

Geologian tutkimuskeskus Mineraalitalouden ratkaisut Kuopio

29.9.2023

GTK/314/03.00/2019

Grafiittitutkimus Luopioisissa 2019-2021 Takkulan ja Jylhän esiintymät

Seppo Leinonen

GEOLOGIAN TUTKIMUSKESKUS

Aleksi Salo, ryhmäpäällikkö

KUVAILUSIVU

		26.9.2023	GTK/314/03.00/2019	
_{Tekijä} Seppo Leinonen		Raportin laji Loppuraportti		
		Toimeksiantaja GTK		
Raportin nimi Grafiittitutkimus Luopiois	sissa 2019-2021 - Takkulan	ja Jylhän esiintymät		
Tiivistelmä Geologian tutkimuskesku kohteellisia grafiittitutkin Tutkimuksiin sisältyi palja sähkömagneettinen ja Ov timanttikairausta. Kookka yliopiston hallitsemaa, Bu analysoitiin grafiittinen h koostumus XRF-menetelu kairasydännäytteille, ohu ja kokeilut litium-ioniakku Minerals-projektissa (201	us (GTK) teki Mineraalipote nuksia Pälkäneellä Takkula astuma- ja lohkarekartoitus verhauser-magneettinen m aan näytteen louhinta pora usiness Finlandin rahoittam iili (Cg) ja kokonaisrikki (Stot mällä ja hivenalkuaineet IC uthieitä valmistettiin 191 kp ujen anodiaktiivisena ainee L8-2020). Takkulan ja Jylhä	ntiaalin kartoitus, akku n ja Jylhän esiintymillä v sta ja maanpintageofysi nittaus). Takkulan esiint namalla ja räjäyttämällä naa BatCircle 2.0 projek .), osalle näytteitä myös P:llä. Petrofysiikan suur ol. Takkulan grafiitin lab ena tehtiin Business Finl n grafiittiesiintymät sisä	mineraalit -projektissa vuosina 2019-2021. ikkaa (GEM-2 ymällä tehtiin myös toteutettiin osana Aalto - tia (2021-2024). Näytteistä kokokivikemiallinen eet mitattiin lähinnä oratoriomittakaavan rikastus andin rahoittamassa Green ältävät suomugrafiittia.	
Asiasanat (kohde, menetelmät jne grafiitti, geofysikaalinen i	.) mittaus, petrofysiikka, graf	iittinen hiili, totaalirikki	, rikastus, akkutesti.	
Maantieteellinen alue (maa, lääni, Luopioinen, Pälkäne, Pirk	kunta, kylä, esiintymä) ranmaa			
Karttalehdet -				
Muut tiedot -				
Arkistosarjan nimi Työraportti		Arkistotunnus 71/2023		
Kokonaissivumäärä 21 + 6 liitettä	_{Kieli} Suomi	Hinta -	Julkisuus Julkinen	
_{Yksikkö} Mineraalitalouden ratkai	sut, MTR	Projektinumero 50402-20108222		
Allekirjoitus/nimen selvennys Aleks I Sal		Allekirjoitus/nimen selvenny: Soppor diini	S	

Seppo Leinonen, erikoisasiantuntija

29	9	20	23
20		~~ ~	20

GEOLOGICAL SURVEY OF FINLAND

DOCUMENTATION PAGE

26.9.2023

Dnro GTK/314/03.00/2019

Authors	Type of report
Seppo Leinonen	GTK Open File Work Report
	Commission by GTK

Title of report

Research of Takkula and Jylhä graphite deposits in Luopioinen, years 2019-2021

Abstract

Geological Survey of Finland (GTK) conducted target scale research in Pälkäne at the Takkula and Jylhä graphite deposits in the years 2019-2021 as part of the Mineral potential mapping, battery minerals project. Studies included boulder exploration, outcrop mapping and geophysical ground surveys (GEM-2 electromagnetic and Overhouser magnetic methods). Diamond drilling was done only on Takkula deposit, extraction of a big graphite sample by drilling and blasting as a part of Aalto University's BatCircle 2.0 project funded by Business Finland. Graphitic carbon and total sulfur were analyzed, also whole rock chemical composition (XRF) and trace elements (ICP) for some of the samples. Petrophysical parameters were measured, mainly for drill core samples. Thin sections are made of 191 samples. Bench scale beneficiation tests by flotation and testing of the purified concentrate as an anode active material were carried out in Business Finland funded Green Minerals project (active in years 2018-2020). Both deposits are flaked graphite type.

Keywords

graphite, geophysical measurement, petrophysics, graphitic carbon, total sulfur, beneficiation, battery test

Geographical area

Luopioinen, Pälkäne, Pirkanmaa

Other information

Report serial GTK Open File Work Report		Archive code		
Total pages 21 + 6 Appendices	Language Finish	Price 71/2023	Confidentiality Public	
Unit Mineral Economy Solutions		Project code 50402-20108222		
Signature/name		Signature/name		
Aleksi Salo		Seppo Leinonen		
Team Manager		Senior Specialist		

