.12        | 6.24   | 17.85  | 3.59       | 30.54           | 10.98          | 15.15     | 21.05     | 9.70     | 8.67        | 9.30       | 20.85      | 87.62     | 0.00     | 6.50    |
| 100                | 10.78      | 16.21        | 20.21        | 6.84   | 24.15  | 10.88      | 92.49           | 14.45          | 18.63     | 25.03     | 12.60    | 11.56       | 11.57      | 20.85      | 87.98     | 0.00     | 7.21    |
| 110                | 12.54      | 18.31        | 20.97        | 6.84   | 24.15  | 12.17      | 92.56           | 18.09          | 23.10     | 30.62     | 17.16    | 15.04       | 16.36      | 20.85      | 88.17     | 0.00     | 7.58    |
| 120                | 15.99      | 23.17        | 22.89        | 17.58  | 24.23  | 12.17      | 92.63           | 22.56          | 27.95     | 36.98     | 21.63    | 19.49       | 25.52      | 22.44      | 88.75     | 6.87     | 8.08    |
| 130                | 20.00      | 32.17        | 24.31        | 17.61  | 25.44  | 12.17      | 93.35           | 28.51          | 33.83     | 43.68     | 27.18    | 24.94       | 31.01      | 22.44      | 89.29     | 6.87     | 12.92   |
| 140                | 22.75      | 37.53        | 26.80        | 27.93  | 29.27  | 14.03      | 93.46           | 34.33          | 40.11     | 50.97     | 33.41    | 31.41       | 38.02      | 24.05      | 89.48     | 6.87     | 19.17   |
| 150                | 28.01      | 46.64        | 45.92        | 29.50  | 31.12  | 97.31      | 94.08           | 40.91          | 46.17     | 57.16     | 38.52    | 37.69       | 41.68      | 39.87      | 91.99     | 69.90    | 37.90   |
| 160                | 34.43      | 51.07        | 57.18        | 41.31  | 77.42  | 97.31      | 95.28           | 47.28          | 53.04     | 63.33     | 44.93    | 44.27       | 51.56      | 42.26      | 92.76     | 69.90    | 40.80   |
| 170                | 41.10      | 57.09        | 58.96        | 41.36  | 78.20  | 97.31      | 95.80           | 53.77          | 60.84     | 69.33     | 53.59    | 51.29       | 60.42      | 42.72      | 93.65     | 69.90    | 44.14   |
| 180                | 46.56      | 61.67        | 74.41        | 70.23  | 79.19  | 97.31      | 97.58           | 60.47          | 66.18     | 75.86     | 60.56    | 58.32       | 66.30      | 48.74      | 94.34     | 100.00   | 44.77   |
| 190                | 55.91      | 64.09        | 78.28        | 70.49  | 81.80  | 100.00     | 98.82           | 66.37          | 73.19     | 80.32     | 68.76    | 65.20       | 71.84      | 49.79      | 94.34     | 100.00   | 48.25   |
| 200                | 61.85      | 68.74        | 82.45        | 71.97  | 82.81  | 100.00     | 98.98           | 71.76          | 78.60     | 84.95     | 74.40    | 72.09       | 78.25      | 61.09      | 95.63     | 100.00   | 49.93   |
| 210                | 65.66      | 74.78        | 84.15        | 72.25  | 91.53  | 100.00     | 98.98           | 76.56          | 82.50     | 88.33     | 79.00    | 77.37       | 82.75      | 66.47      | 95.99     | 100.00   | 50.28   |
| 220                | 71.63      | 82.68        | 85.35        | 72.31  | 93.81  | 100.00     | 98.98           | 81.25          | 87.11     | 89.93     | 83.45    | 82.06       | 92.24      | 99.63      | 96.18     | 100.00   | 55.73   |
| 230                | 76.88      | 84.59        | 85.68        | 72.31  | 09.60  | 100.00     | 98.98           | 84.78          | 90.32     | 92.28     | 86.21    | 85.97       | 95.09      | 99.63      | 96.18     | 100.00   | 56.79   |
| 240                | 84.87      | 86.44        | 94.44        | 77.51  | 99.70  | 100.00     | 99.62           | 87.53          | 92.98     | 94.05     | 89.74    | 89.58       | 96.74      | 99.63      | 96.18     | 100.00   | 57.40   |
| 250                | 88.28      | 87.11        | 96.82        | 77.51  | 100.00 | 100.00     | 99.62           | 89.57          | 95.13     | 95.75     | 91.90    | 92.24       | 98.14      | 99.63      | 96.55     | 100.00   | 57.66   |
| 260                | 89.78      | 89.29        | 96.83        | 77.51  | 100.00 | 100.00     | 99.62           | 91.44          | 96.35     | 97.39     | 94.51    | 94.63       | 98.89      | 100.00     | 99.53     | 100.00   | 57.69   |
| 270                | 91.48      | 89.55        | 97.29        | 98.57  | 100.00 | 100.00     | 100.00          | 93.47          | 97.40     | 98.11     | 96.60    | 96.19       | 99.05      | 100.00     | 99.53     | 100.00   | 57.71   |
| 280                | 98.56      | 91.63        | 97.69        | 98.57  | 100.00 | 100.00     | 100.00          | 94.97          | 98.37     | 98.96     | 97.97    | 97.32       | 99.20      | 100.00     | 99.53     | 100.00   | 57.71   |
| 290                | 99.93      | 91.95        | 98.61        | 98.57  | 100.00 | 100.00     | 100.00          | 95.94          | 98.69     | 99.18     | 98.57    | 97.94       | 99.28      | 100.00     | 99.85     | 100.00   | 99.82   |
| 300                | 96.66      | 92.13        | 99.94        | 98.57  | 100.00 | 100.00     | 100.00          | 96.88          | 98.94     | 99.37     | 98.91    | 98.63       | 99.40      | 100.00     | 100.00    | 100.00   | 99.92   |
| 310                | 99.97      | 92.25        | 96.96        | 100.00 | 100.00 | 100.00     | 100.00          | 97.49          | 98.99     | 99.41     | 99.07    | 99.08       | 99.42      | 100.00     | 100.00    | 100.00   | 99.92   |
| 320                | 99.97      | 92.30        | 99.96        | 100.00 | 100.00 | 100.00     | 100.00          | 98.15          | 90.08     | 99.43     | 99.12    | 99.19       | 99.46      | 100.00     | 100.00    | 100.00   | 99.92   |
| 330                | 99.97      | 92.30        | 99.96        | 100.00 | 100.00 | 100.00     | 100.00          | 98.46          | 99.12     | 99.47     | 99.14    | 99.50       | 99.48      | 100.00     | 100.00    | 100.00   | 99.92   |
| 340                | 99.97      | 92.30        | 99.96        | 100.00 | 100.00 | 100.00     | 100.00          | 98.84          | 99.25     | 99.57     | 99.28    | 99.70       | 99.52      | 100.00     | 100.00    | 100.00   | 99.92   |
| 350                | 99.97      | 92.31        | 99.96        | 100.00 | 100.00 | 100.00     | 100.00          | 98.98          | 99.37     | 99.67     | 99.33    | 99.77       | 99.52      | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 99.97      | 99.53        | 99.99        | 100.00 | 100.00 | 100.00     | 100.00          | 99.04          | 99.39     | 99.68     | 99.76    | 99.84       | 99.95      | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 99.97      | 99.53        | 99.99        | 100.00 | 100.00 | 100.00     | 100.00          | 99.14          | 99.42     | 99.68     | 99.86    | 99.89       | 99.95      | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 99.97      | 99.53        | 99.99        | 100.00 | 100.00 | 100.00     | 100.00          | 99.14          | 99.42     | 99.70     | 99.86    | 99.93       | 99.95      | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 99.97      | 99.53        | 99.99        | 100.00 | 100.00 | 100.00     | 100.00          | 99.28          | 99.49     | 99.70     | 99.91    | 99.93       | 99.95      | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 99.97      | 99.53        | <b>66.66</b> | 100.00 | 100.00 | 100.00     | 100.00          | 99.46          | 99.57     | 99.70     | 99.94    | 99.93       | 99.95      | 100.00     | 100.00    | 100.00   | 100.00  |
| Other              | 0.03       | 0.47         | 0.01         | 0.00   | 0.00   | 0.00       | 0.00            | 0.54           | 0.43      | 0.30      | 0.06     | 0.07        | 0.05       | 0.00       | 0.00      | 0.00     | 0.00    |



| Table I6.23. Mineral Cumulative Grain Size Distribution | n (Sample TZ2 150/75, Size Fraction -150+75 micron) |
|---------------------------------------------------------|-----------------------------------------------------|
|---------------------------------------------------------|-----------------------------------------------------|

| Grain Size         |            |              |             |        |        | Mir        | nerals (Sample T | Z2_150/75, Si | ce Fractio | n -150+75 | micron) |             |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|------------------|---------------|------------|-----------|---------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene    | Amphiboles    | Chlorite   | Biotite   | Quartz  | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.22       | 0.62         | 0.24        | 0.00   | 1.97   | 0.00       | 23.68            | 0.50          | 2.17       | 1.11      | 0.38    | 0.31        | 0.80       | 3.02       | 26.25     | 00.0     | 0.70    |
| 20                 | 1.37       | 2.19         | 0.97        | 0.52   | 7.06   | 30.62      | 42.66            | 2.02          | 7.39       | 5.05      | 1.66    | 1.33        | 3.29       | 8.95       | 40.34     | 0.00     | 2.01    |
| 30                 | 2.93       | 4.52         | 2.72        | 1.47   | 7.14   | 30.62      | 57.81            | 4.62          | 12.76      | 11.45     | 3.56    | 3.26        | 6.20       | 8.95       | 47.90     | 100.00   | 2.19    |
| 40                 | 6.61       | 9.74         | 4.35        | 8.57   | 8.38   | 30.62      | 66.27            | 8.62          | 19.25      | 20.63     | 6.51    | 6.60        | 10.35      | 8.95       | 70.55     | 100.00   | 2.32    |
| 50                 | 12.00      | 16.62        | 6.42        | 28.66  | 9.30   | 30.62      | 72.49            | 15.05         | 26.53      | 30.39     | 12.06   | 11.80       | 15.55      | 12.76      | 84.45     | 100.00   | 3.11    |
| 09                 | 19.48      | 21.50        | 10.16       | 28.66  | 12.24  | 30.62      | 73.05            | 23.25         | 34.98      | 42.08     | 20.13   | 19.08       | 23.74      | 34.98      | 85.17     | 100.00   | 10.90   |
| 20                 | 27.28      | 27.60        | 19.15       | 42.74  | 89.98  | 30.62      | 78.50            | 33.17         | 44.05      | 53.70     | 30.11   | 29.02       | 35.39      | 37.17      | 88.71     | 100.00   | 28.81   |
| 80                 | 38.98      | 45.12        | 31.62       | 42.74  | 93.17  | 98.72      | 80.51            | 43.18         | 53.73      | 64.07     | 41.71   | 39.74       | 45.14      | 39.22      | 94.64     | 100.00   | 32.38   |
| 06                 | 50.27      | 58.03        | 34.50       | 42.74  | 94.10  | 98.72      | 85.48            | 53.28         | 64.04      | 72.55     | 52.93   | 51.91       | 62.14      | 95.67      | 96.19     | 100.00   | 37.73   |
| 100                | 66.42      | 66.21        | 48.44       | 43.17  | 95.39  | 98.72      | 88.05            | 63.48         | 73.75      | 79.70     | 65.95   | 62.62       | 70.01      | 95.67      | 96.55     | 100.00   | 38.48   |
| 110                | 74.56      | 74.37        | 57.87       | 100.00 | 99.60  | 98.72      | 94.20            | 71.89         | 80.37      | 86.13     | 74.89   | 71.22       | 77.09      | 99.71      | 97.45     | 100.00   | 39.45   |
| 120                | 80.73      | 79.50        | 61.41       | 100.00 | 99.65  | 98.72      | 95.58            | 79.10         | 86.92      | 90.71     | 84.42   | 79.24       | 81.44      | 100.00     | 98.19     | 100.00   | 59.31   |
| 130                | 85.52      | 92.61        | 73.61       | 100.00 | 99.65  | 98.72      | 99.37            | 84.72         | 90.95      | 94.28     | 89.59   | 85.18       | 85.96      | 100.00     | 98.54     | 100.00   | 60.40   |
| 140                | 89.43      | 98.57        | 83.67       | 100.00 | 99.78  | 98.72      | 99.37            | 89.07         | 94.45      | 96.13     | 94.25   | 90.51       | 93.70      | 100.00     | 98.54     | 100.00   | 99.75   |
| 150                | 91.86      | 98.97        | 91.55       | 100.00 | 99.90  | 98.72      | 100.00           | 92.32         | 97.07      | 98.19     | 95.94   | 94.39       | 97.32      | 100.00     | 98.79     | 100.00   | 99.90   |
| 160                | 96.25      | 99.56        | 91.56       | 100.00 | 99.90  | 100.00     | 100.00           | 94.51         | 97.84      | 98.90     | 97.43   | 96.34       | 97.94      | 100.00     | 98.84     | 100.00   | 99.95   |
| 170                | 96.36      | 99.78        | 99.95       | 100.00 | 99.90  | 100.00     | 100.00           | 96.00         | 98.55      | 99.04     | 98.65   | 97.71       | 98.32      | 100.00     | 98.99     | 100.00   | 99.95   |
| 180                | 100.00     | 99.86        | 99.98       | 100.00 | 100.00 | 100.00     | 100.00           | 97.34         | 99.14      | 99.29     | 99.34   | 98.88       | 99.20      | 100.00     | 99.90     | 100.00   | 99.95   |
| 190                | 100.00     | 99.96        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.13         | 99.32      | 99.44     | 99.57   | 99.17       | 99.20      | 100.00     | 99.90     | 100.00   | 100.00  |
| 200                | 100.00     | 99.96        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.67         | 99.63      | 99.54     | 99.79   | 99.47       | 99.93      | 100.00     | 99.90     | 100.00   | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.03         | 99.69      | 99.60     | 99.87   | 99.66       | 96.96      | 100.00     | 100.00    | 100.00   | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.34         | 99.83      | 99.60     | 99.91   | 99.76       | 99.97      | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.52         | 99.91      | 99.60     | 99.94   | 99.81       | 99.97      | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.78         | 99.93      | 99.69     | 99.94   | 99.86       | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.88         | 99.99      | 99.69     | 66.66   | 99.93       | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.88         | 99.99      | 99.69     | 66.66   | 99.93       | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.96         | 99.99      | 99.69     | 100.00  | 100.00      | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.96         | 99.99      | 99.69     | 100.00  | 100.00      | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.96         | 99.99      | 99.69     | 100.00  | 100.00      | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.96         | 99.99      | 99.69     | 100.00  | 100.00      | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.96         | 99.99      | 99.69     | 100.00  | 100.00      | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.96         | 99.99      | 99.69     | 100.00  | 100.00      | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.96         | 99.99      | 99.69     | 100.00  | 100.00      | 99.98      | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00        | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



| Table I6.24. Mineral | l Cumulative Grain Size | e Distribution (Sample | e TZ2 -75, Size Fraction | -75 micron) |
|----------------------|-------------------------|------------------------|--------------------------|-------------|
|----------------------|-------------------------|------------------------|--------------------------|-------------|

