

Geological Survey of Finland Circular Economy Solutions Outokumpu

October 31, 2023

GTK/884/03.01/2020 Open File Work Report 63/2023

Characterization of graphite ore feed samples

Tero Korhonen, Seppo Leinonen, Oleg Knauf

GTK Open File Work Report

October 31, 2023

GEOLOGICAL SURVEY O	F FINLAND	D	OCUMENTATION	PAGE		
		3	1.10.2023		GTK/884/03.01/2020	
Authors Tero Korhonen			Type of report GTK Open File Work Report			
Oleg Knauf			Commission by Business Finland			
Title of report Characterization of gra	ohite ore feed sa	amples				
Abstract The graphite ore of Takkula, to determine graphite contermineral associations of grap 87.7 wt.% of the graphite was lib Additionally, the graphite flu- sieved +26 μm size fraction Germany for spheroidization	Luopioinen was cha ents and modal mine hite. In the < 100 µr as liberated. In the erated. otation concentrate n, approx. 15 kg wi n tests.	aracterized eralogy in m grain siz < 1000 μm e producec th 81% ca	by chemical and mine the ore as well as par e fraction of the ore, t grain size fraction, gr by the University of rbon grade was sent	eralogica ticle siz he grap aphite o Oulu w to Pro	al methods. The purpose was e distribution, liberation and ohite content was 6 wt.% and content was 9 wt.% and 45.5 as processed by sieving. The Graphite GmbH company in	
Keywords graphite, carbon						
^{Geographical area} Takkula, Luopioinen, Pä	ilkäne, Finland					
Other information The report is deliverabl	e D3.1.3(a) of th	e BATCir	cle2.0 Project, fun	ded by	y Business Finland	
Map sheet						
M4142			F			
Report serial GTK Open File Work Re	port		Archive code 63/2023			
Total pages 3 p., 15 app. pages	Language English		Price		Confidentiality Public	
Unit Circular Economy Solut	ions		Project code 50404-4021028			
Signature/name Emmi Heikkilä Team Manager	mi Heililei	In	^{Signature/name} Tero Korhonen Senior Scientist	Ju	~ Jun	

October 31, 2023

Contents

Do	Documentation page					
1	Introduction	1				
2	Characterization of graphite samples	1				
3	Sample preparation for spheroidization tests	3				

Appendix 1: Chemical analyses, graphite ore samples from Takkula, Luopioinen.

Appendix 2: Chemical analyses, graphite flotation concentrate.

Appendix 3: Analytical report of mineralogical investigation of two graphite ore samples.

1 INTRODUCTION

This report details characterization of graphite ore from Takkula, Luopioinen and the preprocessing of the Takkula graphite concentrate through sieving before dispatching it for spheroidization tests in Germany. Two size fractions of the graphite ore were characterized to determine graphite contents, modal mineralogy and the concentration of the main elements. The graphite flotation concentrate produced at the University of Oulu was also characterized. This report is deliverable D3.1.3(a) of the BATCircle2.0 Project, funded by Business Finland.

2 CHARACTERIZATION OF GRAPHITE SAMPLES

The graphite ore was ground into two different finenesses at the University of Oulu: < 1000 μ m and < 100 μ m. The coarser sample was obtained through roll crushing following primary crushing (< 4 mm product of jaw crusher, two deck screen and cone crusher). The finer sample was ground using a ball mill, starting from an initial size of < 4 mm.

Small sub samples were taken from the two grain size fractions for the chemical XRF, Leco S and C analyses and for the mineralogical studies. The chemical analyses were done by the CRS Laboratories Oy. The contents of the major elements are shown in Table 1, and the complete set of results is in Appendix 1. The samples contained 11.0–11.6% carbon, 48–50% SiO₂, 11.8–12.3% Al₂O₃ and 9.1–9.6% Fe.

Sample	C (Leco)	S (Leco)	SiO2 (XRF)	Al2O3 (XRF)	MgO (XRF)	CaO (XRF)	K2O (XRF)	Fe (XRF)
< 100 µm	11.6	5.64	48.2	11.8	3.13	3.20	2.43	9.64
< 1000 µm	11.0	5.50	50.3	12.3	3.00	2.06	2.56	9.06

Table 1. Chemical analyses, graphite ore samples of Takkula, Luopioinen.