Sisällysluettelo

1	Joho	danto	5
2	Tak	kulan Esiintymän tutkimukset	5
	2.1	Takkula - hiilipitoisuus ja mineralogia	6
	2.2	Takkula - kairaus	9
	2.3	Takkula - geofysiikka	10
	2.4	Takkula - petrofysiikka	11
	2.5	Takkula - rikastus	11
	2.6	Takkula - akkutesti	11
3	Jylh	än esiintymän tutkimukset	12
	3.1	Jylhä - kemia ja suomumitat	13
	3.2	Jylhä - geofysiikka	15
	3.3	Jylhä - petrofysiikka	15
4	Yhte	eenveto	16
	4.1	Tutkimuksen tavoite	16
	4.2	Takkulan grafiitti	16
	4.3	Jylhän grafiitti	17
	4.4	Aineiston säilytys	19
5	Liitt	eet	19
6	Kirja	allisuus	19

4

1 JOHDANTO

Tämä raportti sisältää yhteenvedon Geologian tutkimuskeskuksen (GTK) tekemistä tutkimuksista Luopioisen *Takkulan* ja *Jylhän* grafiittiesiintymillä vuosina 2019-2021. *Takkulan* esiintymällä (Kaukkalan kylä) tehtiin timanttikairausta, lohkare- ja kallioperäkartoitusta, näytteenottoa pintakalliosta ja GEM-2 sähkömagneettinen ja Overhauser magneettinen maastomittaus. Petrofysiikan parametrit mitattiin sekä timanttikairaus- että pintakallionäytteistä GTK:n Espoon laitteistoilla. Takkulan timanttikairausnäytteitä rikastetiin laboratoriomittakaavassa GTK Mintecin laitteistolla Outokummussa. *Jylhän* esiintymää (Puutikkalan kylä) kartoitettiin lohkareista ja paljastumista, kallionäytteitä otetiin pienoistimanttikairalla. Geofysiikan maastomittaus tehtiin samoilla menetelmillä kuin Takkulan esiintymällä. Tutkimukset toteutettiin varausaikana 8.8.2019 - 8.8.2021, Takkulan koelouhinta lokakuun alussa vuonna 2021 erillisellä lupasopimuksella maanomistajan kanssa.

Tämän raportin tutkimuksilla oli tarkoitus täydentää aiempia *Takkulan* alueen kartoituksia. Kairauksella haettiin lisää näytemateriaalia rikastustestien tarpeisiin. Rikastuskokeiden lisäksi teetettiin akkutestit Kokkolassa Keski-Pohjanmaan ammattikorkeakoulun laboratoriossa. *Jylhän* alueella ei ollut tehty aiempia grafiittitutkimuksia. Varantoarvioita tai -laskelmia ei tehty. Takkulan alueen aiemman tutkimuksen tulokset löytyvät valtausraportista (Alviola ja Nurmela, 1994).

2 TAKKULAN ESIINTYMÄN TUTKIMUKSET

Takkulan suomugrafiittiesiintymä sijaitsee Pälkäneellä Kaukkalan kylällä (kuvat 1-3). Esiintymä koostuu timanttikairauksen ja muun havaintoaineiston perusteella pääosin liuskeisista kivilajeista ja gneisseistä. Hiilipitoisuuden keskiarvo (grafiittinen hiili) oli 11.75 p-% Cg. Laskelmassa > 1 p-% hiilipitoisuudet (109 määritystä). Kokonaisrikin keskipitoisuus oli 5.35 Stot (113 määritystä, laskelmassa > 1 p-% rikkipitoisuudet).

Kuva 1a. Takkulan ja Jylhän grafiittiesiintymien sijainti (Luopioinen, Pälkäneen kunta). Pohjakartta © Maanmittauslaitos.

Kuva 2. Pirkanmaan kallioperä, Takkula-Jylhä alue mustalla neliöllä. Kartta, Suomen kallioperä – DigiKP © Geologian tutkimuskeskus.

Kuva 3. Takkulan grafiittiesiintymä. Muodostuma on rajattu GEM-2 sähkömagneettisen mittauksen kokonaissähkönjohtavuuden (EC) perusteella, punainen viiva. Mittausalue on mustalla viivalla. Timanttikairauspaikat ovat punaisilla ympyröillä (tunnukset vuoden 2019 kairauksille R1-R3), koelouhintapaikka mustalla neliöllä. Kartalla on myös Takkulanmäen sivumineralisaatio, hiilipitoisuus noin 7 p-% C_g. Pohjakartta © Maanmittauslaitos.

2.1 Takkula - hiilipitoisuus ja mineralogia

Grafiittisen hiilen keskipitoisuus Takkulan esiintymän kairasydännäytteissä oli 9.22 p-% C_g (min 1.22 ja max 19.90, 101 määritystä, 9 kairareikää). Laskentaan otettiin pitoisuudet 1-25 p-%. Esiintymässä on kerroksina grafiittikiveä, joista analysoitiin grafiittista hiiltä

keskimäärin 43.64 p-% (min 37.10 ja max 51.00, 8 määritystä). Laskentaan otettiin mukaan pitoisuudet 25-51 p-%. Ko. grafiittikivien tilavuusosuutta esiintymässä ei tunneta. Yli 10 p-% hiilipitoisuus analysoitiin 55 % kaikista kairasydännäytteistä (osa-aineisto, jossa enemmän kuin 1 p-% C_g). Reikäkohtaiset keskiarvot ovat esitetty taulukossa 2.