| Grain Size         |            |              |             |        |        |            | Minerals (Sam | ple TZ2 -75, Si | ze Fractic | n -75 mic | ron)   |             |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|---------------|-----------------|------------|-----------|--------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene | Amphiboles      | Chlorite   | Biotite   | Quartz | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 11.66      | 14.94        | 16.02       | 1.72   | 84.66  | 100.00     | 2.02          | 17.68           | 33.72      | 19.48     | 12.98  | 14.83       | 19.49      | 21.18      | 76.57     |          | 6.81    |
| 20                 | 29.31      | 30.55        | 42.30       | 15.03  | 100.00 | 100.00     | 63.43         | 40.62           | 67.07      | 49.07     | 34.71  | 36.47       | 40.98      | 27.10      | 99.52     |          | 20.54   |
| 30                 | 49.33      | 39.90        | 59.55       | 33.95  | 100.00 | 100.00     | 100.00        | 59.07           | 83.08      | 70.87     | 54.84  | 57.75       | 54.75      | 100.00     | 100.00    |          | 25.50   |
| 40                 | 65.22      | 66.25        | 100.00      | 33.95  | 100.00 | 100.00     | 100.00        | 72.28           | 92.89      | 84.62     | 72.35  | 74.74       | 59.72      | 100.00     | 100.00    |          | 58.07   |
| 50                 | 86.78      | 78.22        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 82.43           | 98.03      | 89.12     | 84.59  | 87.43       | 95.79      | 100.00     | 100.00    |          | 100.00  |
| 60                 | 99.95      | 78.70        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 87.36           | 98.67      | 94.37     | 94.99  | 95.77       | 97.63      | 100.00     | 100.00    |          | 100.00  |
| 70                 | 100.00     | 99.88        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 90.96           | 99.00      | 97.85     | 98.97  | 98.53       | 98.96      | 100.00     | 100.00    |          | 100.00  |
| 80                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 94.27           | 99.54      | 98.78     | 99.99  | 99.83       | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 06                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 95.87           | 99.88      | 100.00    | 99.99  | 99.98       | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 100                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 96.12           | 99.88      | 100.00    | 99.99  | 99.98       | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 110                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 96.34           | 99.88      | 100.00    | 99.99  | 99.98       | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 120                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 96.60           | 99.88      | 100.00    | 99.99  | 99.98       | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 130                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 98.25           | 100.00     | 100.00    | 99.99  | 99.98       | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 140                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 98.25           | 100.00     | 100.00    | 99.99  | 99.98       | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 150                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 98.73           | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 160                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 98.73           | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 170                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 99.10           | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 180                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 99.10           | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 190                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 99.10           | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 200                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00        | 100.00          | 100.00     | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00    |          | 100.00  |
| 100                | 100.001    | 00.001       | 00.001      | 00.001 | 00.001 | 00.001     | 00.001        | 100.00          | 00.001     | 00.001    | 00.001 | 00.001      | 100.001    | 100.001    | 100.00    |          | 00.001  |



| Grain Size         |            |              |               |        |        | Minera     | Is (Sample BAS | 1 250/150. | Size Fract | ion -2504     | -150 micr | (uo.        |            |            |           |          |         |
|--------------------|------------|--------------|---------------|--------|--------|------------|----------------|------------|------------|---------------|-----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite   | Pyrite | Talc   | Serpentine | Clinopyroxene  | Amphiboles | Chlorite   | Biotite       | Quartz    | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.01       | 0.01         | 0.04          | 0.00   | 0.00   | 0.00       | 0.00           | 0.03       | 0.21       | 0.23          | 0.01      | 0.01        | 0.01       | 0.00       | 1.09      | 0.00     | 0.00    |
| 20                 | 0.21       | 0.39         | 0.73          | 0.27   | 0.71   | 0.41       | 1.19           | 0.57       | 1.96       | 2.01          | 0.29      | 0.29        | 0.51       | 0.51       | 8.65      | 1.40     | 0.29    |
| 30                 | 0.59       | 1.40         | 2.01          | 1.07   | 2.16   | 8.34       | 3.64           | 1.24       | 3.91       | 4.41          | 0.79      | 0.78        | 1.41       | 1.78       | 26.71     | 1.40     | 0.53    |
| 40                 | 0.95       | 1.99         | 2.45          | 2.14   | 2.16   | 8.34       | 3.64           | 1.93       | 5.83       | 8.11          | 1.32      | 1.42        | 2.46       | 3.11       | 28.91     | 1.40     | 1.24    |
| 50                 | 1.54       | 3.00         | 3.79          | 2.15   | 2.16   | 8.34       | 3.64           | 3.06       | 7.62       | 12.05         | 2.12      | 2.33        | 3.69       | 3.93       | 29.07     | 5.26     | 1.76    |
| 60                 | 2.55       | 5.12         | 4.82          | 2.31   | 14.74  | 8.34       | 3.64           | 4.31       | 10.25      | 17.03         | 3.54      | 3.59        | 5.68       | 5.37       | 30.25     | 5.26     | 2.13    |
| 70                 | 4.02       | 6.41         | 5.08          | 3.65   | 14.74  | 8.34       | 3.91           | 6.13       | 12.55      | 22.44         | 4.70      | 5.10        | 7.52       | 5.50       | 36.33     | 8.30     | 3.24    |
| 80                 | 6.42       | 8.78         | 8.52          | 3.86   | 14.74  | 8.34       | 3.97           | 8.30       | 16.38      | 27.99         | 6.51      | 7.15        | 9.92       | 10.81      | 37.55     | 8.30     | 14.28   |
| 06                 | 8.56       | 11.48        | 11.29         | 3.87   | 32.73  | 91.77      | 3.97           | 11.08      | 20.00      | 33.58         | 8.89      | 9.60        | 12.33      | 17.02      | 37.58     | 8.30     | 15.44   |
| 100                | 11.78      | 13.04        | 15.47         | 6.18   | 32.85  | 91.77      | 4.15           | 14.78      | 24.17      | 40.04         | 11.69     | 13.02       | 16.58      | 17.31      | 37.98     | 8.30     | 16.92   |
| 110                | 15.31      | 17.58        | 20.07         | 8.59   | 32.85  | 91.77      | 4.18           | 18.69      | 29.37      | 46.40         | 15.51     | 17.28       | 20.61      | 28.37      | 38.03     | 10.73    | 37.70   |
| 120                | 18.90      | 21.76        | 23.36         | 9.79   | 32.85  | 92.59      | 4.42           | 23.93      | 34.05      | 52.47         | 20.51     | 22.65       | 24.83      | 36.12      | 38.08     | 27.92    | 44.34   |
| 130                | 24.63      | 25.91        | 27.76         | 11.27  | 32.85  | 93.42      | 4.67           | 29.44      | 38.77      | 57.31         | 26.13     | 28.22       | 29.41      | 41.06      | 43.79     | 35.45    | 45.67   |
| 140                | 35.85      | 32.83        | 33.43         | 16.76  | 32.85  | 93.42      | 4.78           | 34.49      | 46.17      | 62.82         | 33.16     | 34.70       | 36.98      | 47.18      | 43.87     | 35.59    | 46.69   |
| 150                | 41.88      | 42.87        | 41.76         | 24.02  | 32.85  | 93.42      | 4.78           | 40.54      | 52.28      | 69.16         | 40.51     | 41.90       | 42.69      | 50.85      | 45.64     | 44.67    | 49.12   |
| 160                | 49.32      | 46.76        | 47.29         | 24.50  | 32.85  | 93.42      | 5.38           | 46.76      | 58.91      | 73.25         | 47.70     | 49.79       | 49.55      | 68.94      | 45.64     | 62.98    | 76.74   |
| 170                | 56.16      | 61.62        | 52.73         | 33.12  | 33.01  | 93.42      | 5.42           | 54.48      | 66.47      | 78.32         | 55.93     | 57.68       | 56.32      | 71.40      | 94.66     | 78.15    | 80.40   |
| 180                | 64.74      | 68.20        | 63.35         | 49.99  | 33.01  | 94.04      | 6.51           | 61.54      | 73.23      | 82.49         | 63.82     | 65.16       | 64.48      | 72.02      | 95.16     | 92.38    | 86.66   |
| 190                | 69.31      | 74.52        | 71.49         | 62.96  | 33.01  | 94.04      | 09.60          | 67.50      | 78.33      | 86.41         | 69.66     | 71.59       | 73.47      | 74.38      | 95.61     | 93.45    | 90.96   |
| 200                | 74.96      | 79.48        | 79.97         | 67.07  | 33.01  | 94.04      | 09.60          | 71.86      | 84.62      | 89.69         | 76.64     | 77.73       | 78.78      | 75.95      | 95.61     | 99.85    | 92.05   |
| 210                | 77.42      | 84.34        | 81.82         | 69.32  | 33.01  | 95.98      | 09.60          | 76.46      | 89.21      | 91.81         | 84.17     | 82.66       | 82.51      | 77.26      | 96.05     | 100.00   | 93.73   |
| 220                | 81.77      | 87.62        | 84.04         | 69.97  | 33.01  | 97.07      | <b>09.60</b>   | 79.50      | 91.87      | 93.97         | 87.19     | 86.17       | 87.11      | 77.97      | 96.16     | 100.00   | 94.06   |
| 230                | 84.99      | 90.81        | 89.62         | 80.93  | 100.00 | 100.00     | <b>09.60</b>   | 83.24      | 94.04      | 95.31         | 90.62     | 89.99       | 92.71      | 85.63      | 96.92     | 100.00   | 98.68   |
| 240                | 88.29      | 94.03        | 95.50         | 83.91  | 100.00 | 100.00     | 09.60          | 86.68      | 96.68      | 96.46         | 93.28     | 92.82       | 94.54      | 86.13      | 97.09     | 100.00   | 98.78   |
| 250                | 89.61      | 97.56        | 96.27         | 99.00  | 100.00 | 100.00     | 09.60          | 88.71      | 97.67      | 97.57         | 95.51     | 94.63       | 95.43      | 97.74      | 97.09     | 100.00   | 99.37   |
| 260                | 90.49      | 98.37        | 97.11         | 99.16  | 100.00 | 1 00.00    | 09.66          | 90.29      | 98.08      | 98.15         | 96.42     | 96.45       | 96.78      | 98.58      | 97.30     | 100.00   | 99.51   |
| 270                | 97.59      | 99.03        | 99.16         | 99.97  | 100.00 | 100.00     | 09.60          | 92.55      | 98.62      | 98.65         | 98.34     | 97.66       | 97.96      | 98.80      | 99.98     | 100.00   | 99.63   |
| 280                | 99.54      | 99.12        | 99.58         | 99.97  | 100.00 | 100.00     | 09.60          | 95.09      | 98.81      | 98.94         | 98.66     | 98.44       | 98.24      | 99.41      | 100.00    | 100.00   | 99.68   |
| 290                | 99.55      | 99.22        | <u>99.60</u>  | 99.97  | 100.00 | 100.00     | 09.60          | 96.85      | 99.40      | 99.34         | 99.17     | 99.08       | 98.58      | 99.41      | 100.00    | 100.00   | 99.72   |
| 300                | 99.63      | 99.72        | 99.64         | 99.97  | 100.00 | 100.00     | <b>99.60</b>   | 97.73      | 99.63      | 99.69         | 99.31     | 99.41       | 98.81      | 100.00     | 100.00    | 100.00   | 99.88   |
| 310                | 99.94      | 99.92        | 99.95         | 100.00 | 100.00 | 100.00     | <b>09.60</b>   | 98.17      | 99.75      | 99.98         | 99.40     | 99.63       | 99.09      | 100.00     | 100.00    | 100.00   | 99.92   |
| 320                | 99.94      | 99.92        | 96.66         | 100.00 | 100.00 | 100.00     | <b>09.60</b>   | 98.74      | 99.78      | 99.98         | 99.56     | 99.70       | 99.11      | 100.00     | 100.00    | 100.00   | 99.99   |
| 330                | 99.94      | 99.93        | 96.66         | 100.00 | 100.00 | 100.00     | 100.00         | 99.13      | 99.99      | 99.99         | 99.63     | 99.81       | 99.82      | 100.00     | 100.00    | 100.00   | 99.99   |
| 340                | 100.00     | 99.94        | 96.66         | 100.00 | 100.00 | 100.00     | 100.00         | 99.44      | 100.00     | <u> 99.99</u> | 99.63     | 99.93       | 99.92      | 100.00     | 100.00    | 100.00   | 99.99   |
| 350                | 100.00     | 100.00       | <b>66</b> .66 | 100.00 | 100.00 | 100.00     | 100.00         | 99.61      | 100.00     | 100.00        | 99.63     | 100.00      | 99.97      | 100.00     | 100.00    | 100.00   | 99.99   |
| 360                | 100.00     | 100.00       | 99.99         | 100.00 | 100.00 | 100.00     | 100.00         | 99.61      | 100.00     | 100.00        | 99.63     | 100.00      | 99.97      | 100.00     | 100.00    | 100.00   | 99.99   |
| 370                | 100.00     | 100.00       | 100.00        | 100.00 | 100.00 | 100.00     | 100.00         | 99.61      | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00        | 100.00 | 100.00 | 100.00     | 100.00         | 99.61      | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00        | 100.00 | 100.00 | 100.00     | 100.00         | 99.61      | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00        | 100.00 | 100.00 | 100.00     | 100.00         | 99.61      | 100.00     | 100.00        | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| Other              | 0.UU       | 0.00         | 0.00          | 0.00   | 0.00   | 0.00       | 0.00           | 0.39       | 0.00       | 0.00          | 0.00      | 0.00        | 0.00       | 0.00       | 0.00      | 0.00     | 0.00    |