The mineralogical data was obtained by using Mineral Liberation Analyser (MLA). The system combines a large specimen chamber automated Scanning Electron Microscope (SEM), multiple Energy Dispersive X-ray spectrometers (EDS) with state-of-the-art automated quantitative mineralogy software. The software controls SEM and EDS hardware to quantitatively analyse minerals and their processing characteristics.

Based on the mineralogical analyses, the range of graphite content was about 6–9% in the two grain size fractions from graphite ore. The range of other main minerals were 25–28% quartz, 21–23% plagioclase, 11–12% phologopite, 13–15% pyrite and 6% muscovite (Table 2).

The measures of liberation and association parameters display that 87.7 wt.-% and 45.5 wt.-% of graphite is free in the < 100 μ m and < 1000 μ m particle size samples, respectively. Most of the liberated graphite occurs in the finest fraction < 125 μ m in both samples. In a liberated graphite grain at least 90% of the grain consists of graphite. The detailed mineralogical results are shown in Appendix 3 (Analytical report of mineralogical investigation of two graphite ore samples, Oleg Knauf 2023).

Mineral	< 1000 µm (wt. %)	< 100 µm (wt. %)
Graphite	9.18	6.20
Quartz	25.31	28.27
Plagioclase	21.49	22.86
K-feldspar	6.23	6.38
Actinolite	0.05	0.05
Muscovite	6.27	6.10
Phlogopite	11.00	12.09
Chlorite	0.73	0.54
Clay	0.93	0.52
Epidote	0.27	0.18
Zircon	0.04	0.04
Titanite	0.15	0.19
Hatrurite	0	0.45
Minor silicates	0.01	0.27
Calcite	0.01	0.03
Ankerite	0	0.01
Apatite	0.19	0.20
Monazite	0.02	0.01
Magnetite	0.00	0.01
Chromite	0	0.16
Goethite	2.46	1.96
Rutile	0.21	0.32
Minor oxides	0	0.02
Pyrite	14.60	12.64
Chalcopyrite	0.16	0.10
Sphalerite	0.28	0.21
Jarosite	0.10	0.13
Unclassified	0.30	0.04
Total	100	100
Amount of measured particles	199159	271898

Table 2. Modal mineralogy in two size fractions of the Takkula graphite ore.

3 SAMPLE PREPARATION FOR SPHEROIDIZATION TESTS

Few ten kilograms of graphite flotation concentrate produced by the University of Oulu were dried in an oven due to some moisture. After the drying, the concentrate was homogenized and small sub samples were taken for the chemical feed analyses, XRF + Leco C and S. The contents of main elements are shown in row "Feed" in Table 3.

The graphite concentrate was leached in water in a big bucket to reach a solids content of approx. 20% and thoroughly mixed. Then, about 30 kg of graphite concentrate was sieved as wet with the Sweco vibrating sieve into two size fractions: +26 μ m and -26 μ m (i.e., >26 μ m and <26 μ m) (Figure 1).

After the sieving, both size fractions were dried and small sub samples were taken for the chemical XRF and Leco S and C analyses. The contents of the major elements are shown in Table 3, and the complete set of results is in Appendix 2. The coarse +26 μ m fraction weighing approx. 15 kg was sent to ProGraphite GmbH in Germany for the spheroidization tests. The carbon content in the coarse +26 μ m fraction was about 81%, and the content of other main elements were 6.8% SiO₂, 2.2% Al₂O₃, 2.2% MgO, 2.7% Fe and 1.5% S.

Sample	C % (Leco)	S % (Leco)	SiO2 % (XRF)	AI2O3 % (XRF)	MgO % (XRF)	CaO % (XRF)	K2O % (XRF)	Fe % (XRF)
+26 µm	81.1	1.49	6.82	2.15	2.15	0.27	0.45	2.69
-26 µm	60.0	4.04	14.20	3.63	3.63	0.57	0.55	7.32
Feed	76.1	2.09	8.20	2.47	2.47	0.40	0.49	3.44

Table 3. Graphite flotation concentrate, chemical analyses by size fractions.

Figure 1. The graphite concentrate was sieved for the spheroidization tests using a Sweco vibration sieve.