Rikkipitoisuuden keskiarvo oli 5.42 p-% S_{tot} (min 0.56 ja max 10.70, 112 määritystä). Laskentaan otetiin näytteet, joissa grafiittisen hiilen pitoisuus > 1 p-%. Grafiittisen hiilen jakauma sekä hiilen ja rikin keskipitoisuudet ovat taulukossa 1 ja kuvassa 4.

Petrofysiikan mittauksiin kerättiin kairasydämistä 10 cm pituisista näytteitä (liite 3b). Samoista näytteistä tehtiin kemian analyysit: grafiittinen ja karbonaattihiili, kokonaisrikki, osalle näytteitä myös kokokivikemia ja hivenalkuaineet ICP:llä (liitteet 1).

Taulukko 1. Grafiittisen hiilen (p-% Cg) jakauma sekä keskiarvot grafiittiselle hiilelle ja kokonaisrikille (Stot) pitoisuusluokittain (123 analyysiä).

Pitoisuusluokat C _g	kpl	% lkm kaikki	ka. C _g p-%	ka. S _{tot} p-%
0-1	14	11.4 %	0.38	0.88
1-5	31	25.2 %	2.86	3.11
5-15	59	48.0 %	11.34	6.49
15-20	11	8.9 %	15.77	6.66
20-51	8	6.5 %	43.64	4.71
	123	100.0 %		

Kuva 4. Grafiittisen hiilen (p-% C_g) jakauma sekä keskiarvot grafiittiselle hiilelle ja kokonaisrikille (S_{tot}) pitoisuusluokittain (123 analyysiä).

Grafiittinen hiili ja totaalirikki määritettiin Leco-menetelmällä (Labtium Oy:n ja ALS:in laboratorioissa). Kiisumineraali on lähinnä magneettikiisua (Al-Ani ym., 2019).

Taulukko 2. Yhteenveto Takkulan esiintymän grafiittisen hiilen (Cg) ja kokonaisrikin pitoisuuksista (Stot) kairanäytteissä (keskiarvot grafiitille, myös min- ja max-pitoisuudet).

Reikänumero	ka. S _{tot}	ka. C _g	min C _g	max C _g	lkm
2132R334	3.23	18.33	0.29	42.34	10
2132R336	3.34	14.92	0.16	45.70	4
2132R331	6.10	12.50	4.01	14.90	6
2132R332	6.20	12.23	0.47	15.60	21
2132R333	4.66	5.30	0.18	15.00	15
2132R340	4.76	10.46	1.29	19.90	7
M4142019R1	5.94	9.98	2.52	15.80	22
M4142019R2	5.02	6.90	0.06	16.00	20
M4142019R3	2.62	4.40	0.11	12.90	9

Takkulan grafiitti on karkeahkoa, suomut pisimmillään 1000 μm, keskimääräinen pituus noin 400 μm (Al-Ani ym., 2019). Pisin suomupituus koelouhintapaikan näytteessä oli 685 μm, keskimääräinen pituus noin 500. *Takkulankankaan* rinnakkaisessa esiintymässä pisimmäksi suomumitaksi mitattiin 650 μm, keskipituus noin 200 (8 näytettä). Suomujen paksuus on koelouhintapaikalla on keskimäärin 35 μm, rinnakkaisessa esiintymässä 12 (min-max 7-15). Suomukoko määritettiin manuaalisesti grafiikkaohjelmassa. Hieestä otetiin valokuva mikroskoopilla (10 kertainen suurennos), kuva 5. Suomumitat laskettiin suhteessa hiekuvan mittakaavaan (keskimääräinen pituus ja paksuus, suurin pituus ja paksuus). Suomut mitattiin kallionäytteistä. Grafiittisten kivilajien rakennetyyppejä on kuvassa 6.

Kuva 5. Mikroskooppikuva heijastavassa valossa, grafiittiliuske (näyte M4142019R2 78.44). Kuvan leveys 1570 μm. Grafiitti näkyy vaaleanharmaana. Kuva S. Leinonen.

Kuva 6. Kairasydännäytteet Takkulan esiintymästä: grafiittiliuske, grafiittigneissi ja grafiittikivi (halkaisija noin 40 mm). Paljastumakuva grafiittiliuskeesta, koelouhintapaikka.

2.2 Takkula - kairaus

Takkulan esiintymään on kairattu vuosina 1991 ja 2019 13 reikää, yht. 1299 m. Näistä 10 reikää kairattiin vuonna 1991 (799 m) ja 3 reikää vuonna 2019 (500 m), taulukot 3 ja 4 (N ja E, EUREF-FIN koordinaattijärjestelmä). Vuoden 2019 kairaus tehtiin NQ2 kalustolla (sydämen halkaisija 51 mm), yhteenveto liitteessä 4 (sisältää reikäprofiilit).

Taulukko 3. Takkulan kairaus vuonna 2019, reikäluettelo (R1-R3).

Reikätunnus	E	N	Suunta	Kaade	Pituus
M4142019R1	368394	6798832	270	45	149.90
M4142019R2	368488	6799097	270	45	151.25
M4142019R3	368490	6799622	90	45	199.80

Reikätunnus	E	Ν	Suunta	Kaade	Pituus
R331	368371	6798785	270	45	104.00
R332	368421	6798783	270	45	174.80
R333	368381	6798885	270	45	140.70
R334	368121	6798791	200	50	42.55
R335	368121	6798772	200	50	21.10
R336	368120	6798771	20	60	21.60
R337	368237	6798677	180	50	37.25
R338	368236	6798656	180	50	30.10
R339	368530	6799188	270	45	120.90
R340	368455	6799192	270	45	106.55

Taulukko 4. Takkulan kairaus vuonna 1991, reikäluettelo (R331-R340).