| Grain Size      |            |              |             |        |        | Mine       | erals (Sample B/ | <u> </u>   | ize Fracti | on -150+7 | <sup>5</sup> micron | (           |            |            |           |          |         |
|-----------------|------------|--------------|-------------|--------|--------|------------|------------------|------------|------------|-----------|---------------------|-------------|------------|------------|-----------|----------|---------|
| Categories (um) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene    | Amphiboles | Chlorite   | Biotite   | Quartz              | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10              | 0.23       | 0.76         | 0.30        | 0.24   | 4.80   | 00.0       | 36.96            | 0.47       | 2.11       | 1.39      | 0.30                | 0.24        | 0.51       | 1.28       | 52.71     | 3.88     | 0.36    |
| 20              | 1.19       | 2.61         | 1.91        | 1.50   | 31.56  | 0.00       | 73.11            | 1.94       | 8.12       | 6.39      | 1.31                | 1.18        | 2.19       | 3.54       | 75.53     | 3.88     | 2.59    |
| 30              | 3.29       | 7.96         | 4.22        | 4.02   | 34.74  | 0:00       | 90.35            | 4.70       | 15.98      | 14.63     | 2.90                | 2.94        | 4.93       | 6.93       | 81.76     | 3.88     | 3.18    |
| 40              | 6.52       | 11.40        | 6.14        | 14.10  | 34.74  | 0:00       | 90.35            | 8.66       | 24.96      | 25.10     | 6.22                | 6.19        | 9.32       | 15.89      | 82.71     | 3.88     | 12.75   |
| 50              | 12.12      | 16.86        | 10.14       | 14.97  | 98.55  | 0:00       | 90.35            | 14.56      | 35.39      | 36.72     | 11.07               | 11.38       | 14.83      | 19.98      | 83.35     | 3.88     | 19.67   |
| 60              | 18.98      | 25.38        | 17.06       | 18.90  | 98.55  | 6.28       | 90.81            | 22.64      | 45.98      | 48.38     | 18.19               | 19.28       | 22.93      | 39.22      | 85.36     | 61.10    | 26.26   |
| 70              | 30.55      | 38.04        | 31.69       | 33.12  | 98.67  | 99.44      | 100.00           | 32.49      | 56.77      | 59.02     | 28.31               | 29.92       | 34.13      | 55.49      | 87.52     | 66.43    | 33.60   |
| 80              | 40.22      | 57.62        | 38.99       | 42.31  | 98.67  | 99.73      | 100.00           | 43.46      | 64.81      | 67.51     | 40.51               | 42.27       | 45.72      | 75.02      | 92.76     | 66.43    | 42.67   |
| 06              | 50.91      | 65.94        | 51.22       | 46.37  | 98.67  | 100.00     | 100.00           | 54.32      | 74.11      | 76.24     | 53.39               | 54.55       | 61.98      | 81.67      | 95.54     | 68.69    | 74.62   |
| 100             | 61.11      | 80.87        | 62.16       | 79.20  | 98.86  | 100.00     | 100.00           | 64.44      | 81.23      | 82.11     | 64.02               | 66.14       | 71.41      | 95.19      | 95.85     | 68.69    | 75.76   |
| 110             | 70.92      | 84.74        | 68.41       | 92.18  | 100.00 | 100.00     | 100.00           | 72.16      | 86.63      | 86.79     | 73.73               | 75.68       | 80.18      | 95.92      | 95.93     | 73.12    | 77.02   |
| 120             | 75.21      | 91.07        | 78.74       | 97.31  | 100.00 | 100.00     | 100.00           | 78.66      | 90.84      | 91.64     | 81.77               | 83.49       | 88.54      | 98.31      | 96.36     | 88.63    | 78.20   |
| 130             | 81.74      | 94.88        | 90.05       | 99.70  | 100.00 | 100.00     | 100.00           | 83.80      | 93.16      | 94.19     | 88.21               | 89.08       | 93.89      | 98.93      | 96.80     | 88.63    | 79.88   |
| 140             | 87.51      | 96.34        | 94.88       | 99.70  | 100.00 | 100.00     | 100.00           | 87.75      | 97.09      | 96.00     | 93.28               | 93.19       | 96.31      | 99.02      | 97.15     | 95.42    | 98.84   |
| 150             | 93.02      | 96.77        | 98.04       | 99.93  | 100.00 | 100.00     | 100.00           | 90.13      | 98.53      | 97.21     | 96.67               | 95.84       | 97.96      | 99.56      | 97.21     | 100.00   | 99.57   |
| 160             | 97.64      | 97.78        | 99.45       | 99.93  | 100.00 | 100.00     | 100.00           | 92.52      | 99.53      | 98.04     | 98.47               | 97.69       | 98.66      | 99.56      | 97.39     | 100.00   | 100.00  |
| 170             | 99.69      | 98.93        | 99.49       | 99.93  | 100.00 | 100.00     | 100.00           | 94.30      | 99.77      | 98.63     | 99.03               | 98.46       | 99.38      | 99.61      | 97.49     | 100.00   | 100.00  |
| 180             | 99.77      | 98.99        | 99.51       | 99.93  | 100.00 | 100.00     | 100.00           | 95.75      | 99.85      | 99.27     | 99.32               | 99.04       | 99.49      | 99.72      | 97.49     | 100.00   | 100.00  |
| 190             | 99.83      | 99.29        | 99.59       | 100.00 | 100.00 | 100.00     | 100.00           | 96.76      | 99.87      | 99.39     | 99.68               | 99.47       | 99.75      | 99.73      | 97.49     | 100.00   | 100.00  |
| 200             | 99.83      | 99.30        | 99.59       | 100.00 | 100.00 | 100.00     | 100.00           | 97.16      | 99.96      | 99.58     | 99.99               | 99.77       | 99.81      | 99.87      | 97.49     | 100.00   | 100.00  |
| 210             | 99.83      | 99.30        | 99.59       | 100.00 | 100.00 | 100.00     | 100.00           | 97.16      | 96.96      | 99.80     | 99.99               | 99.80       | 99.81      | 99.87      | 97.49     | 100.00   | 100.00  |
| 220             | 99.83      | 99.90        | 99.67       | 100.00 | 100.00 | 100.00     | 100.00           | 97.37      | 99.99      | 99.83     | 99.99               | 99.82       | 99.84      | 99.87      | 97.49     | 100.00   | 100.00  |
| 230             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.29      | 100.00     | 99.94     | 100.00              | 99.95       | 100.00     | 99.87      | 100.00    | 100.00   | 100.00  |
| 240             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.50      | 100.00     | 99.95     | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.82      | 100.00     | 99.95     | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.82      | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 98.82      | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.12      | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.67      | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.67      | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.67      | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 99.67      | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00     | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00     | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00     | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00     | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00     | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00     | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00     | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400             | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00           | 100.00     | 100.00     | 100.00    | 100.00              | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



| Grain Size         |            |              |             |        |        |            | Minerals (Sampl | le BAS1 -75, 5 | ize Fract | ion -75 m | icron) |             |            |            |              |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|-----------------|----------------|-----------|-----------|--------|-------------|------------|------------|--------------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene   | Amphiboles     | Chlorite  | Biotite   | Quartz | Plagioclase | K-feldspar | Carbonates | Magnetite    | Ilmenite | Apatite |
| 10                 | 12.79      | 20.63        | 17.69       | 10.99  | 29.97  | 0.00       | 35.16           | 15.92          | 25.50     | 16.94     | 8.02   | 9.65        | 15.42      | 21.25      | 84.06        | 12.39    | 15.86   |
| 20                 | 43.56      | 47.23        | 42.89       | 41.13  | 37.06  | 0.00       | 45.11           | 39.67          | 61.26     | 42.16     | 27.72  | 27.27       | 39.00      | 62.24      | 91.78        | 12.39    | 50.41   |
| 30                 | 71.20      | 73.44        | 67.02       | 100.00 | 56.37  | 100.00     | 59.20           | 58.73          | 78.04     | 63.71     | 48.43  | 46.90       | 62.46      | 84.52      | 91.99        | 100.00   | 99.16   |
| 40                 | 86.68      | 77.40        | 89.49       | 100.00 | 56.37  | 100.00     | 100.00          | 72.91          | 69.06     | 78.44     | 70.06  | 64.09       | 76.71      | 91.90      | 99.15        | 100.00   | 100.00  |
| 50                 | 94.05      | 96.86        | 96.41       | 100.00 | 100.00 | 100.00     | 100.00          | 85.34          | 95.84     | 87.65     | 82.67  | 78.84       | 89.37      | 100.00     | 99.36        | 100.00   | 100.00  |
| 60                 | 99.82      | 99.76        | 99.01       | 100.00 | 100.00 | 100.00     | 100.00          | 90.55          | 98.49     | 91.07     | 90.38  | 88.88       | 97.71      | 100.00     | 99.36        | 100.00   | 100.00  |
| 70                 | 100.00     | 99.87        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 94.60          | 99.63     | 95.62     | 97.18  | 94.92       | 99.31      | 100.00     | <u>99.69</u> | 100.00   | 100.00  |
| 80                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 97.78          | 100.00    | 98.46     | 99.87  | 97.85       | 99.40      | 100.00     | 100.00       | 100.00   | 100.00  |
| 06                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 98.55          | 100.00    | 99.25     | 100.00 | 99.39       | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 100                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.27          | 100.00    | 100.00    | 100.00 | 99.64       | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 110                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 120                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 130                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 140                | 100.00     | 100.00       | 1 00.00     | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 150                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 160                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 170                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 180                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 190                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 200                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 1 00.00     | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 1 00.00     | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 1 00.00     | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00         | 100.00    | 100.00    | 100.00 | 100.00      | 100.00     | 100.00     | 100.00       | 100.00   | 100.00  |

Table I6.27. Mineral Cumulative Grain Size Distribution (Sample BAS1 -75, Size Fraction -75 micron)



| Table I6.28. Mineral Cumulative Grain Size Distribution | (Sample BAS2 250/150, Size Fraction -250+150 micron) |
|---------------------------------------------------------|------------------------------------------------------|
|                                                         |                                                      |

| Grain Size         |            |              |              |        |        | Miner      | als (Sample BA: | S2_250/150, S | ze Fracti    | on -250+1     | 50 micro | (u          |            |            |           |          |         |
|--------------------|------------|--------------|--------------|--------|--------|------------|-----------------|---------------|--------------|---------------|----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite  | Pyrite | Talc   | Serpentine | Clinopyroxene   | Amphiboles    | Chlorite     | Biotite       | Quartz   | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.00       | 0.06         | 0.00         | 0.00   | 0.00   | 0.00       | 0.00            | 0.03          | 0.13         | 0.19          | 0.01     | 0.01        | 0.00       | 1.90       | 2.76      | 0.06     | 0.00    |
| 20                 | 0.42       | 0.69         | 0.03         | 0.19   | 23.21  | 0.00       | 1.42            | 0.40          | 1.87         | 1.68          | 0.43     | 0.29        | 0.52       | 4.94       | 23.17     | 0.65     | 2.79    |
| 30                 | 1.41       | 1.58         | 0.05         | 0.89   | 23.21  | 0.00       | 1.42            | 0.98          | 3.44         | 3.64          | 1.17     | 0.78        | 1.30       | 10.32      | 34.96     | 1.67     | 6.53    |
| 40                 | 2.30       | 2.73         | 1.37         | 1.00   | 64.17  | 0.00       | 1.42            | 1.76          | 5.26         | 5.91          | 2.08     | 1.41        | 1.95       | 14.31      | 47.59     | 2.78     | 8.47    |
| 50                 | 3.05       | 3.67         | 1.51         | 2.50   | 64.17  | 0.00       | 1.42            | 2.82          | 6.92         | 8.52          | 2.92     | 2.29        | 3.28       | 14.31      | 50.99     | 4.08     | 8.49    |
| 60                 | 3.83       | 4.87         | 1.83         | 8.37   | 64.17  | 0.00       | 1.42            | 4.21          | 8.96         | 12.82         | 3.94     | 3.44        | 4.03       | 14.66      | 59.76     | 9.09     | 10.70   |
| 20                 | 3.99       | 6.04         | 2.00         | 12.21  | 64.17  | 0.00       | 1.42            | 5.75          | 11.72        | 17.12         | 5.54     | 4.92        | 5.76       | 78.80      | 60.42     | 10.74    | 11.28   |
| 80                 | 6.31       | 7.74         | 2.26         | 12.21  | 64.17  | 0.28       | 1.42            | 7.54          | 15.22        | 22.15         | 7.64     | 6.94        | 7.44       | 79.41      | 63.36     | 12.09    | 11.69   |
| 06                 | 8.62       | 9.91         | 2.42         | 14.00  | 64.17  | 2.15       | 1.42            | 10.27         | 19.01        | 28.24         | 10.09    | 9.28        | 9.68       | 80.15      | 72.34     | 17.57    | 12.09   |
| 100                | 9.96       | 13.26        | 3.43         | 14.00  | 64.17  | 3.77       | 1.42            | 13.87         | 22.70        | 34.68         | 14.08    | 12.21       | 14.20      | 80.15      | 73.07     | 20.04    | 12.15   |
| 110                | 11.63      | 17.67        | 4.86         | 14.95  | 64.17  | 8.29       | 1.42            | 17.62         | 29.10        | 40.22         | 18.60    | 16.53       | 19.09      | 84.30      | 76.99     | 25.08    | 12.80   |
| 120                | 18.82      | 24.12        | 5.70         | 33.96  | 64.17  | 8.29       | 1.42            | 22.07         | 34.15        | 46.45         | 25.04    | 21.19       | 23.09      | 84.30      | 77.43     | 30.97    | 15.14   |
| 130                | 35.91      | 28.45        | 6.77         | 33.96  | 64.17  | 14.13      | 1.42            | 26.87         | 40.39        | 52.55         | 30.40    | 26.46       | 27.85      | 85.60      | 81.55     | 36.03    | 54.71   |
| 140                | 38.68      | 33.22        | 7.32         | 46.73  | 74.18  | 14.13      | 1.42            | 32.93         | 46.68        | 58.49         | 36.27    | 32.62       | 32.31      | 87.83      | 81.76     | 41.58    | 62.45   |
| 150                | 42.16      | 44.87        | 33.25        | 47.23  | 78.13  | 14.63      | 1.42            | 39.48         | 54.12        | 63.22         | 42.98    | 39.39       | 37.03      | 87.83      | 84.09     | 52.05    | 66.31   |
| 160                | 52.97      | 50.73        | 33.57        | 48.00  | 78.13  | 15.39      | 1.42            | 45.98         | 59.17        | 67.85         | 48.55    | 45.80       | 43.45      | 87.83      | 84.64     | 58.07    | 70.04   |
| 170                | 62.78      | 59.56        | 36.14        | 69.51  | 90.74  | 17.46      | 1.42            | 52.31         | 66.28        | 77.30         | 56.06    | 53.58       | 57.37      | 89.15      | 93.11     | 61.86    | 74.74   |
| 180                | 64.43      | 62.80        | 36.98        | 85.33  | 90.74  | 82.44      | 1.68            | 59.12         | 72.16        | 82.60         | 63.80    | 60.00       | 66.70      | 90.10      | 93.30     | 65.20    | 79.02   |
| 190                | 68.72      | 68.98        | 80.17        | 98.94  | 90.74  | 83.03      | 1.68            | 64.93         | 77.63        | 86.41         | 69.84    | 66.77       | 72.66      | 92.03      | 93.94     | 66.82    | 82.87   |
| 200                | 69.31      | 75.18        | 81.72        | 98.94  | 90.74  | 83.03      | 99.56           | 69.92         | 81.82        | 90.47         | 75.28    | 72.54       | 77.70      | 94.35      | 95.24     | 76.38    | 83.77   |
| 210                | 78.87      | 78.87        | 82.10        | 98.94  | 90.74  | 83.03      | 99.64           | 74.86         | 85.71        | 93.22         | 80.24    | 78.37       | 83.51      | 94.35      | 97.74     | 80.11    | 90.97   |
| 220                | 80.46      | 82.53        | 82.11        | 99.72  | 90.74  | 86.88      | 99.64           | 79.07         | 89.37        | 94.27         | 84.57    | 83.03       | 86.91      | 97.61      | 97.91     | 83.68    | 94.21   |
| 230                | 91.25      | 87.21        | 82.30        | 99.72  | 90.74  | 95.65      | 100.00          | 82.98         | 91.59        | 96.42         | 87.27    | 86.93       | 92.23      | 97.61      | 99.44     | 85.96    | 95.31   |
| 240                | 96.81      | 92.88        | <u>90.09</u> | 99.93  | 90.74  | 95.65      | 100.00          | 86.40         | 94.31        | 97.72         | 91.51    | 90.72       | 94.05      | 97.61      | 99.44     | 88.37    | 96.87   |
| 250                | 98.32      | 95.15        | 99.31        | 100.00 | 90.74  | 100.00     | 100.00          | 88.88         | 95.75        | 97.96         | 93.00    | 93.03       | 95.07      | 99.30      | 100.00    | 89.41    | 98.02   |
| 260                | 98.94      | 97.72        | 06.66        | 100.00 | 92.41  | 100.00     | 100.00          | 91.89         | 96.78        | 99.13         | 94.82    | 95.11       | 97.32      | 100.00     | 100.00    | 90.74    | 98.89   |
| 270                | 99.38      | 98.38        | 99.94        | 100.00 | 92.41  | 100.00     | 100.00          | 93.62         | 97.83        | 99.26         | 96.11    | 96.45       | 99.20      | 100.00     | 100.00    | 93.60    | 99.39   |
| 280                | 99.56      | 98.85        | 100.00       | 100.00 | 92.41  | 100.00     | 100.00          | 94.84         | 98.22        | 99.35         | 98.21    | 97.62       | 99.58      | 100.00     | 100.00    | 97.42    | 99.71   |
| 290                | 99.64      | 99.27        | 100.00       | 100.00 | 92.41  | 100.00     | 100.00          | 95.74         | 98.96        | 99.44         | 98.28    | 98.26       | 99.66      | 100.00     | 100.00    | 99.12    | 99.76   |
| 300                | 99.64      | 99.36        | 100.00       | 100.00 | 92.41  | 100.00     | 100.00          | 96.80         | 99.64        | 99.48         | 98.90    | 98.84       | 99.78      | 100.00     | 100.00    | 99.19    | 99.76   |
| 310                | 99.68      | 99.72        | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 97.68         | 99.76        | 99.56         | 99.37    | 99.12       | 99.91      | 100.00     | 100.00    | 99.95    | 99.76   |
| 320                | 99.68      | 99.81        | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 98.00         | 99.86        | 99.98         | 99.46    | 99.55       | 99.92      | 100.00     | 100.00    | 99.95    | 99.86   |
| 330                | 99.68      | 99.91        | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 98.35         | 99.90        | 99.99         | 99.69    | 99.75       | 99.98      | 100.00     | 100.00    | 99.95    | 99.86   |
| 340                | 99.68      | 99.92        | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 98.71         | 99.94        | 99.99         | 99.72    | 99.75       | 99.98      | 100.00     | 100.00    | 99.95    | 99.86   |
| 350                | 89.68      | 99.92        | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 98.94         | 99.94        | <u> 66.66</u> | 99.73    | 99.84       | 99.98      | 100.00     | 100.00    | 99.95    | 99.86   |
| 360                | 99.68      | 99.92        | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 99.30         | 96.96        | 100.00        | 99.77    | 99.90       | 99.98      | 100.00     | 100.00    | 99.95    | 100.00  |
| 370                | 99.98      | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 99.45         | 99.97        | 100.00        | 99.80    | 99.90       | 99.98      | 100.00     | 100.00    | 99.95    | 100.00  |
| 380                | 99.98      | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 99.55         | <b>66.66</b> | 100.00        | 99.81    | 99.90       | 99.98      | 100.00     | 100.00    | 99.95    | 100.00  |
| 390                | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 99.55         | <b>66.66</b> | 100.00        | 99.81    | 99.97       | 100.00     | 100.00     | 100.00    | 99.95    | 100.00  |
| 400                | 100.00     | 100.00       | 100.00       | 100.00 | 100.00 | 100.00     | 100.00          | 99.72         | <b>66.66</b> | 100.00        | 99.85    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| Other              | 0.00       | 0.00         | 0.00         | 0.00   | 0.00   | 0.00       | 0.00            | 0.28          | 0.01         | 0.00          | 0.15     | 0.00        | 0.00       | 0.00       | 0.00      | 0.00     | 0.00    |