Appendix 1

Chemical analyses Graphite ore samples from Takkula, Luopioinen CRS Laboratories REPORT OF XRF-ANALYSES 27.1.2022

 Customer : Tero Korhonen / GTK Mintec

 Order
 : ID 90378

 Method
 : 180X-O

 Date
 : 27.01.2022

 Comment : BF BATCircle 2/4.10.2021 louhittu/Takkula Luopioinen

Contents (%)

	100µm	1000µm
	90378-1	90378-2
SiO2	48.2	50.3
TiO2	0.57	0.55
AI2O3	11.8	12.3
Cr2O3	0.175	0.030
V203	0.104	0.101
FeO	12.4	11.6
MnO	0.085	0.044
MaO	2 12	3.00
	2 20	2.00
Dhao	0.0094	2.00
KUZU CrO	0.0064	0.0085
SIU	0.012	0.013
BaO	0.041	0.041
Na2O	1.29	1.40
K2O	2.43	2.56
ZrO2	0.019	0.019
P2O5	0.144	0.141
CO2	42.5	40.3
OxSumm	98.80	98.90
Cu	0.063	0.058
Ni	0.039	0.037
Со	0.005	0.010
Zn	0.185	0.182
Pb	0.006	0.006
Ag	0.002	0.002
s	6.51	6.53
As	0.000	0.000
Sh	0.011	0.011
Bi	0.003	0.002
То	0.000	0.002
v	0.000	0.000
T NIL	0.0055	0.0034
	0.0028	0.0016
IVIO	0.0078	0.0072
Sn	0.003	0.003
W	0.000	0.001
CI	0.009	0.006
Th	0.0014	0.0011
U	0.0000	0.0000
Cs	0.003	0.001
La	0.005	0.004
Ce	0.007	0.006
Та	0.000	0.001
LOI	0.0000	0.0000
Ga	0.0017	0.0019
Si	22.5	23.5
Ti	0.341	0.330
Cr	0.120	0.020
V	0.071	0.069
Fe	9.64	9.06
Mn	0.066	0.034
Μσ	1 89	1 81
ivig Ca	2.05	1 /0
Ca Po	2.20	1.40
Dd	11 6	11.0
Leco C	11.6	11.0
Leco S	5.64	5.50

Appendix 2

Chemical analyses Graphite flotation concentrate Crs laboratories REPORT OF XRF-ANALYSES 20.1.2023

 Customer
 Tero Korhonen / GTK Mintec

 Order
 I D 115788

 Method
 180X-0

 Date
 20.1.2023

 Comment : Batcircle 2 / 7.12.2022 50404-4021028

Contents (%)

	Feed	+26 µm	-26 µm
	115788-1	115788-2	115788-3
SiO2	8.20	6.82	14.2
TiO2	0.133	0.116	0.186
AI2O3	2.47	2.15	3.63
Cr2O3	0.019	0.014	0.032
V2O3	0.033	0.032	0.030
FeO	4.42	3.45	9.41
MnO	0.024	0.019	0.018
MgO	0.88	0.83	0.91
CaO	0.401	0.272	0.57
Rb2O	0.0000	0.0000	0.0000
SrO	0.0034	0.0025	0.0047
BaO	0.008	0.007	0.014
Na2O	0.26	0.14	0.32
К2О	0.492	0.453	0.55
ZrO2	0.008	0.007	0.010
P2O5	0.023	0.017	0.049
CO2	279.2	297.4	220.1
OxSumm	95.00	96.40	92.70
Cu	0.075	0.044	0.223
Ni	0.015	0.007	0.025
Со	0.001	0.001	0.001
Zn	0.088	0.045	0.190
Pb	0.008	0.008	0.009
Aσ	0.001	0.001	0.003
S	2 42	1.67	4.17
As	0.000	0.000	0.000
Sb	0.003	0.004	0.009
Bi	0.002	0.002	0.002
Te	0.000	0.000	0.002
Ŷ	0.0014	0.0009	0 0022
Nh	0.0020	0.0018	0.0013
Mo	0.028	0.024	0.056
Sn	0.001	0.003	0.003
w	0.001	0.001	0.000
CI	0.001	0.001	0.006
Th	0.000	0.000	0.0008
	0.0000	0.0000	0.0008
0 (c	0.0000	0.0000	0.0000
	0.001	0.002	0.003
	0.002	0.002	0.003
Та	0.000	0.002	0.000
	0.000	0.000	0.000
Ga	0.0000	0.0000	0.0000
Ga Ci	2 02	2 10	6.64
ы т:	0.000	0.070	0.04
II Cr	0.060	0.070	0.112
	0.015	0.0098	0.022
V Fo	0.022	0.021	0.020
ге	3.44	2.09	7.32
	0.018	0.014	0.014
ivig	0.53	0.50	0.55
ca De	0.287	0.194	0.405
ва	0.007	0.006	0.013
L C	/6.1	81.1 4.40	6U.U
2	2.09	1.49	4.04