2.3 Takkula - geofysiikka

GEM-2 sähkömagneettisen ja Overhauser magnetometrauksen mittausalue oli 330 ha, mittauslinjoja oli 45 kpl (50 m välein). GEM-2 mittaustaajuudet olivat 1475, 5825, 22225, 755254 kHz. Mittaukset toteutettiin useassa erässä ja laitteelle tehtiin myös huoltoja mittausten väleillä. Tästä syystä tulosaineistossa on nähtävissä tasoeroja. Takkulan mittaustulokset on esitetty kuvassa 7, mittaustilaus on raportin liitteenä 3a. Edellisen tutkimuksen max-min sähkömagneettisen, magneettisen ja painovoimamittauksen (107 ha) aineistot ovat myös saatavilla GTK:n tietovarastoista.

Kuva 7. Takkulan sähkömagneettinen (EM) kartta, GEM-2 kokonaissähkönjohtavuus (EC). Sähköä johtavien kivilajien esiintyminen punaisen – pinkin väreissä. Grafiittipitoiset muodostumat on rajattu punaisella viivalla. Timanttikairauspaikat ovat punaisilla ympyröillä (tunnukset vuoden 2019 kairauksille R1-R3), koelouhintapaikka mustalla neliöllä. Tiestö on mustalla viivalla, maanmittauslaitoksen pohjakartan mukaan, © Maanmittauslaitos.

2.4 Takkula - petrofysiikka

Petrofysiikan mittaukseen kerättiin näytteitä sekä vuoden 1991 ja 2019 kairasydämistä. Mitattuja suureita olivat massa (M), tiheys (D), magneettinen suskeptibiliteetti (K), remanentti magneettisuus (R) ja ominaisvastus (galvaaninen ja indusoitu). Vuoden 1991 näytteitä mitattiin 11 kpl (liite 3b.1) ja vuoden 2019 50 kpl (liite 3b.2). Takkulan ja Jylhän petrofysiikan mittaustulokset minikairanäytteistä ovat liitteessä 3b.3.

2.5 Takkula - rikastus

Grafiittihiilen pitoisuus laboratoriomittakaavaisen rikastustestin syötteessä oli 16 p-%. Tuloksena saatiin konsentraatti, jossa oli noin 94 p-% grafiittista hiiltä. Massasaanti oli 91 %. Kemiallisella puhdistuksella saatiin hiilipitoisuus nousemaan 99.5 p-%:iin. Kemiallinen puhdistus tehtiin alkalipaahdolla (näyte sekoitetaan 25 %:seen NaOH:iin, pasutus 250 °C lämpötilassa 2 tuntia, vesipesu ja liuotus 10 % rikkihapolla). Rikastustestin näyte (55 kg) kerättiin vuonna 1991 kairatun reiän R332 kairasydämestä (M52/2132/R332), taulukko 5. Rikastustesti on tämän raportin liitteenä 5 (Green Minerals-projekti, 2018-2020). Kookkaan, vuonna 2021 irrotetun louheen koerikastuksen teki Oulun yliopisto vuoden 2022 alussa BatCircle 2.0 projektissa (ei raportoida tässä raportissa).

Syvyys	pituus	kg
67.90-72.30 m	4.40 m	3.7
81.00-87.60 m	6.60 m	5.8
89.00-95.00 m	6.00 m	5.2
95.00-101.30 m	6.30 m	5.4
111.50-117.50 m	6.00 m	5.5
117.50-123.50 m	6.00 m	5.6
123.50-128.50 m	5.00 m	4.6
130.00-135.00 m	5.00 m	3.8
135.00-140.40 m	5.40 m	5.5
149.40-154.40 m	5.00 m	5.5
154.40-159.40 m	5.00 m	4.5
	Total	55.0

Taulukko 5. Takkulan rikastustestin näyte (M52/2132/R332).

2.6 Takkula - akkutesti

Takkulan rikaste seulottiin eri raekokoihin, tavoitteena tarkastella mahdollista suomukoon vaikutusta Li-ioniakkujen sähkökemiallisiin ominaisuuksiin. Näytteet olivat LT30, LT31 ja LT32 (hiilipitoisuudet 99.3, 99.2 ja 99.5 p-% Cg). Referenssinä (Ref.) käytetiin kaupallista synteettistä grafiittia (valmistaja Hitachi). Ennen kennojen valmistamista määritettiin kaikille näytteille raekokojakauma (PSA) Malvern Mastersizer 3000-laitteella ja tiheys TAP density-testerillä, taulukko 6. Akkutestien tulokset ovat liitteessä 6 (Green Minerals-projekti, 2018-2020).

Sample		PSA		T.de	H2O
	D10	D50	D90	g/ml	%
Ref.	11.9	20.5	36.4	1.09	0.007
LT 30	14.6	49.2	144	0.53	
LT 31	30.1	72.5	160	0.58	
LT 32	41.4	102.0	194	0.55	

Taulukko 6. Takkulan kemiallisesti puhdistettujen grafiittirikasteiden LT30-32 raekokojakauma, PSA, T.de on tiheyden määritys tap density-laitteella.