| Table 16.29. Mineral | Cumulative Grain S | ize Distribution | (Sample BAS2)  | 150/75. Size | e Fraction -1 | 50+75 micron) |
|----------------------|--------------------|------------------|----------------|--------------|---------------|---------------|
|                      |                    |                  | (************* |              |               |               |

| Grain Size         |            |              |             |        |        | Mine       | rals (Sample BA | S2_150/75, S | ze Fracti | on -150+ | 75 micror | (           |            |            |           |          |         |
|--------------------|------------|--------------|-------------|--------|--------|------------|-----------------|--------------|-----------|----------|-----------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene   | Amphiboles   | Chlorite  | Biotite  | Quartz    | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 0.39       | 0.49         | 0.00        | 1.02   | 12.90  | 2.38       | 3.14            | 0.31         | 1.80      | 0.86     | 0.45      | 0.28        | 0.66       | 1.09       | 17.86     | 0.25     | 0.38    |
| 20                 | 1.25       | 1.73         | 1.01        | 3.19   | 77.61  | 2.38       | 3.93            | 1.44         | 6.41      | 4.35     | 1.63      | 1.31        | 1.93       | 2.62       | 24.44     | 2.15     | 4.85    |
| 30                 | 2.60       | 3.60         | 4.47        | 3.19   | 81.97  | 38.38      | 6.83            | 3.34         | 12.61     | 10.67    | 3.64      | 3.11        | 4.21       | 6.35       | 26.94     | 3.42     | 6.00    |
| 40                 | 6.40       | 6.72         | 5.05        | 3.93   | 82.76  | 39.04      | 7.21            | 6.66         | 20.20     | 19.97    | 7.40      | 6.08        | 6.10       | 9.16       | 38.10     | 5.31     | 10.05   |
| 50                 | 9.28       | 12.73        | 49.75       | 11.32  | 83.16  | 48.84      | 8.24            | 12.69        | 29.41     | 31.67    | 12.93     | 11.28       | 12.11      | 9.87       | 52.52     | 10.22    | 10.75   |
| 60                 | 13.40      | 21.04        | 72.98       | 22.15  | 85.37  | 61.13      | 8.32            | 20.43        | 38.92     | 43.80    | 21.52     | 18.67       | 20.99      | 10.80      | 54.35     | 15.85    | 19.70   |
| 70                 | 20.14      | 28.26        | 84.00       | 22.71  | 85.37  | 61.13      | 13.82           | 30.02        | 49.75     | 54.21    | 30.87     | 28.61       | 33.90      | 10.86      | 55.47     | 33.03    | 21.45   |
| 80                 | 37.73      | 39.68        | 85.13       | 28.13  | 85.37  | 61.90      | 13.82           | 40.58        | 59.90     | 62.82    | 41.82     | 40.05       | 43.46      | 13.07      | 56.77     | 54.62    | 35.74   |
| 90                 | 45.34      | 50.67        | 87.72       | 41.37  | 85.85  | 64.02      | 14.88           | 51.56        | 70.23     | 70.03    | 54.77     | 52.59       | 57.03      | 31.99      | 97.39     | 67.47    | 38.03   |
| 100                | 49.38      | 58.75        | 89.26       | 56.62  | 85.85  | 78.17      | 14.93           | 61.34        | 78.01     | 78.66    | 65.84     | 64.47       | 66.50      | 32.48      | 98.12     | 73.44    | 42.29   |
| 110                | 58.86      | 67.19        | 93.17       | 56.88  | 85.85  | 78.17      | 99.86           | 69.83        | 84.84     | 84.67    | 74.23     | 73.30       | 72.30      | 33.16      | 98.24     | 83.38    | 43.68   |
| 120                | 64.32      | 75.92        | 95.19       | 71.08  | 89.19  | 86.94      | 99.86           | 77.14        | 89.91     | 88.70    | 81.64     | 81.18       | 77.53      | 50.89      | 99.01     | 86.84    | 46.17   |
| 130                | 74.56      | 80.70        | 97.00       | 71.08  | 91.58  | 98.03      | 99.86           | 82.62        | 93.40     | 93.35    | 87.28     | 87.46       | 89.32      | 80.12      | 99.35     | 89.87    | 91.16   |
| 140                | 85.20      | 89.62        | 99.83       | 71.43  | 96.52  | 98.03      | 100.00          | 87.00        | 95.27     | 95.48    | 92.10     | 91.63       | 92.41      | 80.12      | 99.70     | 93.53    | 91.66   |
| 150                | 85.79      | 92.25        | 99.83       | 71.43  | 96.52  | 98.03      | 100.00          | 90.66        | 97.26     | 96.69    | 95.37     | 94.58       | 95.45      | 80.12      | 99.89     | 95.17    | 92.02   |
| 160                | 90.78      | 96.71        | 99.89       | 71.61  | 96.52  | 99.59      | 100.00          | 93.10        | 98.34     | 97.91    | 96.42     | 96.38       | 96.11      | 98.68      | 99.97     | 95.21    | 92.02   |
| 170                | 100.00     | 99.41        | 100.00      | 71.61  | 96.52  | 99.59      | 100.00          | 94.87        | 98.70     | 99.01    | 98.39     | 97.75       | 98.75      | 98.68      | 99.97     | 99.24    | 92.13   |
| 180                | 100.00     | 99.55        | 100.00      | 71.61  | 96.52  | 100.00     | 100.00          | 95.93        | 98.95     | 99.22    | 99.11     | 98.80       | 99.78      | 98.68      | 100.00    | 99.28    | 97.94   |
| 190                | 100.00     | 99.85        | 100.00      | 71.91  | 98.41  | 100.00     | 100.00          | 97.09        | 99.59     | 99.48    | 99.53     | 99.33       | 99.89      | 100.00     | 100.00    | 99.50    | 98.04   |
| 200                | 100.00     | 99.93        | 100.00      | 71.91  | 100.00 | 100.00     | 100.00          | 97.72        | 99.75     | 99.76    | 99.64     | 99.70       | 06.66      | 100.00     | 100.00    | 99.50    | 98.08   |
| 210                | 100.00     | 99.93        | 100.00      | 71.91  | 100.00 | 100.00     | 100.00          | 98.35        | 99.79     | 99.77    | 99.71     | 99.78       | 66.66      | 100.00     | 100.00    | 99.52    | 99.49   |
| 220                | 100.00     | 99.94        | 100.00      | 71.91  | 100.00 | 100.00     | 100.00          | 98.78        | 99.92     | 99.77    | 99.91     | 99.95       | 99.99      | 100.00     | 100.00    | 99.59    | 100.00  |
| 230                | 100.00     | 99.94        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.18        | 99.94     | 99.77    | 99.94     | 99.95       | 99.99      | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 99.96        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.50        | 99.99     | 99.78    | 96.96     | 100.00      | 99.99      | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 99.96        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.56        | 99.99     | 99.78    | 96.96     | 100.00      | 99.99      | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.72        | 100.00    | 99.78    | 99.98     | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.80        | 100.00    | 99.78    | 99.98     | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.89        | 100.00    | 99.78    | 99.99     | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.89        | 100.00    | 99.78    | 99.99     | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.89        | 100.00    | 100.00   | 99.99     | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.94        | 100.00    | 100.00   | 99.99     | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.94        | 100.00    | 100.00   | 99.99     | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.94        | 100.00    | 100.00   | 99.99     | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.94        | 100.00    | 100.00   | 99.99     | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00       | 100.00    | 100.00   | 100.00    | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |



| Grain Size         |            |              |             |        |        |            | Minerals (Sampl | e BAS2 -75, | Size Fract | ion -75 m | licron) |             |            |            |           |          | Γ       |
|--------------------|------------|--------------|-------------|--------|--------|------------|-----------------|-------------|------------|-----------|---------|-------------|------------|------------|-----------|----------|---------|
| Categories<br>(µm) | Pyrrhotite | Chalcopyrite | Pentlandite | Pyrite | Talc   | Serpentine | Clinopyroxene   | Amphiboles  | Chlorite   | Biotite   | Quartz  | Plagioclase | K-feldspar | Carbonates | Magnetite | Ilmenite | Apatite |
| 10                 | 21.13      | 13.62        | 54.38       | 23.44  | 75.80  | 100.00     | 97.24           | 12.63       | 30.31      | 19.39     | 10.62   | 13.33       | 16.40      | 28.26      | 81.96     | 15.90    | 6.22    |
| 20                 | 41.06      | 33.14        | 99.08       | 57.95  | 98.07  | 100.00     | 97.24           | 33.22       | 64.56      | 43.61     | 36.54   | 35.38       | 39.11      | 75.96      | 96.69     | 33.67    | 36.50   |
| 30                 | 88.65      | 47.59        | 99.08       | 93.85  | 98.07  | 100.00     | 100.00          | 51.40       | 79.43      | 63.78     | 56.19   | 57.28       | 54.78      | 77.95      | 96.69     | 49.91    | 67.75   |
| 40                 | 97.93      | 60.44        | 99.08       | 100.00 | 98.07  | 100.00     | 100.00          | 67.93       | 89.28      | 83.63     | 75.55   | 73.20       | 70.64      | 96.30      | 97.41     | 65.41    | 98.75   |
| 50                 | 98.02      | 62.78        | 99.42       | 100.00 | 98.07  | 100.00     | 100.00          | 78.27       | 95.20      | 91.46     | 87.10   | 85.11       | 80.79      | 100.00     | 98.09     | 65.41    | 100.00  |
| 60                 | 100.00     | 76.27        | 100.00      | 100.00 | 98.07  | 100.00     | 100.00          | 86.59       | 97.78      | 95.71     | 89.98   | 94.29       | 99.80      | 100.00     | 98.73     | 100.00   | 100.00  |
| 70                 | 100.00     | 79.09        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 92.54       | 99.27      | 98.21     | 96.73   | 98.61       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 80                 | 100.00     | 89.30        | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 95.89       | 100.00     | 100.00    | 99.42   | 99.99       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 06                 | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 97.84       | 100.00     | 100.00    | 99.42   | 99.99       | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 100                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 98.43       | 100.00     | 100.00    | 99.42   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 110                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 98.93       | 100.00     | 100.00    | 99.42   | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 120                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.65       | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 130                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.65       | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 140                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.65       | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 150                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.65       | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 160                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.65       | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 170                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.65       | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 180                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 99.65       | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 190                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 200                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 210                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 220                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 230                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 240                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 250                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 260                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 270                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 280                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 290                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 300                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 310                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 320                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 330                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 340                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 350                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 360                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 370                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 380                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 390                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |
| 400                | 100.00     | 100.00       | 100.00      | 100.00 | 100.00 | 100.00     | 100.00          | 100.00      | 100.00     | 100.00    | 100.00  | 100.00      | 100.00     | 100.00     | 100.00    | 100.00   | 100.00  |

Table I6.30. Mineral Cumulative Grain Size Distribution (Sample BAS2 -75, Size Fraction -75 micron)



| Table I7.1. Elem | ent Distribution- | Sample PM1 |
|------------------|-------------------|------------|
|------------------|-------------------|------------|