Appendix 3

Analytical report of mineralogical investigation of two graphite ore samples (< 1000 µm and <100 µm)

Geological Survey of Finland Cercular Economy Solution department (GTK CES) GTK Mintec Oleg Knauf Outokumpu 31.05.2023

Measurement method and main outcoms

Input data

Project name and code	BF Batcircle 2.0 M 3.1.3-3.1.4 (50404-4021028)		
Samples	< 1000 μm and < 100 μm		
Product names	Feeds		
Specimen type	Special polished sectios for graphite samples		
Specimen codes	OK18191, OK18192, OK18193, OK18194 and OK18195		
Measurement system	Quanta 650 FEG microscope with dual Bruker Xflash 6/30 EDX		
weasurement system	detectors		
Measurement system	MLA		
System measurement	Acceleration voltage: 20kV; emission current 182µA; beam current		
parameters	10nA; spot size 5,838; chamber vacuum 4.07e ⁻⁶ mBar		
Minerals of interest,	Granhita		
specified by customer	loraphite		

Main outcoms and comments

Tab name	Comment or outcome
Mineral references	Clay mineral describes Al-Si-O compounds with slightly various Al/Si ratio.
	Both samples are mainly consist of silicates (for more than 70 wt
	%), with 10-15 wt% of pyrite. Graphite contents of the $$ < 1000 μ
	and < 100 μm samples are 9.2 and 6.2 wt% respectively.
Grain size distribution	P80s of graphite are 82 μ m in the < 1000 μ m sample and 25 μ m in the
(GSD)	< 100 µm sample.
Liberation (Cumulative	The class 90-100wt% represents the weight of a mineral, which
liberation calculations	occurs as free grains.
by particle composition)	Weights of liberated graphite are 45.5 and 87.7 wt% in the < 1000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	μ m and < 100 μ m samples correspondingly.
	The free mineral surface is the portion of the mineral perimeter,
	which neighbouring with the background. According to that portion,
	graphite, is categorised into 12 liberation classes, where 0% category
	consist of the mineral grains which are not exposed to the surface at
Liberation (Distribution of minerals into classes	all, then the 100% class consist of completely opened mineral grains.
calaulated by free	About 45 wt% of graphite is located in 90-100% and 100% classes in
surface)	the sample < 1000 μ m. Around 40wt% of the mineral in the same
	sample is spread from 20-30 to 50-60% classes. The graphite grains
	surface in the sample < 100 μm is more opened - most of the
	graphite mass (close to 87 wt%) is in the 90-100 and 100 % classes.
	Association of a mineral is being calculated according to the particle
	composition with 10% tolerance. Each of the particle, where the
	chosen mineral occurs analysed for the mineral proportions with
Association	followed by summing and normalisation of the results.
	Graphite association of both samples shows that unliberated part of
	the graphite grains are mainly locked in silicates and in auxiliary
	amounts with pyrite.
Imagas	Graphite grains occur in both samples in elongated flake-like or,
images	sometimes, prismatic shapes.