3 JYLHÄN ESIINTYMÄN TUTKIMUKSET

Jylhän esiintymä on grafiittigneissiä ja -liusketta. Grafiitti on suomuista ja varsin karkeaa, rakeiden pituus keskimäärin 528 μm (min-max. 356-799), 8 mittausta (taulukko 7). Suomujen kesimääräiseksi paksuudeksi mitattiin 19 μm (min-max, 10-29). Mitat laskettiin lohkarenäytteistä (6 kpl), kaksi oli kallionäytteitä (pituudet min-max, 164-280 μm). Jylhän alueen kalliot ovat ruosteisia korkean sähkönjohtavuuden alueella (myös korkea magneettisuus). Esiintymän rajaus on esitetty kuvassa 8 (kokonaissähkönjohtavuus, EC). Johdealueen avokallioita esiintyy lähinnä mittausalueen eteläosissa, kuva 9.

Kuva 8. Jylhän grafiittiesiintymän rajaus GEM-2 sähkömagneettisen (EM) maanpintamittauksen perusteella, punainen viiva (kokonaissähkönjohtavuus, EC). Johteen pituus on noin 1500 m, leveys 200-300 m. Mittausalue on merkitty mustalla viivalla. Pohjakartta © Maanmittauslaitos.

Havainto	Paikka	Kallio (x)	Ν	E	Cg	S _{tot}	pisin	paksuin
STL2-2020-1232.1	Takkula	х	6798931	368299	7.29	0.26	685.93	67.96
STL2-2019-535.1	Takkulankangas	х	6799439	367865	0.28	0.06	374.45	18.35
STL2-2019-536.1	Takkulankangas	x	6799436	367853	3.78	0.37	531.99	25.76
STL2-2019-537.1	Takkulankangas	х	6799416	367843	9.13	0.36	648.56	38.42
STL2-2019-539.1	Takkulankangas	x	6799438	367853	7.75	0.69	438.08	42.26
STL2-2019-539.2	Takkulankangas	х	6799438	367853	9.06	0.46	402.00	31.95
STL2-2019-248.1	Jylhä	x	6800083	372879	3.12	0.26	378.21	47.59
STL2-2019-526.1	Jylhä	х	6800501	372469	1.10	0.34	355.97	37.13
STL2-2019-528.1	Jylhä		6800648	372483	1.68	0.10	721.55	41.23
STL2-2019-529.1	Jylhä		6800582	372488	3.52	1.25	417.47	25.77
STL2-2019-245.1	Jylhä		6799979	372930	2.93	1.64	541.16	51.54
STL2-2019-245.2	Jylhä	-	6799979	372930	2.07	1.15	582.39	77.31
STL2-2019-245.3	Jylhä		6799979	372930	1.78	1.20	798.85	51.54
STL2-2019-245.4	Jylhä		6799979	372930	5.80	0.63	427.77	36.08

Taulukko 7. Suomumittoja Takkulan ja Jylhän grafiiteille (pisin ja paksuin, μ). Korkea grafiittipitoisuus korreloi positiivisesti osaan suomumittoja. Pitoisuudet p-% Cg ja Stot.

Kuva 9. Jylhän grafiitti- ja kiisupitoista gneissiä alueen eteläosassa. N=6800147 ja E=372901, EUREF-FIN (GPS-laitteen pituus noin 15 cm). Kuva S. Leinonen.

3.1 Jylhä - kemia ja suomumitat

Jylhän alueella tehtiin kartoitusta ja otettiin minikairalla kallionäytteitä. Keskimääräinen hiilipitoisuus oli 2.76 p-% Cg, vaihtelu 1.26-4.88 (11 kpl määritystä, taulukko 8). Kokonaisrikin pitoisuus vaihtelee 11 analyysin mukaan 0.07-2.88 p-% S_{tot}, keskiarvo 1.89. Grafiittinen hiili ja kokonaisrikki määritettiin Leco-menetelmällä. Johteeseen liittyy myös voimakas magneettinen häiriö. Kiisumineraali on lähinnä magneettikiisua.

Tunnus	Paikka	GPS	North	East	Cg	Stot
STL2-2002-1516.5.1	Jylhä	1516	6800509	372513	4.88	2.32
STL2-2020-1517.5.1	Jylhä	1517	6800453	372639	2.35	2.24
STL2-2020-1517.5.1 (2)	Jylhä	1517	6800453	372639	2.33	2.21
STL2-2020-1518.5.1	Jylhä	1518	6800497	372695	3.08	0.07
STL2-2020-1519.5.1	Jylhä	1519	6800442	372625	2.23	1.55
STL2-2020-1521.5.1	Jylhä	1521	6800633	372492	1.26	0.95
STL2-2020-1526.5.1	Jylhä	1526	6800154	372942	3.08	1.97
STL2-2020-1527.5.1	Jylhä	1527	6800183	372956	2.70	2.14
STL2-2020-1531.5.1	Jylhä	1531	6800139	372886	2.56	2.88
STL2-2020-1532.1.2	Jylhä	1532	6800077	372844	2.72	2.05
STL2-2020-1532.5.1	Jylhä	1532	6800077	372844	3.20	2.37
				min	1.26	0.07
				max	4.88	2.88
				keskiarvo	2.76	1.89
				lkm	11	11

Taulukko 8. Jylhän esiintymän grafiittisen hiilen (C_g) ja kokonaisrikin (S_{tot}) määritykset minikairalla otetuista kallionäytteistä (11 kpl), max 4.88 p-% C_g .