| SKC-PM1         |       |       |     |       |          |        |        |         |        |         |         |        |       |          |         |       |       |       |     |       |       |       |       |       |         |       |
|-----------------|-------|-------|-----|-------|----------|--------|--------|---------|--------|---------|---------|--------|-------|----------|---------|-------|-------|-------|-----|-------|-------|-------|-------|-------|---------|-------|
| Mineral         | Ag    | A     | ΡN  | ပ     | ca<br>Ca | 3      | 0<br>8 | ر<br>بر | - Inc  | Ľ.      | н<br>е  | -<br>- | ž     | Mn<br>Mn | Na      | ż     | 0     | ٩     | Pb  | RE    | s     | Si    | Te    | Ē     | Inknown | Zn    |
|                 | (%)   | (%)   | (%) | (%)   | )) (%)   | ) (%   | %) (%  | ) (9    | %) (%  | 6) (%   | ;) (%   | %) (%  | %) (% | (%) (    | (%)     | (%)   | (%)   | (%)   | (%) | (%)   | (%)   | (%)   | (%)   | (%)   | (%)     | (%)   |
| Pyrrhotite      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0      | 0.0    | 0.0    | 0       | 0.0    | 0 2.    | 7 0.1   | 0 0.(  | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0 | 0.0   | 55.2  | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0      | 0.0    | 0.0    | 6<br>0  | 9.0 0. | 0       | 5 0.1   | 0.0    | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0 | 0.0   | 21.2  | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0      | 0.0    | 0.4    | 0       | 0.0    | 0       | 6 0.1   | 0.0    | 0.0   | 0.0      | 0.0     | 97.8  | 0.0   | 0.0   | 0.0 | 0.0   | 21.2  | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0      | 0.0    | 0.0    | 0       | 0.0    | 0.0     | 0.0     | 0 0.(  | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0 | 0.0   | 0.1   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0   | 0.0      | 0.0    | 0.0    | 0       | 0.0    | 0.0     | 0.9.    | 9 0.(  | ) 22. | 9 0.0    | 0.0     | 0.0   | 16.6  | 0.0   | 0.0 | 0.0   | 0.0   | 22.4  | 0.0   | 0.0   | 0.0     | 0.0   |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0   | 0.2 0    | 0.0    | 0.0    | 0       | 0.0    | 0 7.    | 6.8     | 1.0.(  | 7.4.7 | 7 0.0    | 0.0     | 0.0   | 5.1   | 0.0   | 0.0 | 0.0   | 0.0   | 4.6   | 0.0   | 0.0   | 0.0     | 0.0   |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0   | 0.6 0    | 0.0    | 0.0    | 0       | 0.0    | 0.0     | 0.0     | 0 0.(  | 0.1   | 0.0      | 0.0     | 0.0   | 0.1   | 0.0   | 0.0 | 0.0   | 0.0   | 0.2   | 0.0   | 0.0   | 0.0     | 0.0   |
| Amphiboles      | 0.0   | 9.6   | 0.0 | 0.0   | 58.2 0   | 0.0    | 0.0    | 0       | 0.0    | 0 13    | .9 8.   | 3 0.(  | ) 22. | 2 99.2   | 2 98.1  | 0.0   | 22.3  | 0.0   | 0.0 | 0.0   | 0.0   | 51.2  | 0.0   | 39.8  | 0.0     | 0.0   |
| Chlorite        | 0.0   | 89.9  | 0.0 | 0.0   | 0.0      | 0.0    | 0.0    | 0       | 0.0    | 0.68    | .4 72.  | .0.(   | 9 42. | 0.0      | 0.0     | 0.0   | 45.6  | 0.0   | 0.0 | 0.0   | 0.0   | 20.5  | 0.0   | 0.0   | 0.0     | 0.0   |
| Biotite         | 0.0   | 0.3   | 0.0 | 0.0   | 0.0      | 0.0    | 0.0    | 0       | 0.0 53 | .5 0.   | 1.0     | 1 94.  | 5 0.2 | 0.0      | 0.0     | 0.0   | 0.2   | 0.0   | 0.0 | 0.0   | 0.0   | 0.2   | 0.0   | 0.0   | 0.0     | 0.0   |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0      | 0.0    | 0.0    | 0 0     | 0.0    | 0.0     | 0.0     | 0 0.(  | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.1   | 0.0   | 0.0   | 0.0     | 0.0   |
| Plagioclase     | 0.0   | 0.1   | 0.0 | 0.0   | 0.0      | 0.0    | 0.0    | 0       | 0.0    | 0.0     | 0.0     | 0 0.(  | 0.0   | 0.0      | 1.0     | 0.0   | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.1   | 0.0   | 0.0   | 0.0     | 0.0   |
| K-feldspar      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0 0.0  | 0.0    | 0.0    | 0 0     | 0.0    | 0.0     | 0.0     | 0 5.6  | 3 0.0 | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Other silicates | 0.0   | 0.0   | 0.0 | 0.0   | 0.0 0.0  | 0.0    | 0.0    | 0       | 0.0    | 2 0.    | 0.0     | 0 0.(  | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0 | 100.0 | 0.0   | 0.0   | 0.0   | 0.2   | 0.0     | 0.0   |
| Carbonates      | 0.0   | 0.0   | 0.0 | 99.2  | 38.7 0   | 0.0    | 0.0    | 0       | 0.0    | 0.      | 1 0.4   | 0 0.(  | 2.5   | 3 0.0    | 0.0     | 0.0   | 8.3   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0   | 0.0 0.0  | 0.0    | 0.0    | 0       | 0.0    | 0 4.    | 9.0     | 0 0.(  | 0.0   | 0.0      | 0.0     | 0.0   | 0.7   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0   | 0.0 0.0  | 0.0    | 0.0    | 0 0     | 0.0    | 0.0     | 3 0.1   | 0 0.(  | 0.0   | 0.0      | 0.0     | 0.0   | 0.1   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 59.0  | 0.0     | 0.0   |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0   | 1.3 10   | 0.0    | 0.0    | 0       | 0.0 46 | .4 0.   | 0.0     | 0 0.(  | 0.0   | 0.0      | 0.0     | 0.0   | 0.1   | 100.0 | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Mixtures        | 0.0   | 0.1   | 0.0 | 0.8   | 0.9 0.0  | 0.0    | 0.0    | 0       | 0.0    | 0.0     | 8 0.    | 7 0.(  | 0.6   | 3 0.8    | 1.0     | 0.0   | 0.7   | 0.0   | 0.0 | 0.0   | 0.0   | 0.8   | 0.0   | 1.1   | 0.0     | 0.0   |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0 0.0  | 0.0    | 0.0    | 0 0     | 0.0    | 0.0     | 0.0     | 0 0.(  | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.0   | 0.0   |
| Total           | 100.0 | 100.0 | 0.0 | 100.0 | 00.0 10  | 0.0 10 | 0.0 10 | 0.0 10  | 0.0 10 | 9.0 100 | 0.0 100 | 0.0    | 0 100 | 0 100.   | 0 100.0 | 100.0 | 100.0 | 100.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0   | 100.0 |



| Table I7.2. | Element | Distribution- | Sample | PM2 |
|-------------|---------|---------------|--------|-----|
|-------------|---------|---------------|--------|-----|

| SKC-PM2         |       |       |     |         |       |       |         |        |         |          |        |        |         |         |         |          |         |       |     |       |       |       |       |         |        |      |
|-----------------|-------|-------|-----|---------|-------|-------|---------|--------|---------|----------|--------|--------|---------|---------|---------|----------|---------|-------|-----|-------|-------|-------|-------|---------|--------|------|
| Mineral         | Ag    | A     | Ρn  | ပ       | Ca    | Ū     | °<br>S  | ں<br>ک | cu      | -        | - e    |        | 2<br>Y  | lg ML   | n Na    | ž        | 0       | ٩     | Pb  | RE    | s     | Si    | Те    | ∩<br>ï⊢ | nknown | Zn   |
|                 | (%)   | (%)   | (%) | (%)     | (%)   | . (%) | ) (%)   | (%)    | ) (%)   | .) (%    | %) (%  | (%)    | (%) (%) | %) (%   | %) (%   | (%) (    | (%)     | (%)   | (%) | (%)   | (%)   | (%)   | (%)   | (%)     | (%)    | (%)  |
| Pyrrhotite      | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0 3    | 3.2    | 0.0    | 0 0.    | .0 0.   | 0.0     | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 49.7  | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 3 O.C  | ) 9.6   | 0.0      | 0 8.0  | 0.0    | 0 0.    | .0 0.   | 0.0     | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 23.2  | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.2 (   | 0.0    | 0.0     | 0.0      | 0 6.0  | 0.0    | 0       | .0 0.   | 0.0     | 96.3     | 0.0     | 0.0   | 0.0 | 0.0   | 23.8  | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0      | 0.0    | 0.0    | 0.0     | .0      | 0.0     | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 1.1   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0<br>C | 0.0 32 | 2.6 0  | .0 45   | 9.5 0.t | 0 0.0   | 0.0      | 43.2    | 0.0   | 0.0 | 0.0   | 0.0   | 77.6  | 0.0   | 0.0     | 0.0    | 0.0  |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0     | 0.4   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0      | 0 2.0  | 0 7.0  | 0 0.    | .3 0.0  | 0 0.0   | 0.0      | 0.4     | 0.0   | 0.0 | 0.0   | 0.0   | 0.5   | 0.0   | 0.0     | 0.0    | 0.0  |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0     | 0.2   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0      | 0 0.0  | 0.0    | 0       | .0 0.   | 0.0     | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Amphiboles      | 0.0   | 0.4   | 0.0 | 0.0     | 2.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0      | 0.2    | 0.1    | 0.0     | .2 52.  | .9 25.  | 5 0.0    | 0.3     | 0.0   | 0.0 | 0.0   | 0.0   | 0.7   | 0.0   | 0.5     | 0.0    | 0.0  |
| Chlorite        | 0.0   | 0.06  | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0      | 6.2 6  | 5.5 0  | .0 24   | 1.8 0.0 | 0.0     | 0.0      | 32.5    | 0.0   | 0.0 | 0.0   | 0.0   | 19.5  | 0.0   | 0.0     | 0.0    | 0.0  |
| Biotite         | 0.0   | 0.2   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0 4   | 6.7 C    | 0 0.0  | 1.1 7( | 0 0.0   | .1 0.(  | 0.0     | 0.0      | 0.1     | 0.0   | 0.0 | 0.0   | 0.0   | 0.1   | 0.0   | 0.0     | 0.0    | 0.0  |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0      | 0 0.0  | 0.0    | 0       | .0 0.   | 0.0     | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.1   | 0.0   | 0.0     | 0.0    | 0.0  |
| Plagioclase     | 0.0   | 0.3   | 0.0 | 0.0     | 0.2   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0      | 0 0.0  | 0.0    | 0.0     | .0 0.   | 0 59.   | 5 0.0    | 0.1     | 0.0   | 0.0 | 0.0   | 0.0   | 0.2   | 0.0   | 0.0     | 0.0    | 0.0  |
| K-feldspar      | 0.0   | 0.1   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0<br>C | 0 0.0  | 0.0 25 | 9.1 0   | .0 0.   | 0 0.0   | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Other silicates | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.1 C    | 0 0.0  | 0 0.0  | 0 0.    | .0 0.0  | 0 0.0   | 0.0      | 0.0     | 0.0   | 0.0 | 100.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Carbonates      | 0.0   | 0.0   | 0.0 | 99.7    | 92.8  | 0.0   | 0.0     | 0.0    | 0.0     | 0.0<br>C | 0.2    | 0.0    | .0 24   | 1.4 0.0 | 0.0     | 0.0      | 19.6    | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0 2    | 5.8 0  | 0.0    | 0       | .0 0.   | 0 0.0   | 0.0      | 2.8     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | D.0 C    | 0 9.0  | 0.0    | 0 0.    | .0 0.   | 0 0.0   | 0.0      | 0.1     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 99.0    | 0.0    | 0.0  |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0     | 2.0 1 | 0.00  | 0.0     | 0.0    | 0.0 5   | 3.2 C    | 0 0.0  | 0.0    | 0       | .0 0.   | 0.0     | 0.0      | 0.1     | 100.0 | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Mixtures        | 0.0   | 0.1   | 0.0 | 0.3     | 2.3   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0      | ·2     | 0.0    | 0       | .5 47.  | .1 15.  | 0.0 0    | 0.7     | 0.0   | 0.0 | 0.0   | 0.0   | 1.2   | 0.0   | 0.5     | 0.0    | 0.0  |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0     | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0      | 0 0.0  | 0.0    | 0       | .0 0.   | 0 0.0   | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 100.0  | 0.0  |
| Total           | 100.0 | 100.0 | 0.0 | 100.0 1 | 00.0  | 00.0  | 00.0 1( | 20.0   | 00.0 1( | 0.0 10   | 0.0 10 | 0.0 10 | 0.0 10  | 0.0 100 | 0.0 100 | .0 100.( | 0 100.0 | 100.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.00    | 100.0  | 0.00 |



| Table I7.3. | Element | Distribution- | Sample PX1 |
|-------------|---------|---------------|------------|
|-------------|---------|---------------|------------|

| SKC-PX1         |       |       |     |       |         |              |         |        |         |        |        |        |        |         |          |          |         |       |         |       |       |       |       |        |        |       |
|-----------------|-------|-------|-----|-------|---------|--------------|---------|--------|---------|--------|--------|--------|--------|---------|----------|----------|---------|-------|---------|-------|-------|-------|-------|--------|--------|-------|
| Mineral         | Ag    | A     | Au  | ပ     | ca      | <del>ว</del> | ී<br>ප  | ა<br>ს | Cu      | ш<br>Ш | e.     | -<br>- | 2<br>Y | ۹<br>M  | n<br>Na  | Ï        | 0       | ٩.    | Ч<br>Рр | RE    | s     | Si    | Te    | ⊃<br>F | nknown | Zn    |
|                 | (%)   | (%)   | (%) | (%)   | (%)     | (%)          | ) (%)   | ) (%   | ,) (%,  | (%)    | %) (%  | 6) (%  | 6) (%  | %) (%   | (%)      | (%)      | (%)     | (%)   | (%)     | (%)   | (%)   | (%)   | (%)   | (%)    | (%)    | (%)   |
| Pyrrhotite      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | ) 0.0  | 0.0     | 1.0    | .7 0.  | 0      | 0      | 0.0     | 0.0      | 0.0      | 0.0     | 0.0   | 0.0     | 0.0   | 44.9  | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | 0.0    | 9.9 C   | 0.0    | 8.     | 0.0    | 0      | 0.0     | 0.0      | 0.0      | 0.0     | 0.0   | 0.0     | 0.0   | 41.1  | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 11.4 (  | 0.0    | 0.0     | 0 0.   | .2     | 0.0    | 0      | 0.0     | 0 0.0    | 94.8     | 0.0     | 0.0   | 0.0     | 0.0   | 9.9   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | ) 0.0  | 0.0     | 0.0    | 0      | 0      | 0      | 0.0     | 0.0      | 0.0      | 0.0     | 0.0   | 0.0     | 0.0   | 1.6   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | ) 0.0  | 0.0     | 0 0.0  | 0.     | 0.0    | .0     | 1 0.4   | 0 0.0    | 0.0      | 1.5     | 0.0   | 0.0     | 0.0   | 0.0   | 1.3   | 0.0   | 0.0    | 0.0    | 0.0   |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0   | 0.2     | 0.0          | 0.0     | 0.0    | 0.0     | 1 0.1  | 1 1.   | 4 0    | 0      | .0 0.1  | 0 0.0    | 0.0      | 0.9     | 0.0   | 0.0     | 0.0   | 0.0   | 0.6   | 0.0   | 0.0    | 0.0    | 0.0   |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | ) 0.0  | 0.0     | 0 0.0  | 1.     | 0      | 0      | 2 0.4   | 0.0      | 0.0      | 0.3     | 0.0   | 0.0     | 0.0   | 0.0   | 0.3   | 0.0   | 0.0    | 0.0    | 0.0   |
| Amphiboles      | 0.0   | 26.2  | 0.0 | 0.0   | 95.9    | 0.0          | 0.0     | ) 0.0  | 0.0     | .0 35  | 5.1 24 | 0 0.1  | .0 57  | .6 100  | 0.0 98.  | 4 0.0    | 56.1    | 0.0   | 0.0     | 0.0   | 0.0   | 85.0  | 0.0   | 44.5   | 0.0    | 0.0   |
| Chlorite        | 0.0   | 72.5  | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | ) 0.0  | 0.0     | 0.0 55 | 9.3 72 | 2.8    | .0 37  | .9 0.   | 0.0      | 0.0      | 39.4    | 0.0   | 0.0     | 0.0   | 0.0   | 11.9  | 0.0   | 0.0    | 0.0    | 0.0   |
| Biotite         | 0.0   | 0.6   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | 0.0    | 0.0     | 2.2 0  | .2     | .3 95  | 3.8 0  | .6 0.1  | 0.0      | 0.0      | 0.5     | 0.0   | 0.0     | 0.0   | 0.0   | 0.3   | 0.0   | 0.0    | 0.0    | 0.0   |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | ) 0.0  | 0.0     | 0.0    | 0      | 0      | 0      | 0.0     | 0.0      | 0.0      | 0.0     | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| Plagioclase     | 0.0   | 0.1   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | ) 0.0  | 0.0     | 0.0    | 0.0    | 0      | 0      | 0.0     | 0 0.3    | 3 0.0    | 0.0     | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| K-feldspar      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | 0.0    | 0.0     | 0 0.   | 0      | 0.0    | .3 0   | 0.0     | 0 0.0    | 0.0      | 0.0     | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| Other silicates | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | ) 0.0  | 0.0     | 0 6.   | 0      | 0      | 0      | 0.0     | 0.0      | 0.0      | 0.0     | 0.0   | 0.0     | 100.0 | 0.0   | 0.0   | 0.0   | 0.6    | 0.0    | 0.0   |
| Carbonates      | 0.0   | 0.0   | 0.0 | 87.7  | 1.3     | 0.0          | 0.0     | ) 0.0  | 0.0     | 0 0.   | 0      | 0      | 0      | 1 0.4   | 0 0.0    | 0.0      | 0.2     | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | 0.0    | 0.0     | 0 0.0  | .2 0   | 0.0    | 0      | 0.0     | 0 0.0    | 0.0      | 0.0     | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | 0.0    | 0.0     | 0 0.0  | .6     | 0      | 0      | 0.0     | 0 0.0    | 0.0      | 0.2     | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 48.0   | 0.0    | 0.0   |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0   | 0.2 1   | 0.00         | 0.0     | ) 0.0  | 0.0     | 0      | 0      | 0      | 0      | 0.0     | 0.0      | 0.0      | 0.0     | 100.0 | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0   |
| Mixtures        | 0.0   | 0.6   | 0.0 | 12.3  | 1.5     | 0.0          | 0.0     | 0.0    | 0.0     | 0 0.0  | .6 0   | 5 0    | 0      | 8 0.4   | 0 1.4    | 1 0.0    | 0.9     | 0.0   | 0.0     | 0.0   | 0.0   | 0.6   | 0.0   | 6.9    | 0.0    | 0.0   |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0     | 0.0          | 0.0     | 0.0    | 0.0     | 0 0.0  | 0      | 0      | 0      | 0.0     | 0 0.0    | 0.0      | 0.0     | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0   |
| Total           | 100.0 | 100.0 | 0.0 | 100.0 | 100.0 1 | 00.0         | 00.0 1( | 0.00   | 00.0 10 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 100 | 0.0 100. | .0 100.0 | 0 100.0 | 100.0 | 0.0     | 100.0 | 100.0 | 100.0 | 100.0 | 0.00   | 100.0  | 00.00 |
|                 |       |       |     |       |         |              |         |        |         |        |        |        |        |         |          |          |         |       |         |       |       |       |       |        |        |       |