Mineral list with properties

Mineral	Density	Formula
Main mineral		<u>.</u>
Graphite	2.16	С
Silicates		
Quartz	2.63	SiO ₂
Plagioclase*	2.69	(Na,Ca)Al(Si,Al) ₃ O ₈
K-feldspar	2.56	KAISi ₃ O ₈
Actinolite	3.06	$(\Box, Na, K)Ca_2(Mg, Fe^{2+})_5[Si_7(Si, AI, Fe^{3+})]O_{22}(OH, F)_2$
Muscovite	2.83	KAl ₃ Si ₃ O ₁₀ (OH,F) ₂
Phlogopite	2.80	KMg ₃ AlSi ₃ O ₁₀ (OH)F
Chlorite*	3.20	(Al,Fe ²⁺ ,Fe ³⁺ ,Mg,Mn,Ni) ₄₋₆ (Al,B,Fe ³⁺ ,Si) ₄ O ₁₀ (OH,O) ₈
Clay*	2.66	Al ₂ Si ₁₋₂ O ₃₋₅ [OH] ₂₋₄
Zircon	4.65	ZrSiO ₄
Epidote	3.45	Ca ₂ Al ₂ (Fe,Al)(SiO ₄)(Si ₂ O ₇)O(OH)
Titanite	3.48	CaTiSiO ₅
Hatrurite	3.30	Ca ₃ SiO ₅
Minor silicates	3.06	
Carbonates		
Calcite	2.71	Ca(CO ₃)
Ankerite	3.05	$Ca(Fe,Mg,Mn)(CO_3)_2$
Phosphates		
Apatite	3.19	Ca ₅ (PO ₄)(F,Cl,OH)
Monazite	5.15	La0.5Ce0.25Nd0.2Th0.05(PO4)
Oxides		
Magnetite	5.15	(Fe,Mg)Fe ₂ O ₄
Chromite	4.79	(Fe,Mg)(Cr,Al) ₂ O ₄
Goethite	3.80	FeO(OH)
Rutile	4.46	TiO ₂
Minor oxides	4.58	
Sulphides	<u> </u>	
Pyrite	5.01	FeS ₂
Chalcopyrite	4.20	CuFeS ₂
Sphalerite	4.00	ZnS
Sulphates	Ĺ	
Jarosite	3.02	KFe ₃ [SO ₄] ₂ [OH] ₆
*	at a d	

- here the common formula is presented

Mineral	+250µm	125-250µm	-125µm	Head
Graphite	8.09	8.31	10.33	9.18
Quartz	21.93	26.13	27.05	25.31
Plagioclase	21.57	23.89	20.20	21.49
K-feldspar	7.17	5.89	5.81	6.23
Actinolite	0.07	0.04	0.05	0.05
Muscovite	8.03	6.03	5.26	6.27
Phlogopite	10.50	11.18	11.23	11.00
Chlorite	0.73	0.54	0.82	0.73
Clay	0.79	1.00	0.98	0.93
Epidote	0.32	0.22	0.27	0.27
Zircon	0.04	0.02	0.04	0.04
Titanite	0.15	0.12	0.17	0.15
Hatrurite	0	0	0	0
Minor silicates	0.02	0.01	0.00	0.01
Calcite	0	0	0.01	0.01
Ankerite	0	0	0	0
Apatite	0.13	0.13	0.27	0.19
Monazite	0.02	0.01	0.03	0.02
Magnetite	0.01	0.01	0.00	0.00
Chromite	0	0	0	0
Goethite	4.35	1.76	1.61	2.46
Rutile	0.26	0.33	0.12	0.21
Minor oxides	0	0	0	0
Pyrite	14.79	13.50	15.05	14.60
Chalcopyrite	0.08	0.13	0.22	0.16
Sphalerite	0.33	0.20	0.30	0.28
Jarosite	0.13	0.04	0.11	0.10
Unclassified	0.48	0.49	0.08	0.30
Total	100	100	100	100
Amount of measured particles	14350	24590	160219	199159

Modal mineralogy (weight %) Sample < 1000 μ m.

Mineral	, 125-250μm	-125μm	Head
Graphite	5.64	6.26	6.20
Quartz	17.27	29.30	28.27
Plagioclase	13.13	23.77	22.86
K-feldspar	2.68	6.73	6.38
Actinolite	0.04	0.05	0.05
Muscovite	16.23	5.16	6.10
Phlogopite	36.73	9.79	12.09
Chlorite	0.55	0.54	0.54
Clay	0.41	0.53	0.52
Epidote	0.05	0.19	0.18
Zircon	0.01	0.04	0.04
Titanite	0.27	0.18	0.19
Hatrurite	0.55	0.45	0.45
Minor silicates	0.53	0.24	0.27
Calcite	0.10	0.02	0.03
Ankerite	0.02	0	0.01
Apatite	0.05	0.21	0.20
Monazite	0	0.02	0.01
Magnetite	0.01	0.01	0.01
Chromite	0.15	0.16	0.16
Goethite	0.81	2.07	1.96
Rutile	0.46	0.30	0.32
Minor oxides	0.03	0.02	0.02
Pyrite	3.89	13.46	12.64
Chalcopyrite	0.03	0.11	0.10
Sphalerite	0.03	0.23	0.21
Jarosite	0.04	0.14	0.13
Unclassified	0.29	0.02	0.04
Total	100	100	100
Amount of measured particles	58147	213751	271898

Modal mineralogy (weight %) Sample < 100 μm.