Grafiitin suomukoko määritettiin manuaalisesti grafiikkaohjelmassa (suomujen pituus lohkareissa 356-799 μm ja kallionäytteissä 164-280, keskimääräinen paksuus 19. Hieistä otetiin kuva mikroskoopilla (10 kertainen suurennos), kuvista mitattiin keskimääräinen ja suurin suomukoko, kuva 10.

Kuva 10. Mikroskooppikuva Jylhän grafiitista. Grafiitti näkyy kellertävän harmaana (näyte STL2-2019-245.2), heijastava valo. Kuvan pitkä sivu 1570 μm. Kuva S. Leinonen.

3.2 Jylhä - geofysiikka

Jylhän sähkömagneettinen maastomittaus tehtiin GEM-2 laitteella ja magneettinen mittaus Overhauser magnetometrilla. Mittausalue oli 140 ha, mittauslinjoja 41 kpl (50 välein). GEM-2 taajuuksina käytettiin 1475, 5825, 22225 ja 755254 kHz. Kokonaissähkönjohtavuus, EC esitettynä kuvassa 11. Mittaustilaus on liitteessä 3a, mittausdata on saatavilla GTK:lla.

Kuva 11. Jylhän alueen GEM-2 laitteella tehdyn sähkömagneettisen (EM) mittauksen tulos (kokonaissähkönjohtavuus, EC). Tiestö on mustalla viivalla, maanmittauslaitoksen pohjakartan mukaan, © Maanmittauslaitos.

3.3 Jylhä - petrofysiikka

Jylhän näytteiden petrofysiikan mittaukset tehtiin minikairalla poratuista pintakallionäytteistä. Mitattuja suureita olivat massa (M), tiheys (D), magneettinen suskeptibiliteetti (K), remanentti magneettisuus (R) ja ominaisvastus (galvaaninen ja indusoitu). Takkulan ja Jylhän petrofysiikan tulokset minikairanäytteistä ovat liitteessä 3b.3, yhteensä mittauksia 18 näytteestä, joista 11 Jylhän alueelta.

4 YHTEENVETO

4.1 Tutkimuksen tavoite

Luopioisissa *Takkulan* ja *Jylhän* kohteilla tehtiin selvitykset grafiitin esiintymisestä, tavoitteena löytää perusteet tarkemmille tutkimuksille. *Takkulan* esiintymään kairattiin kolme reikää, tarkoituksena saada lisää näytettä rikastusteknisiin tutkimuksiin vuonna 2019. Kairaustulos vastasi aiemmassa tutkimuksessa muodostunutta käsitystä esiintymän grafiittipitoisuudesta. *Jylhän* esiintymä saatiin rajattua geofysikaalisilla mittauksilla, osasta aluetta oli mahdollista ottaa pintakallionäytteitä.

Tutkimukset tehtiin varausajalla 8.8.2019 - 8.8.2021. Kohteille haettiin malminetsintälupaa kesällä 2021 esiintymätietoja tarkentavien kairausten toteuttamiseksi. Tarvittavaa kairausresurssia ei seuraaville vuosille voitu kuitenkaan varmistaa ja lupahakemuksesta päätettiin luopua vuoden 2022 alussa.

4.2 Takkulan grafiitti

Grafiittisen hiilen keskipitoisuus Takkulan kairasydännäytteissä oli 11.75 p-%, keskiarvossa näytteet, joissa hiiltä > 1 p-%, yhteensä 109 kpl. Rikkipitoisuus vaihtelee ko. otoksessa 0.56-10.70 p-% S_{tot}, keskiarvo 5.42. Grafiittipitoisuuden jakaumassa lukumääräisesti suurimman pitoisuusluokan keskiarvo on 11.34 p-% C_g (pitoisuudet 5-15 p-%, 48 % näytteistä), taulukko 9a. Samassa pitoisuusluokassa rikin keskiarvo on 6.49 p-% S_{tot} (taulukko 9b). Rikkipitoisuus kasvaa hiilipitoisuuden kasvaessa (< 20 p-% C_g pitoisuudet), erittäin korkeissa hiilipitoisuuksilla (> 30 p-%) rikkipitoisuus on suhteellisesti matalampi (kuva 12). Sulfidimineraali on magneettikiisua, osin rikkikiisua.

Grafiitti p-%	0-1	1-5	5-15	15-20	20-51	
keskiarvo	0.38	2.86	11.34	15.77	43.64	
min	0.06	1.22	5.38	15.00	37.10	
max	0.97	4.36	14.90	19.90	51.00	
lkm	14	31	59	11	8	123
	11.4 %	25.2 %	48.0 %	8.9 %	6.5 %	100 %

Taulukko 9a. Grafiittisen hiilen keskipitoisuus (p-% Cg) C-jakauman mukaan.

Taulukko 9b. Kokonaisrikin keskipitoisuus (p-% Stot) C-jakauman mukaan.