| Table I7.4 | . Element | Distribution- | Sample PX2 |
|------------|-----------|---------------|------------|
|------------|-----------|---------------|------------|

| SKC-PX2         |       |       |     |       |       |       |         |        |         |      |        |        |         |            |         |          |          |      |          |       |       |       |       |         |        |      |
|-----------------|-------|-------|-----|-------|-------|-------|---------|--------|---------|------|--------|--------|---------|------------|---------|----------|----------|------|----------|-------|-------|-------|-------|---------|--------|------|
| Mineral         | Ag    | A     | ΡN  | ပ     | ca    | ច     | ပိ      | ს<br>ს | Cu      | ш    | Fe     | т      | ×       | Mg M       | ln<br>N | la Ni    | 0        | ٩.   | Pb       | RE    | s     | Si    | Te    | ∩<br>ï⊢ | nknown | Zn   |
|                 | (%)   | (%)   | (%) | (%)   | (%)   | (%)   | (%)     | (%)    | (%)     | (%)  | (%)    | ) (%)  | ) (%)   | 6) (%      | 6) (%   | %) (%    | (%)      | (%)  | (%)      | (%)   | (%)   | (%)   | (%)   | (%)     | (%)    | (%)  |
| Pyrrhotite      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | .0 0.C     | 0.0     | .0 0.0   | 0.0<br>1 | 0.0  | 0.0      | 0.0   | 6.6   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 58.2    | 0.0  | 0.1    | 0.0    | 0.0     | 0.0<br>0.0 | 0.0     | .0 0.0   | 0.0      | 0.0  | 0.0      | 0.0   | 68.9  | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 32.7    | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | 0.0        | 0.0     | .0 85.   | 5 0.0    | 0.0  | 0.0      | 0.0   | 0.9   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | 0.0        | 0.0     | 0.0      | 0.0      | 0.0  | 0.0      | 0.0   | 3.5   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | 0.0        | 0.      | 0.0      | 0.0      | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | .0 0.C     | 0.0     | .0 0.0   | 0.0      | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0   | 0.2   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | 0.1 0.     | 0.0     | .0 0.0   | 0.1      | 0.0  | 0.0      | 0.0   | 0.0   | 0.1   | 0.0   | 0.0     | 0.0    | 0.0  |
| Amphiboles      | 0.0   | 43.6  | 0.0 | 0.0   | 95.0  | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 53.0 3 | 39.3   | 0.0 7   | 2.4 10     | 0.0 94  | 1.6 0.0  | 71.1     | 0.0  | 0.0      | 0.0   | 0.0   | 90.9  | 0.0   | 36.3    | 0.0    | 0.0  |
| Chlorite        | 0.0   | 51.1  | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 14.3 5 | 59.4   | 0.0 2   | 3.9 0.     | 0.0     | 0.0      | 24.7     | 0.0  | 0.0      | 0.0   | 0.0   | 6.4   | 0.0   | 0.0     | 0.0    | 0.0  |
| Biotite         | 0.0   | 2.3   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 97.4 | 0.7    | 1.1 5  | . 6.8   | 1.8        | 0.      | 0.0      | 1.4      | 0.0  | 0.0      | 0.0   | 0.0   | 0.9   | 0.0   | 0.0     | 0.0    | 0.0  |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | 0.0        | 0.0     | .0 0.0   | 0.0      | 0.0  | 0.0      | 0.0   | 0.0   | 0.1   | 0.0   | 0.0     | 0.0    | 0.0  |
| Plagioclase     | 0.0   | 0.3   | 0.0 | 0.0   | 0.1   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | 0.0        | 0.      | .1 0.0   | 0.2      | 0.0  | 0.0      | 0.0   | 0.0   | 0.1   | 0.0   | 0.0     | 0.0    | 0.0  |
| K-feldspar      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 1.1     | 0.0        | 0.0     | .0 0.0   | 0.0      | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Other silicates | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.3  | 0.0    | 0.0    | 0.0     | 0.0        | 0.0     | .0 0.0   | 0.0      | 0.0  | 0.0      | 100.0 | 0.0   | 0.0   | 0.0   | 0.4     | 0.0    | 0.0  |
| Carbonates      | 0.0   | 0.0   | 0.0 | 63.1  | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | 0.0        | 0 0.    | .0 0.0   | 0.0      | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | 0.0        | 0       | .0 0.0   | 0.0      | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.9    | 0.0    | 0.0     | 0.0        | 0.0     | .0 0.0   | 0.3      | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 44.8    | 0.0    | 0.0  |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0   | 0.2   | 100.0 | 0.0     | 0.0    | 0.0     | 2.3  | 0.0    | 0.0    | 0.0     | 0.0        | 0       | .0 0.0   | 0.0      | 100. | 0.0<br>C | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0  |
| Mixtures        | 0.0   | 2.7   | 0.0 | 36.9  | 4.5   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.8    | 0.1    | 0.0     | 1.9 0.     | .0      | .3 0.0   | 2.2      | 0.0  | 0.0      | 0.0   | 0.0   | 1.6   | 0.0   | 18.5    | 0.0    | 0.0  |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0    | 0.0     | 0.0  | 0.0    | 0.0    | 0.0     | 0.0        | 0.0     | .0 0.0   | 0.0      | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 100.0  | 0.0  |
| Total           | 100.0 | 100.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 1 | 00.0   | 100.0 1 | 00.0 | 00.0   | 00.0 1 | 00.0 1( | 00.0 10    | 0.0 10  | 0.0 100. | 0 100.0  | 100. | 0.0 0    | 100.0 | 100.0 | 100.0 | 100.0 | 100.0   | 100.0  | 0.00 |
|                 |       |       |     |       |       |       |         |        |         |      |        |        |         |            |         |          |          |      |          |       |       |       |       |         |        |      |



| Table 17.5. Element Dist | ribution- Sample MS1 |
|--------------------------|----------------------|
|--------------------------|----------------------|

| SKC-MS1         |       |       |     |       |       |      |         |        |      |      |        |       |          |         |        |         |          |       |       |       |         |       |       |       |         |       |
|-----------------|-------|-------|-----|-------|-------|------|---------|--------|------|------|--------|-------|----------|---------|--------|---------|----------|-------|-------|-------|---------|-------|-------|-------|---------|-------|
| Mineral         | Ag    | A     | Αu  | ပ     | ca    | ច    | ပိ      | ت<br>ت | сı   | ш    | Fe     | т     | ×        | Mg      | 4n N   | a N     | 0        | ₽.    | Pb    | RE    | s       | Si    | Te    | F     | Unknown | uZ    |
|                 | (%)   | (%)   | (%) | (%)   | (%)   | (%)  | (%)     | (%)    | (%)  | (%)  | (%)    | (%)   | (%)      | (%)     | %) (%  | %) (%   | (%)      | %)    | (%) ( | (%)   | (%)     | (%)   | (%)   | (%)   | (%)     | (%)   |
| Pyrrhotite      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 3.0    | 0.0   | 0.0      | 0.0     | 0.0    | .0      | 0.0<br>C | 0.0   | 0.0   | 0.0   | 27.3    | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 98.7 | 0.0  | 2.2    | 0.0   | )<br>0.C | 0.0     | 0.0    | .0 0.   | 0.0 C    | 0.0   | 0.0   | 0.0   | 37.2    | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 16.0    | 0.0    | 0.0  | 0.0  | 0.8    | 0.0   | 0.0      | 0.0     | 0.0    | .0 92.  | 6 0.0    | 0.0   | 0.0   | 0.0   | 12.2    | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 1.1    | 0.0   | 0.0      | 0.0     | 0.0    | .0      | 0.0<br>C | 0.0   | 0.0   | 0.0   | 18.5    | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.0    | 0.1   | 0.0      | 0.1 0   | 0.0    | .0 0.   | 0.1      | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   | 0.0      | 0.0     | 0.0    | .0 0.   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   | 0.0      | 0.0     | 0.0    | .0 0.   | 0.0<br>C | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Amphiboles      | 0.0   | 65.3  | 0.0 | 0.0   | 85.4  | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 78.4 7 | 74.6  | 3 0.0    | 37.3 10 | 0.0 44 | 1.6 0.1 | 0 69.7   | 0.0   | 0.0   | 0.0   | 0.0     | 76.1  | 0.0   | 45.4  | 0.0     | 0.0   |
| Chlorite        | 0.0   | 6.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 10.8 1 | 19.1  | 0.0      | 5.3 0   | 0.0    | .0 0.   | 0.4.0    | 0.0   | 0.0   | 0.0   | 0.0     | 1.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Biotite         | 0.0   | 4.1   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 91.8 | 2.5    | 5.6 8 | 5.5      | 6.0 C   | 0.0    | .0 0.   | 3.6      | 0.0   | 0.0   | 0.0   | 0.0     | 2.1   | 0.0   | 0.0   | 0.0     | 0.0   |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   | 0.0      | 0.0     | 0.0    | .0 0.   | 7 7.8    | 0.0   | 0.0   | 0.0   | 0.0     | 8.8   | 0.0   | 0.0   | 0.0     | 0.0   |
| Plagioclase     | 0.0   | 20.8  | 0.0 | 0.0   | 9.8   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   | 0.0      | 0.0     | 0.0 54 | 1.1 0.4 | 0 12.5   | 0.0   | 0.0   | 0.0   | 0.0     | 10.4  | 0.0   | 0.0   | 0.0     | 0.0   |
| K-feldspar      | 0.0   | 0.7   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   | 4.5      | 0.0 0.0 | 0.0    | .0 0.   | 0.4      | 0.0   | 0.0   | 0.0   | 0.0     | 0.4   | 0.0   | 0.0   | 0.0     | 0.0   |
| Other silicates | 0.0   | 2.2   | 0.0 | 0.0   | 2.0   | 0.0  | 0.0     | 0.0    | 0.0  | 6.6  | 0.0    | 0.6   | 0.0      | 0.0     | 0.0    | .0 0.   | 0.0      | 0.0   | 0.0   | 100.( | 0.0     | 0.5   | 0.0   | 32.4  | 0.0     | 0.0   |
| Carbonates      | 0.0   | 0.0   | 0.0 | 96.6  | 0.4   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   | 0.0      | 0.0     | 0.0    | .0 0.   | 0.1      | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.1    | 0.0   | 0.0      | 0.0 0.0 | 0.0    | .0 0.   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.2    | 0.0   | 0.0      | 0.0     | 0.0    | .0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   | 0.0   | 8.2   | 0.0     | 0.0   |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0   | 0.3 1 | 0.00 | 0.0     | 0.0    | 0.0  | 1.6  | 0.0    | 0.0   | 0.0      | 0.0 0.0 | 0.0    | .0 0.   | 0.1      | 100.  | 0.0   | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Mixtures        | 0.0   | 1.0   | 0.0 | 3.4   | 2.1   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.6    | 0.0   | 0.0      | 1.3 C   | 1.0    | .2 0.4  | 1.1      | 0.0   | 0.0   | 0.0   | 0.0     | 0.8   | 0.0   | 14.0  | 0.0     | 0.0   |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0  | 0.0     | 0.0    | 0.0  | 0.0  | 0.0    | 0.0   | 0.0      | 0.0     | 0.0    | .0 0.   | 0.0 C    | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 100.0   | 0.0   |
| Total           | 100.0 | 100.0 | 0.0 | 100.0 | 100.0 | 0.00 | 100.0 1 | 00.0   | 00.0 | 00.0 | 00.0   | 00.0  | 0.0      | 00.0 10 | 0.0 10 | 0.0 100 | 0 100.   | 0 100 | 0.0   | 100.  | 0 100.0 | 100.0 | 100.0 | 100.0 | 100.0   | 100.0 |





| Table 17.6. Element Distribution | n- Sample MS2 |
|----------------------------------|---------------|
|----------------------------------|---------------|