	Cumulative passing (Wt%)					
Size	+250µm	125-250µm	-125µm	Head		
355	100.0	100.0	100.0	100.0		
300	99.3	100.0	100.0	99.8		
250	98.8	100.0	100.0	99.7		
212	97.9	100.0	100.0	99.5		
180	91.8	99.4	100.0	97.7		
150	86.5	96.6	100.0	95.7		
125	77.7	90.4	100.0	92.1		
106	68.8	82.9	100.0	88.1		
90	59.3	73.7	99.5	83.4		
75	50.4	61.9	97.0	77.2		
63	41.3	49.7	92.7	69.9		
53	33.5	39.6	87.8	63.1		
45	26.7	31.4	80.2	55.6		
38	20.8	24.0	71.3	47.8		
32	15.5	17.9	60.7	39.6		
27	10.9	13.1	50.0	31.8		
22	6.9	8.3	38.1	23.5		
19	4.8	5.8	30.4	18.4		
16	3.0	3.6	22.2	13.1		
13.5	1.7	2.1	16.1	9.3		
11.4	0.9	1.1	11.0	6.2		
9.6	0.5	0.6	7.3	4.0		
8.1	0.2	0.3	4.8	2.6		
6.8	0.1	0.2	3.0	1.6		
5.7	0.1	0.1	1.9	1.0		
4.8	0.1	0.1	1.1	0.6		
4.1	0.0	0.05	0.68	0.37		
3.4	0.0	0.03	0.35	0.2		
2.9	0.01	0.02	0.22	0.12		
2.4	0.01	0.01	0.12	0.06		
2	0	0	0	0		

Grain size distribution of graphite Sample <1000 μm.

Graphite grain size distribution, sample < 1000 μm.

	+250µm	125-250µm	-125µm	Head			
P-80	131	101	45	82			
P-50	75	63	27	40			
P-20	37	34	15	20			

	Cumulative passing (Wt%)					
Size	125-250µm	-125µm	Head			
125	100.0	100.0	100.0			
106	99.6	100.0	100.0			
90	98.9	100.0	99.9			
75	97.5	100.0	99.8			
63	94.1	100.0	99.5			
53	87.6	100.0	99.0			
45	76.9	99.4	97.6			
38	61.1	97.8	94.9			
32	44.3	95.5	91.5			
27	30.0	89.3	84.7			
22	18.7	80.0	75.3			
19	13.1	71.9	67.4			
16	8.7	60.5	56.5			
13.5	5.6	49.0	45.6			
11.4	3.5	37.0	34.4			
9.6	2.1	27.3	25.3			
8.1	1.2	18.7	17.3			
6.8	0.6	12.0	11.1			
5.7	0.3	7.5	6.9			
4.8	0.2	4.4	4.1			
4.1	0.1	2.7	2.5			
3.4	0.1	1.2	1.1			
2.9	0.0	0.7	0.6			
2.4	0.0	0.3	0.3			
2	0.0	0.1	0.1			
1.75	0.0	0.1	0.1			
1.45	0	0	0			

Grain size distribution of graphite Sample <100 μ m.

Graphite grain size distribution, sample < 100 μm.

	125-250µm	-125µm	Head
P-80	47	22	25
P-50	34	14	15
P-20	23	8	9

Cumulative passing, sample < 100 µm.

Mineral liberation

Calculation tolerance for cumulative liberation distributions is 10% -> the grain is treated as a liberated one when it consists of at least 90 % of a single mineral.

		Liberation Classes								
	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%	60-70%	70-80%	80-90%	90-100%
+250µm	100.0	72.2	36.2	16.4	9.4	6.2	4.6	4.0	2.5	1.6
125-250µm	100.0	83.9	68.4	58.8	52.1	47.3	42.0	37.8	32.9	25.1
-125µm	100.0	96.9	94.3	92.0	90.3	88.7	87.3	85.6	82.6	76.1
Head	100.0	87.6	73.4	64.9	60.8	58.1	55.8	53.8	50.8	45.5

Graphite liberation cumulative distribution sorted by particle composition, sample < 1000 μm.

Graphite liberation cumulative distribution sorted by particle composition, sample < 1000 μm.