Grafiitti p-%	0-1	1-5	5-15	15-20	20-51	
keskiarvo	0.88	3.11	6.49	6.66	4.71	
min	0.05	0.56	2.41	4.28	2.69	
max	3.13	8.88	10.70	7.96	7.61	
lkm	14	31	59	11	8	123
	11.4 %	25.2 %	48.0 %	8.9 %	6.5 %	100 %

Kuva 12. Takkulan kairasydännäytteiden grafiittinen hiili p-% C_g ja kokonaisrikki p-% S_{tot} . Analyyseja 123 kpl.

4.3 Jylhän grafiitti

Jylhän grafiittipitoisuus kallionäytteissä oli varsin matala, 18 analyysin keskiarvo 2.16 p-% C_g (min-max, 0.12-4.88), taulukko 10a. Kokonaisrikin keskiarvo oli 1.51 p-% S_{tot}, keskimäärin 79 % grafiittisen hiilen pitoisuudesta. Lohkareissa grafiittisen hiilen pitoisuus oli hieman korkeampi, 15 analyysin keskiarvo 4.25 p-% C_g (min-max, 1.01-12.30), keskiarvo kokonaisrikille oli 1.37 p-% S_{tot}, taulukko 10b.

Jylhän alueella on varsin voimakas lentosähkömagneettinen anomalia. Tästä ei voi kuitenkaan suoraan päätellä grafiittipitoisuutta. Korkein grafiittihiilen pitoisuus lohkareessa oli 12.70 p-%. Kallion johtavuus on yleensä varsin korkea jo varsin matalilla grafiittipitoisuuksilla (> 2 p-% Cg). Korkean sulfidipitoisuuden kivilajit (> 5 % rikkiä, 10 % sulfidimineraalia) aiheuttavat voimakkaan magneettisen häiriön ja ovat jossain määrin myös sähkönjohteita. Jylhän näytteiden sulfidipitoisuus kasvaa tyypillisesti grafiittipitoisuuden kasvaessa (enimmillään 6-7 p-% S_{tot}) ja rikkikiisuksi laskettuna 13 p-%, korostaen myös jossain määrin grafiittisten kivilajiseurueiden johtavuutta.

Paljastuma- ja lohkarekartoituksen perusteella Jylhän alueelta löytyi viitteitä grafiittipotentiaalista. Lohkareesta analysoitu korkein pitoisuus oli noin 12 p-% Cg, paljastumista 5 p-%. Kallionäytteet ovat avokallioista ja todennäköisesti eivät edusta alueen grafiittirikkaimpia osia (kohteessa runsaasti peitteisiä alueita).

Lohkareiden rikkipoisuus on laskenut vaihtelevasti rapautumisesta johtuen verrattuna kallionäytteisiin. ts. hiilipitoisuus korostuu suhteessa rikkipitoisuuteen, kuva 13. Alkuperäisen rikkipitoisuuden määrää ei tiedetä (vaihtelee kerroksittain) mutta karkean arvion perusteella rikkipitoisuus on kallionäytteissä pääsääntöisesti hiilipitoisuutta hieman matalampi 0.75 X Cg. Kiisut jäävät rikastushiekkaan vaahdotuksessa.

Näyte	North	East	S_{tot}	C_{tot}	C_{carb}	Cg
STL2-2002-1516.5.1	6800509	372513	2.32	5.08	0.2	4.88
STL2-2020-1520.1	6800503	372719	0.4	3.63	0.29	3.34
STL2-2020-1532.5.1	6800077	372844	2.37	3.24	<0.05	3.20
STL2-2020-1518.5.1	6800497	372695	0.07	3.24	0.17	3.08
STL2-2020-1526.5.1	6800154	372942	1.97	3.22	0.14	3.08
STL2-2020-1532.1.2	6800077	372844	2.05	2.76	<0.05	2.72
STL2-2020-1527.5.1	6800183	372956	2.14	2.74	<0.05	2.70
STL2-2020-1531.5.1	6800139	372886	2.88	2.76	0.2	2.56
STL2-2020-1517.5.1	6800453	372639	2.24	2.46	0.11	2.35
STL2-2020-1519.5.1	6800442	372625	1.55	2.34	0.11	2.23
STL2-2020-1522.1 (2)	6800626	372492	0.46	1.75	0.1	1.64
STL2-2020-1252.1	6800440	372636	1.15	1.64	<0.05	1.63
STL2-2020-525.5.1	6800599	372556	1.13	1.41	<0.05	1.38
STL2-2020-1254.2	6800490	372676	1.41	1.55	0.23	1.32
STL2-2020-1521.5.1	6800633	372492	0.95	1.26	<0.05	1.26
STL2-2020-1260.1	6800706	372584	3.87	1.08	<0.05	1.12
STL2-2020-1525.5.1	6801075	372891	0.15	0.34	0.07	0.26
STL2-2020-1524.5.1	6800456	372380	0.03	0.06	<0.05	0.12

Taulukko 10a. Jylhän kallionäytteiden (18 kpl) grafiittinen hiili (Cg) ja kokonaisrikki (Stot).