| SKC-MS2         |       |       |     |        |               |        |         |        |        |        |         |       |       |       |       |      |       |        |        |        |       |         |         |         |       |
|-----------------|-------|-------|-----|--------|---------------|--------|---------|--------|--------|--------|---------|-------|-------|-------|-------|------|-------|--------|--------|--------|-------|---------|---------|---------|-------|
| Mineral         | Ag    | AI    | Au  | ۔<br>ں | Ca            | 0<br>0 | 0<br>0  | Ŭ<br>L | u<br>L | Fe     | I       | ¥     | Mg    | ЧN    | Na    | ïŻ   | 0     | ц<br>Ч | h de   | ш<br>Ш | s     | Si Te   | Ē       | Unknown | nZ    |
|                 | (%)   | (%)   | (%) | ) (%)  | ,) (%,        | .) (%  | %) (%   | (%     | %) (%  | (%)    | (%)     | (%)   | (%)   | (%)   | (%)   | (%)  | (%)   | 。) (%) | 5) (%  | 5) (%  | %) (% | %) (%   | (%)     | (%)     | (%)   |
| Pyrrhotite      | 0.0   | 0.0   | 0.0 | 0.0    | 0.C           | 0.0    | 0.0     | 0.0    | 0 0.0  | 2.6    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | 0.0 24 | 1.9 0 | .0 0.0  | 0.0 0.0 | 0.0     | 0.0   |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0    | 0.C           | 0.0    | 0.0     | 0 89   | .5 0.0 | ) 2.5  | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | .0 4   | 5.5 0 | .0 0.0  | 0.0 0.0 | 0.0     | 0.0   |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0    | 0.0           | 0.0    | 0.6     | 0 0.   | 0 0.0  | 1.0    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 82.2 | 0.0   | 0.0    | 0.0    | 0.0    | 3.5 0 | .0 0.   | 0.0 0.0 | 0.0     | 0.0   |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0    | 0.0           | 0.0    | 0.0     | 0.0    | 0 0.0  | 0.4    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | 0.0    | .7 0  | .0 0.   | 0.0     | 0.0     | 0.0   |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0    | 0.0           | 0.0    | 0.0     | 0.0    | 0.0    | 0.0    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | 0.0    | 0.0   | .0 0.   | 0.0     | 0.0     | 0.0   |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0    | 0.0           | 0.0    | 0.0     | 0.0    | 0.0    | 0.0    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | 0.0    | 0.0   | .0      | 0.0     | 0.0     | 0.0   |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0    | 0.1 C         | 0.0    | 0.0     | 0.0    | 0 0.0  | 0.0    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | 0 0.0  | 0 0   | .0 0.   | 0.0     | 0.0     | 0.0   |
| Amphiboles      | 0.0   | 13.4  | 0.0 | 0.0 3  | 3.7 C         | 0.0    | 0.0     | 0.0    | 0 0.0  | 32.7   | 21.0    | 0.0   | 39.6  | 100.0 | 5.3   | 0.0  | 19.3  | 0.0    | 0.0    | 0 0.0  | .0 26 | 3.2 0.0 | 0 65.1  | 0.0     | 0.0   |
| Chlorite        | 0.0   | 12.2  | 0.0 | 0.0    | 0.C           | 0.0    | 0.0     | 0.0    | 0 0.0  | 47.5   | 57.1    | 0.0   | 25.8  | 0.0   | 0.0   | 0.0  | 11.7  | 0.0    | 0.0    | 0 0.   | .0 3  | .7 0.0  | 0.0     | 0.0     | 0.0   |
| Biotite         | 0.0   | 9.6   | 0.0 | 0.0    | 0.0           | 0.0    | 0.0     | 0 0.   | 0 99.  | 1 12.5 | 19.4    | 93.9  | 34.0  | 0.0   | 0.0   | 0.0  | 12.1  | 0.0    | 0.0    | 0 0.   | .0 8  | .8 0.0  | 0.0 0.0 | 0.0     | 0.0   |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0    | 0.0           | 0.0    | 0.0     | 0.0    | 0 0.0  | 0.0    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 4.0   | 0.0    | 0.0    | 0 0.   | .0 5  | .7 0.(  | 0.0     | 0.0     | 0.0   |
| Plagioclase     | 0.0   | 57.8  | 0.0 | 0.0 5  | 6.7 C         | 0.0    | 0.0     | 0.0    | 0.0    | 0.0    | 0.0     | 0.0   | 0.0   | 0.0   | 94.6  | 0.0  | 49.2  | 0.0    | 0.0    | 0.0    | .0 52 | 2.8 0.0 | 0.0     | 0.0     | 0.0   |
| K-feldspar      | 0.0   | 0.6   | 0.0 | 0.0    | 0.0           | 0.0    | 0.0     | 0.0    | 0.0    | 0.0    | 0.0     | 6.1   | 0.0   | 0.0   | 0.0   | 0.0  | 0.5   | 0.0    | 0.0    | 0.0    | 0.0   | .6 0.0  | 0.0     | 0.0     | 0.0   |
| Other silicates | 0.0   | 6.2   | 0.0 | 0.0    | 3.3 C         | 0.0    | 0.0     | 0 0.   | 0 0.2  | 0.0    | 2.4     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 2.9   | 0.0    | 0.0 10 | 0.0    | .0 1  | .9 0.0  | 0 15.0  | 0.0     | 0.0   |
| Carbonates      | 0.0   | 0.0   | 0.0 | 33.6 ( | 0.0           | 0.0 C  | 0.0     | 0 0.   | 0 0.0  | 0.0    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | 0 0.   | 0 0   | .0 0.0  | 0.0     | 0.0     | 0.0   |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0    | 0.0           | 0.0 C  | 0.0     | 0 0.   | 0 0.0  | 0.2    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | 0 0.   | 0 0   | .0 0.   | 0.0     | 0.0     | 0.0   |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0    | 0.0           | 0.0    | 0.0     | 0 0.   | 0 0.0  | 0.0    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | 0 0.   | 0 0   | .0 0.   | 0 1.1   | 0.0     | 0.0   |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0    | <b>J.5</b> 10 | 0.0 C  | 0.0     | 0<br>0 | 0 0.7  | 0.0    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.1 1 | 00.00  | 0.0    | 0.0    | 0     | .0      | 0.0     | 0.0     | 0.0   |
| Mixtures        | 0.0   | 0.2   | 0.0 | 6.4 (  | 0.7 0         | 0.0    | 0.0     | 0.0    | 0.0    | 0.2    | 0.0     | 0.0   | 0.5   | 0.0   | 0.1   | 0.0  | 0.3   | 0.0    | 0.0    | 0.0    | 0     | .2      | 0 17.8  | 0.0     | 0.0   |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0    | 0.0           | 0.0    | 0.0     | 0.0    | 0 0.0  | 0.0    | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0    | 0 0.   | 0 0   | .0 0.   | 0.0     | 100.0   | 0.0   |
| Total           | 100.0 | 100.0 | 0.0 | 00.0   | 00.0 10       | 0.0 10 | 0.0 100 | 0.10   | 0.0    | 0 100. | 0 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.00 | 00.0  | 0.00   | -<br>- | 0.0    | 0.0   | 0.0 100 | .0 100. | 0 100.0 | 100.0 |



| Table I7.7 | . Element | Distribution- | Sample | TZ1 |
|------------|-----------|---------------|--------|-----|
|------------|-----------|---------------|--------|-----|

| SKC-TZ1         |       |       |     |       |       |       |         |      |      |             |        |         |        |        |         |                |       |        |       |       |       |       |       |       |         |       |
|-----------------|-------|-------|-----|-------|-------|-------|---------|------|------|-------------|--------|---------|--------|--------|---------|----------------|-------|--------|-------|-------|-------|-------|-------|-------|---------|-------|
| Mineral         | Ag    | ¥     | Αu  | ပ     | ca    | ច     | ပိ      | ບັ   | cu   | L.          | Fe     | т       | X      | VIG M  | z<br>u  | a Ni           | 0     | ٩.     | Pb    | RE    | s     | Si    | Te    | Ħ     | Unknown | nZ    |
|                 | (%)   | (%)   | (%) | (%)   | (%)   | (%)   | (%)     | (%)  | (%)  | (%)         | (%)    | ) (%)   | ) (%   | %) (%  | %) (%   | 5) (% <u>,</u> | (%) ( | (%)    | (%)   | (%)   | (%)   | (%)   | (%)   | (%)   | (%)     | (%)   |
| Pyrrhotite      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 5.1    | 0.0     | 0.0    | 0.0    | 0.      | 0.0            | 0.0   | 0.0    | 0.0   | 0.0   | 33.2  | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 98.5 | 0.0         | 3.1    | 0.0     | 0.0    | 0.0    | 0.      | 0.0            | 0.0   | 0.0    | 0.0   | 0.0   | 38.1  | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 55.3    | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | 0.0    | 0.0    | 0.      | 0 90.          | 0.0   | 0.0    | 0.0   | 0.0   | 9.4   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 1.2    | 0.0     | 0.0    | 0.0    | 0 0.    | 0 0.0          | 0.0   | 0.0    | 0.0   | 0.0   | 14.3  | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | 0.0    | 0.1    | 0.0     | 0.0            | 0.0 ( | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | 0.0    | 0.0    | 0.0     | 0.0            | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | 0.0    | 0.0    | 0       | 0.0            | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Amphiboles      | 0.0   | 35.0  | 0.0 | 0.0   | 44.0  | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 57.1 4 | 13.2 (  | 0.0    | 3.7 10 | 0.0 6.  | 3 0.0          | 31.0  | 0.0    | 0.0   | 0.0   | 0.0   | 31.7  | 0.0   | 37.8  | 0.0     | 0.0   |
| Chlorite        | 0.0   | 5.3   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 25.1 3 | 37.8 (  | 0.0    | 5.8 0. | 0       | 0.0            | 5.7   | 0.0    | 0.0   | 0.0   | 0.0   | 1.8   | 0.0   | 0.0   | 0.0     | 0.0   |
| Biotite         | 0.0   | 4.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | <b>36.8</b> | 6.3 1  | 2.2 8   | 6.5 1  | 9.8 0. | 0.0     | 0.0            | 5.6   | 0.0    | 0.0   | 0.0   | 0.0   | 4.1   | 0.0   | 0.0   | 0.0     | 0.0   |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | 0.0    | 0.0    | 0.0     | 0 0.0          | 9.2   | 0.0    | 0.0   | 0.0   | 0.0   | 13.1  | 0.0   | 0.0   | 0.0     | 0.0   |
| Plagioclase     | 0.0   | 43.7  | 0.0 | 0.0   | 40.6  | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | 0.0    | 0.0    | .0 93   | .5 0.0         | 41.7  | 0.0    | 0.0   | 0.0   | 0.0   | 44.6  | 0.0   | 0.0   | 0.0     | 0.0   |
| K-feldspar      | 0.0   | 0.6   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | 3.6 (  | 0.0    | 0       | 0.0            | 0.6   | 0.0    | 0.0   | 0.0   | 0.0   | 0.6   | 0.0   | 0.0   | 0.0     | 0.0   |
| Other silicates | 0.0   | 11.3  | 0.0 | 0.0   | 14.6  | 0.0   | 0.0     | 0.0  | 0.0  | 2.3         | 0.0    | 6.7 (   | ) 0.0  | 0.0    | 0 0.    | 0 0.0          | 6.0   | 0.0    | 0.0   | 100.0 | 0.0   | 3.9   | 0.0   | 51.8  | 0.0     | 0.0   |
| Carbonates      | 0.0   | 0.0   | 0.0 | 89.4  | 0.1   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | 0.0    | 0.0    | 0 0     | 0 0.0          | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.5    | 0.0     | 0.0    | 0.0    | 0 0     | 0 0.0          | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | ) 0.0  | 0.0    | 0.      | 0.0            | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 1.0   | 0.0     | 0.0   |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0   | 0.3   | 100.0 | 0.0     | 0.0  | 0.0  | 0.9         | 0.0    | 0.0     | 0.0    | 0.0    | 0       | 0.0            | 0.0   | 100.   | 0.0 0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Mixtures        | 0.0   | 0.1   | 0.0 | 10.7  | 0.6   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.2    | 0.0     | ) 0.0  | 0.0    | .0 0.   | 1 0.0          | 0.2   | 0.0    | 0.0   | 0.0   | 0.0   | 0.2   | 0.0   | 9.5   | 0.0     | 0.0   |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0    | 0.0     | 0.0    | 0.0    | 0 0     | 0 0.0          | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.0   | 0.0   |
| Total           | 100.0 | 100.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 1 | 00.0 | 00.0 | 00.0        | 00.0   | 00.0 1( | 0.0 1( | 0.0 10 | 0.0 100 | 0.0 100.       | 0 100 | 0 100. | 0.0   | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0   | 100.0 |


| Table I7.8 | . Element | Distribution- | Sample | TZ2 |
|------------|-----------|---------------|--------|-----|
|------------|-----------|---------------|--------|-----|

| SKC-TZ2         |       |       |     |          |         |      |         |        |         |        |          |          |        |         |         |          |         |       |     |       |       |       |       |       |         |       |
|-----------------|-------|-------|-----|----------|---------|------|---------|--------|---------|--------|----------|----------|--------|---------|---------|----------|---------|-------|-----|-------|-------|-------|-------|-------|---------|-------|
| Mineral         | Ag    | A     | Αu  | υ<br>υ   | Ca      | Ū    | წ       | -<br>ნ | сu      |        | e<br>Le  | т        | K<br>K | Ng M    | N<br>N  | a<br>N   | 0       | ٩.    | Pb  | RE    | s     | Si    | Те    | F     | Unknown | Zn    |
|                 | (%)   | (%)   | (%) | ) (%)    | ) (%)   | (%)  | s) (%)  | ) (%   | ) (%)   | ) (%   | ,)<br>(% | ,)<br>(% | .) (%  | %) (%   | %) (%   | (%) (%)  | (%)     | (%)   | (%) | (%)   | (%)   | (%)   | (%)   | (%)   | (%)     | (%)   |
| Pyrrhotite      | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.C  | 0.0     | 0.0    | 0.0     | 1.0.0  | 0.7 0    | 0.0      | 0.0    | 0.0     | 0.      | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 57.1  | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.C  | 0.0     | 0.0    | 0.0     | 2 0.0  | 2.1 0    | 0.0      | 0.0    | 0.0     | 0.0     | 0.0 0.0  | 0.0     | 0.0   | 0.0 | 0.0   | 21.3  | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     |      | 5.7 0   | 0.0    | 0.0     | , 0.0  | 1.1 0    | 0.0      | 0.0    | 0.0     | 0.      | 0 93.6   | 0.0 €   | 0.0   | 0.0 | 0.0   | 9.6   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.9 0.0  | 0.0      | 0.0    | 0.0     | 0.      | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 9.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.0      | 0.0      | 0.0    | 0.0     | 0.0     | 0.0 0.0  | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.C  | 0.0     | 0.0    | 0.0     | 0.0    | 0.0      | 0.0      | 0.0    | 0.0     | 0.0     | 0.0 0.0  | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.0      | 0.0      | 0.0    | 0.0     | 0.      | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Amphiboles      | 0.0   | 26.7  | 0.0 | 0.0      | 18.3 (  | 0.0  | 0.0     | 0.0    | 0.0     | 0.0 4  | 6.2 3    | 6.5 0    | 0.0    | 0.8 10( | 0 9     | 2 0.0    | 31.9    | 0.0   | 0.0 | 0.0   | 0.0   | 39.0  | 0.0   | 53.1  | 0.0     | 0.0   |
| Chlorite        | 0.0   | 9.8   | 0.0 | 0.0      | 0.0     | 0.C  | 0.0     | 0.0    | 0.0     | 0.0    | 2.1 4    | 8.2 0    | 1.0    | 9.9 0.  | 0.      | 0.0      | 9.2     | 0.0   | 0.0 | 0.0   | 0.0   | 2.8   | 0.0   | 0.0   | 0.0     | 0.0   |
| Biotite         | 0.0   | 5.6   | 0.0 | 0.0      | 0.0     | 0.0  | 0.0     | 0.0    | 0.0     | 7.3 6  | 5.1 1    | 1.9 9    | 0.4 1; | 8.9 0.  | 0 0.    | 0 0.0    | 6.9     | 0.0   | 0.0 | 0.0   | 0.0   | 4.8   | 0.0   | 0.0   | 0.0     | 0.0   |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.0      | 0.0      | 0.0    | 0.0     | 0.      | 0.0      | 6.5     | 0.0   | 0.0 | 0.0   | 0.0   | 8.9   | 0.0   | 0.0   | 0.0     | 0.0   |
| Plagioclase     | 0.0   | 48.9  | 0.0 | 0.0 4    | 11.1 (  | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.0      | 0.0      | 0.0    | 0.0     | 06 0    | .7 0.0   | 40.8    | 0.0   | 0.0 | 0.0   | 0.0   | 41.6  | 0.0   | 0.0   | 0.0     | 0.0   |
| K-feldspar      | 0.0   | 0.6   | 0.0 | 0.0      | 0.0     | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.0      | 0.0      | 0 9.0  | 0.0     | 0 0.    | 0 0.0    | 0.5     | 0.0   | 0.0 | 0.0   | 0.0   | 0.5   | 0.0   | 0.0   | 0.0     | 0.0   |
| Other silicates | 0.0   | 8.3   | 0.0 | 0.0      | 9.7 (   | 0.0  | 0.0     | 0.0    | 0.0     | ) 9.1  | 0.0      | 3.3 C    | 0.0    | 0.0     | 0.0     | 0 0.0    | 3.8     | 0.0   | 0.0 | 100.0 | 0.0   | 2.4   | 0.0   | 40.5  | 0.0     | 0.0   |
| Carbonates      | 0.0   | 0.0   | 0.0 | 88.3 (   | 0.1 (   | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.0      | 0.0      | 0.0    | 0.0     | 0.      | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | ).2 C    | D.0 C    | 0.0    | 0.0     | 0 0.    | 0 0.0    | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.0      | D.0 C    | 0.0    | 0.0     | 0.0     | 0 0.0    | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.2   | 0.0     | 0.0   |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0      | 0.4 1(  | 0.00 | 0.0     | .0.0   | 0.0     | 1.1    | 0.0      | 0.0      | 0.0    | 0.0     | 0.      | 0.0      | 0.1     | 100.( | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Mixtures        | 0.0   | 0.1   | 0.0 | 11.7 (   | 0.4 (   | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.1      | 0.0      | 0.0    | 0.3     | 0.0     | 1 0.0    | 0.2     | 0.0   | 0.0 | 0.0   | 0.0   | 0.1   | 0.0   | 6.2   | 0.0     | 0.0   |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0      | 0.0     | 0.0  | 0.0     | 0.0    | 0.0     | 0.0    | 0.0      | D.0 C    | 0.0    | 0.0     | 0 0.    | 0 0.0    | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.0   | 0.0   |
| Total           | 100.0 | 100.0 | 0.0 | 100.0 1( | 00.0 1( | 00.0 | 00.0 10 | 0.0 1( | 00.0 10 | 0.0 1( | 0.0 10   | 00.0     | 0.0 10 | 0.0 10( | 0.0 100 | 0.0 100. | 0 100.0 | 100.( | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0   | 100.0 |