				/		,						
		Liberation Classes										
	0%	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%	60-70%	70-80%	80-90%	90-100%	100%
+250µm	0.1	4.0	11.5	24.4	25.3	16.2	9.0	5.1	1.8	1.2	0.7	0.8
125-250µm	0.5	4.1	7.9	11.2	9.6	10.0	8.4	5.9	7.6	9.0	18.0	7.9
-125µm	0.3	0.9	1.5	1.9	2.3	1.9	2.4	2.1	4.0	7.1	21.3	54.3
Head	0.3	2.4	5.5	9.8	9.9	7.4	5.4	3.7	4.2	5.9	15.2	30.2

Graphite liberation distribution sorted by free surface, sample < 1000 μ m.

Graphite liberation distribution sorted by free surface, sample < 1000 μ m.

		Liberation Classes								
	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%	60-70%	70-80%	80-90%	90-100%
125-250µm	100.0	96.0	92.9	90.0	87.7	85.8	83.4	80.9	77.8	73.0
-125µm	100.0	99.5	99.1	98.6	97.8	97.3	96.1	94.8	92.5	88.9
Head	100.0	99.2	98.6	97.9	97.0	96.4	95.1	93.7	91.4	87.7

Graphite liberation cumulative distribution sorted by particle composition, sample < 100 µm.

Graphite liberation cumulative distribution sorted by particle composition, sample < 100 μ m.

		Liberation Classes										
	0%	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%	60-70%	70-80%	80-90%	90-100%	100%
125-250µm	0.6	1.9	2.7	2.8	2.5	2.6	2.7	2.6	3.6	5.4	16.9	55.7
-125µm	0.1	0.2	0.3	0.6	0.5	0.6	0.8	1.7	2.6	4.5	10.5	77.8
Head	0.1	0.3	0.5	0.8	0.6	0.7	0.9	1.8	2.6	4.6	11.0	76.1

Graphite liberation distribution sorted by free surface, sample < 100 μ m.

Graphite liberation distribution sorted by free surface, sample < 100 μ m.

Mineral association

Calculation tolerance is 10% -> the mineral is treated as an associated one when it forms from 10 to 90 % of particle mass.

Mineral	+250µm	125-250µm	-125µm	Head
Quartz	27.1	19.9	5.5	14.3
Plagioclase	23.1	17.3	4.4	12.1
K-feldspar	5.0	2.7	1.3	2.6
Muscovite	9.6	6.0	2.4	5.1
Phlogopite	19.0	20.1	6.6	12.8
Chlorite		0.7		
Clay		1.0		
Goethite	1.4			0.6
Pyrite	12.1	6.3	2.4	5.8
Others	1.1	1.0	1.2	1.3
Liberated	1.6	25.1	76.1	45.5

Sample < 1000 µm, Graphite (weight %) locked in...

Sample < 100 µm, Graphite (weight %) locked in...

Mineral	125-250µm	-125µm	Head
Quartz	5.4	2.4	2.6
Plagioclase	6.0	2.9	3.1
K-feldspar	1.8	1.1	1.2
Muscovite	2.7	0.6	0.7
Phlogopite	6.6	1.6	2.0
Pyrite	3.0	1.7	1.8
Others	1.6	0.9	0.9
Liberated	73.0	88.9	87.7

BSE and corresponding colored minerals images of the samples

Sample < 1000 μm, +250 μm size fraction, BSE image.

Sample < 1000 μ m, +250 μ m size fraction, colored minerals image.

Sample < 1000 μm, 125 - 250 μm size fraction, BSE image.

Sample < 1000 μ m, 125 - 250 μ m size fraction, colored minerals image.

Sample < 1000 μm, - 125 μm size fraction, BSE image.

Sample < 100 μ m, 125 - 250 μ m size fraction, BSE image.

Sample < 100 μ m, 125 - 250 μ m size fraction, colored minerals image.

Sample < 100 μ m, - 125 μ m size fraction, BSE image.

Sample < 100 μ m, - 125 μ m size fraction, colored minerals image.

Mineral colors, legend.

Graphite
Quartz
Plagioclase
K-feldspar
Actinolite
Muscovite
Phlogopite
Chlorite
Clay
Epidote
Zircon
Titanite
Hatrurite
Minor silicates
Calcite
Ankerite
Apatite
Monazite
Magnetite
Chromite
Goethite
Rutile
Minor oxides
Pyrite
Chalcopyrite
Sphalerite
Jarosite
Unclassified