| SKC-BAS1        |       |       |     |       |       |       |       |       |      |       |       |       |        |        |         |          |         |       |     |       |       |       |       |       |       |      |
|-----------------|-------|-------|-----|-------|-------|-------|-------|-------|------|-------|-------|-------|--------|--------|---------|----------|---------|-------|-----|-------|-------|-------|-------|-------|-------|------|
| Mineral         | Ag    | A     | Au  | ပ     | g     | ច     | ပိ    | ບັ    | cu   | Ľ     | Fe    | т     | A<br>V | 1g M   | u<br>N  | a<br>Ni  | 0       | ٩     | Ρp  | RE    | s     | Si    | Te    | Ti Un | known | Zn   |
|                 | (%)   | (%)   | (%) | (%)   | (%)   | (%)   | (%)   | (%)   | (%)  | ) (%) | ) (%  | ) (%  | %) (%  | %) (%  | %) (%   | (%) (%)  | (%)     | (%)   | (%) | (%)   | (%)   | (%)   | (%)   | (%)   | (%)   | (%)  |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 98.9 | 0.0   | 3.3 C | 0.0   | 0.0    | 0 0.0  | .0 0.   | 0 0.0    | 0.0     | 0.0   | 0.0 | 0.0   | 19.6  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 4.3   | 0.0   | 0.0  | 0.0   | 3.0 C | 0.0   | 0.0    | 0 0.0  | .0 0.   | 0 95.1   | 0.0     | 0.0   | 0.0 | 0.0   | 15.4  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 1.8 C | 0.0   | 0.0    | 0 0.0  | 0.0     | 0.0 0.0  | 0.0     | 0.0   | 0.0 | 0.0   | 10.8  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.1 ( | 0.0    | 0.2    | .0      | 0 0.0    | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0    | 0 0.0  | 0.      | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0    | 0 0.0  | 0.      | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Amphiboles      | 0.0   | 7.9   | 0.0 | 0.0   | 12.2  | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 7.5 1 | 1.7 ( | 1.0.0  | 7.3 10 | 0.0     | 9 0.0    | 6.7     | 0.0   | 0.0 | 0.0   | 0.0   | 7.0   | 0.0   | 33.6  | 0.0   | 0.0  |
| Chlorite        | 0.0   | 5.2   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0 3 | 4.1 4 | 5.4 ( | 0.0    | 0 0.6  | 0.      | 0.0      | 5.4     | 0.0   | 0.0 | 0.0   | 0.0   | 1.8   | 0.0   | 0.0   | 0.0   | 0.0  |
| Biotite         | 0.0   | 10.4  | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 9.3 2 | 2.7 3 | 9.0 9 | 1.3 6  | 3.4 0  | 0.      | 0.0      | 14.2    | 0.0   | 0.0 | 0.0   | 0.0   | 10.5  | 0.0   | 0.0   | 0.0   | 0.0  |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0    | 0 0.0  | 0.      | 0.0      | 5.1     | 0.0   | 0.0 | 0.0   | 0.0   | 7.4   | 0.0   | 0.0   | 0.0   | 0.0  |
| Plagioclase     | 0.0   | 70.2  | 0.0 | 0.0   | 78.2  | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0    | 0 0.0  | 0.09    | .1 0.0   | 64.8    | 0.0   | 0.0 | 0.0   | 0.0   | 70.5  | 0.0   | 0.0   | 0.0   | 0.0  |
| K-feldspar      | 0.0   | 1.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 3 0.0 | 3.7 0  | 0 0.0  | 0.      | 0.0      | 0.9     | 0.0   | 0.0 | 0.0   | 0.0   | 1.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Other silicates | 0.0   | 5.3   | 0.0 | 0.0   | 8.3   | 0.0   | 0.0   | 0.0   | 0.0  | 0.2 ( | 0.0   | 3.8 ( | 0.0    | 0 0.0  | 0.      | 0.0      | 2.7     | 0.0   | 0.0 | 100.0 | 0.0   | 1.8   | 0.0   | 34.3  | 0.0   | 0.0  |
| Carbonates      | 0.0   | 0.0   | 0.0 | 95.0  | 0.7   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0    | 0 0.0  | 0.0     | 0.0      | 0.1     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.4 C | 0.0   | 0.0    | 0 0.0  | .0      | 0.0      | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.1 C | 0.0   | 0.0    | 0 0.0  | .0      | 0 0.0    | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 25.4  | 0.0   | 0.0  |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0   | 0.5   | 100.0 | 0.0   | 0.0   | 0.0  | 0.5 ( | D.0 C | 0.0   | 0.0    | 0 0.0  | .0      | 0 0.0    | 0.1     | 100.0 | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  |
| Mixtures        | 0.0   | 0.0   | 0.0 | 5.0   | 0.1   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.1 C | 0.0   | 0.0    | .1 0   | .0      | 0 0.0    | 0.1     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 6.7   | 0.0   | 0.0  |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | D.0 C | 0.0   | 0.0    | 0 0.0  | .0      | 0 0.0    | 0.0     | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.0 | 0.0  |
| Total           | 100.0 | 100.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 00.0 | 00.0  | 0.0   | 0.0   | 0.00   | 0.0 10 | 0.0 100 | 0.0 100. | 0 100.0 | 100.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0.00  | 100.0 | 0.00 |

| Table 17.10. Element Distribution- Sample BAS2 |
|------------------------------------------------|
|------------------------------------------------|

| SKC-BAS2        |       |       |     |      |          |          |       |          |         |        |          |        |         |          |        |         |       |       |     |       |       |       |       |        |         |      |
|-----------------|-------|-------|-----|------|----------|----------|-------|----------|---------|--------|----------|--------|---------|----------|--------|---------|-------|-------|-----|-------|-------|-------|-------|--------|---------|------|
| Mineral         | Ag    | A     | Au  | ပ    | ca<br>Ca | <u>อ</u> | ပိ    | ۔<br>ت   | Cu      | ш<br>ш | e F      | -<br>- | Ň       | g Mr     | n Na   | ïŻ      | 0     | ⊾     | ΡP  | RE    | s     | Si    | Te    | ר<br>ד | Inknown | Zn   |
|                 | (%)   | (%)   | (%) | (%)  | (%)      | (%)      | ) (%) | ) (%     | (%)     | %) (%  | (%) (%)  | 6) (6  | %) (%   | (%)      | (%) (  | (%)     | (%)   | (%)   | (%) | (%)   | (%)   | (%)   | (%)   | (%)    | (%)     | (%)  |
| Pyrrhotite      | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      | 0.0     | 1.     | .6       | 0.     | 0       | 0.0      | 0.0    | 0.0     | 0.0   | 0.0   | 0.0 | 0.0   | 8.4   | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Chalcopyrite    | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.C      | 18.1 O  | .0     | .0 0.    | 0.0    | 0.0     | 0.0      | 0.0    | 0.0     | 0.0   | 0.0   | 0.0 | 0.0   | 81.8  | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Pentlandite     | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 8.0   | 0.0      | 0 0.0   | 0.     | .2       | 0.0    | 0.0     | 0.0      | 0.0    | 83.6    | 0.0   | 0.0   | 0.0 | 0.0   | 1.6   | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Pyrite          | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      | 0.0     | 0.     | .5 0.    | 0.     | 0       | 0.0      | 0.0    | 0.0     | 0.0   | 0.0   | 0.0 | 0.0   | 4.6   | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Talc            | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      | 0 0.0   | 0.0    | .0 0.    | 0.0    | 0.0     | 0.0      | 0.0    | 0.0     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Serpentine      | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | )<br>0.C | 0.0     | 0.     | .0<br>0. | 0.0    | 0       | 0.0      | 0.0    | 0.0     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Clinopyroxene   | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | ) 0.C    | 0 0.0   | 0.0    | .0 0.    | 0.0    | 0.0     | 0.0      | 0.0    | 0.0     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Amphiboles      | 0.0   | 45.1  | 0.0 | 0.0  | 51.7     | 0.0      | 0.0   | 0.0      | 0 0.0   | .0 51  | 1.7 39   | .4 0.  | 0 60    | .3 100.  | 0 5.6  | 0.0     | 36.3  | 0.0   | 0.0 | 0.0   | 0.0   | 34.3  | 0.0   | 18.7   | 0.0     | 0.0  |
| Chlorite        | 0.0   | 7.9   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | ) 0.C    | 0 0.0   | .0 32  | 2.4 50   | .6 0.  | 0 24    | .4 0.0   | 0.0    | 0.0     | 9.4   | 0.0   | 0.0 | 0.0   | 0.0   | 3.3   | 0.0   | 0.0    | 0.0     | 0.0  |
| Biotite         | 0.0   | 2.9   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      | 0.0 9t  | 3.6 4. | .0 8.    | 0 84   | .4 14   | 0.0      | 0.0    | 0.0     | 4.5   | 0.0   | 0.0 | 0.0   | 0.0   | 3.6   | 0.0   | 0.0    | 0.0     | 0.0  |
| Quartz          | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      | 0.0     | 0.0    | .0 0.    | 0.0    | 0.0     | 0.0      | 0.0    | 0.0     | 4.7   | 0.0   | 0.0 | 0.0   | 0.0   | 7.3   | 0.0   | 0.0    | 0.0     | 0.0  |
| Plagioclase     | 0.0   | 39.6  | 0.0 | 0.0  | 41.9     | 0.0      | 0.0   | ) 0.C    | 0 0.0   | 0.0    | .0 0.    | 0.0    | 0.0     | 0.0      | 94.3   | 0.0     | 41.9  | 0.0   | 0.0 | 0.0   | 0.0   | 49.1  | 0.0   | 0.0    | 0.0     | 0.0  |
| K-feldspar      | 0.0   | 0.5   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      | 0 0.0   | 0.     | .0       | 0 15   | .6 0.   | 0.0      | 0.0    | 0.0     | 0.6   | 0.0   | 0.0 | 0.0   | 0.0   | 0.7   | 0.0   | 0.0    | 0.0     | 0.0  |
| Other silicates | 0.0   | 3.8   | 0.0 | 0.0  | 5.6      | 0.0      | 0.0   | ) O.C    | 0.0 2   | .1     | .0 2.    | 0.0    | 0.0     | 0.0      | 0.0    | 0.0     | 2.2   | 0.0   | 0.0 | 100.0 | 0.0   | 1.6   | 0.0   | 23.1   | 0.0     | 0.0  |
| Carbonates      | 0.0   | 0.0   | 0.0 | 96.0 | 0.1      | 0.0      | 0.0   | ) 0.C    | 0.0     | 0.     | .0       | 0.     | 0       | 0.0      | 0.0    | 0.0     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Magnetite       | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      | 0.0     | 0.0    | .3 0.    | 0.0    | 0.0     | 0.0      | 0.0    | 0.0     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Ilmenite        | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      | 0.0     | 0.0    | .8 0.    | 0.     | 0.0     | 0.0      | 0.0    | 0.0     | 0.1   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 54.5   | 0.0     | 0.0  |
| Apatite         | 0.0   | 0.0   | 0.0 | 0.0  | 0.3 1    | 0.00     | 0.0   | 0.0      | 0.0     | .3     | .0       | 0.0    | 0       | 0.0      | 0.0    | 0.0     | 0.1   | 100.0 | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0     | 0.0  |
| Mixtures        | 0.0   | 0.1   | 0.0 | 4.0  | 0.4      | 0.0      | 0.0   | 0.0      | 0.0     | .0 0.  | .1 0.    | 0.0    | 0.0     | 4 0.C    | 0.1    | 0.0     | 0.2   | 0.0   | 0.0 | 0.0   | 0.0   | 0.2   | 0.0   | 3.7    | 0.0     | 0.0  |
| Unclassified    | 0.0   | 0.0   | 0.0 | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      | 0.0     | 0.     | .0<br>0. | 0      | 0       | 0.0      | 0.0    | 0.0     | 0.0   | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0   | 0.0  |
| Total           | 100.0 | 100.0 | 0.0 | 00.0 | 00.0     | 00.0     | 00.0  | 0.0      | 00.0 10 | 0.0 10 | 0.0 10(  | 0.0    | 0.0 100 | 0.0 100. | 0 100. | 0 100.0 | 100.0 | 100.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0  | 100.0   | 0.00 |





## Table 18. Mineral list and coding used in SEM Automated Mineralogy analysis

| Mineral       | Density | Formula                                              |
|---------------|---------|------------------------------------------------------|
| Pyrrhotite    | 4.62    | Fe2+0.95S                                            |
| Mackinawite   | 4.3     | Fe1.05S                                              |
| Chalcopyrite  | 4.2     | CuFe2+S2                                             |
| Bornite       | 5.1     | Cu5Fe2+S4                                            |
| Cubanite      | 4.7     | CuFe2+2S3                                            |
| Chalcocite    | 6.5     | Cu2S                                                 |
| Pentlandite   | 4.8     | Fe2+4.5Ni4.5S8                                       |
| Millerite     | 5.5     | NiS                                                  |
| Violarite     | 4.65    | Fe2+Ni2S4                                            |
| Polydymite    | 4.65    | NiNi2S4                                              |
| Sphalerite    | 4       | ZnS                                                  |
| Pyrite        | 5.01    | Fe2+S2                                               |
| Galena        | 7.4     | PbS                                                  |
| Gold          | 19.3    | Au                                                   |
| Hessite       | 7.55    | Ag2Te                                                |
| Talc          | 2.75    | Mg3Si4O10(OH)2                                       |
| Olivine       | 3.32    | Mg1.6Fe2+0.4(SiO4)                                   |
| Serpentine    | 2.4     | (Mg,Fe)3Si2O5(OH)4                                   |
| Clinopyroxene | 3.4     | (Ca,Na)(Mg,Fe,Al)(Si,Al)2O6                          |
| Amphibole     | 2.9     | Ca2(Mg,Fe,Al)5(Al,Si)8O22(OH)2                       |
| Chlorite      | 2.95    | (Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6               |
| Biotite       | 3.1     | KMg2.5Fe2+0.5AlSi3O10(OH)1.75F0.25                   |
| Quartz        | 2.63    | SiO2                                                 |
| Plagioclase   | 2.69    | (Na,Ca)[Al]1-2[Si]2-3O8                              |
| K-feldspar    | 2.56    | KAISi3O8                                             |
| Allanite      | 3.82    | Ca(Ce,La,Ca)(Fe2+,Fe3+)(Al,Fe3+)Al(Si2O7)(SiO4)O(OH) |
| Epidote       | 3.45    | Ca2Al2(Fe3+,Al)(SiO4)(Si2O7)O(OH)                    |
| (Zoisite)     |         |                                                      |
| Titanite      | 3.48    | CaTiSiO5                                             |
| Carbonates    | 2.85    | (Ca,Mg){(Fe,Mg,Mn)}(CO3){2}                          |
| Magnetite     | 5.15    | Fe3+2Fe2+O4                                          |
| Chromite      | 4.79    | Fe2+Cr2O4                                            |
| Spinel        | 3.65    | MgAl2O4                                              |
| Ilmenite      | 4.72    | Fe2+TiO3                                             |
| Apatite       | 3.19    | Ca5(PO4)(F,Cl,OH)                                    |