Taulukko 10b. Jylhär	lohkareiden (15 k	l) grafiittinen hiili ((C _g) ja kokonaisrikki	(Stot).
----------------------	-------------------	-------------------------	------------------------------------	---------

Näyte	North	East	S_{tot}	C_{tot}	C_{carb}	C_g
JPST-2020-29.1	6801199	372148	0.33	12.70	0.34	12.30
JPST-2020-19.1	6800095	372701	0.3	6.78	0.29	6.49
JPST-2020-33.1	6801176	372283	0.36	6.34	0.29	6.05
STL2-2019-245.4	6799979	372930	0.63	5.80	0.17	5.63
JPST-2020-17.1	6800323	372817	5.97	5.43	0.05	5.38
JPST-2020-15.1	6800095	372839	0.08	4.93	0.26	4.67
JPST-2020-32.1	6801184	372277	0.09	3.74	0.08	3.65
STL2-2020-881.1	6799996	372958	0.69	3.69	0.09	3.61
STL2-2020-879.1	6799996	372958	4.19	3.61	<0.05	3.56
STL2-2019-529.1	6800582	372488	1.25	3.52	0.21	3.30
STL2-2019-245.1 (2)	6799979	372930	1.64	2.93	<0.05	2.89
STL2-2019-245.2	6799979	372930	1.15	2.07	<0.05	2.03
STL2-2019-245.3	6799979	372930	1.2	1.78	<0.05	1.73
STL2-2019-528.1	6800648	372483	0.1	1.68	0.16	1.52
JPST-2020-31.1 (2)	6801211	372193	2.59	0.98	<0.05	1.01

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

Kuva 13. Jylhän kallionäytteiden (18 kpl) ja lohkarenäytteiden (15) Leco-analyysit, p-% C_g grafiittinen hiili ja S_{tot} kokonaisrikki. Kuvaaja S_{tot} = $0.75xC_g$ (p-%) kallionäytteiden hiili- ja rikkipitoisuuden mukaan.

4.4 Aineiston säilytys

Analyysit ovat saatavilla myös GTK:n tietovarastoista, ohuthieet Kuopion toimistolta (liite 2, hieet kairasydämistä ja minidrill-näytteistä). Kairasydämet ovat raportoitavissa Lopen varastolla. Tässä esitettyjen GEM-2 EM ja magneettisen sekä aiemman maastogeofysiikan magneettisen, sähkömagneettisen ja gravimetrisen mittauksen aineistot ovat arkistoitu GTK:n tietovarastoihin.

5 LIITTEET

Liitteet 1 Analyysit kairasydämistä, saatavilla GTK:n tietokannasta hinnoitteluperiaatteen mukaisesti

Liitteet 1 Analyysit minidrill-näytteistä, saatavilla GTK:n tietokannasta hinnoitteluperiaatteen mukaisesti

Liitteet 2a Hieet, timanttikairanäytteet (saatavilla GTK:lta)

2a.1 Takkula hieet R334, R336 näytteet 02112018 analyysitunnus 45792

2a.2 Takkula hieet R332, R333, R340 näytteet 27012020 analyysitunnus 45861

2a.3 Takkula hieet R1, R2, R3 näytteet 17022020 analyysitunnus 45876

2a.4 Takkula hieet R334, R336 näytteet 27012020 analyysitunnus 45877

2a.5 Takkula hieet R333, R336, R1 31082020 (ei kemian analyyseja)

Liitteet 2b Hieet, minikairanäytteet (saatavilla GTK:lta)

2b.1 Takkula hieet koelouhintapaikka minikairanäytteet 18092020 analyysitunnus 45904

2b.2 Takkula hieet Leppästensuo pohjoinen minikairanäytteet 25012021 analyysitunnus 45915

2b.3 Takkula ja Jylhä hieet minikairanäytteet 04122020 analyysitunnus 45915

Liite 3a Geologian tutkimuskeskus maanpintageofysiikan mittaustilaus, Pälkäne, Takkula ja Jylhä

Liitteet 3b Petrofysiikka

3b.1 Takkula petrofysiikan tulokset R1, R2, R3 analyysitunnus 45876

3b.2 Takkula petrofysiikan tulokset R334, R336 analyysitunnus 45877

3b.3 Takkula ja Jylhä petrofysiikan tulokset minikairanäytteet analyysitunnus 45915

Liite 4 Takkulan grafiittiesiintymän kairaukset vuonna 2019, yhteenveto

Liite 5 Rikastustesti, Production of high-purity graphite 27.8.2020

Liite 6 Akkutestaus Geologian tutkimuskeskuksen toteuttamaan Green Minerals-projektiin

6 KIRJALLISUUS

Al-Ani, T., Leinonen, S. and Ahtola, T. 2019. Mineralogy and Petrography of High-quality flake graphite rocks. Luopioinen, Pihtipudas and Seinäjoki, Southern and Central Finland. Geological survey of Finland, internal research report. 36 p.

Alviola, R. ja Nurmela, P. 1994. Tutkimustyöselostus Luopioisten kunnassa, valtausalueella Niinimetsä 1, kaiv.rek. n:o 4701/1, suoritetuista tutkimuksista. Geologian tutkimuskeskus, valtausraportti M06/2132/-94/1/81. 11 s., 18 liites. Saatavissa: <u>https://tupa.gtk.fi/raportti/valtaus/m06_2132_94_1_81.pdf</u>

Liitteet 1 Analyysit kairasydämistä, saatavilla GTK:n tietokannasta hinnoitteluperiaatteen mukaisesti

Liite 1.1 Takkula kemian analyyseja R334 ja R336 tilaus 45792

Liite 1.2 Takkula kemian analyyseja R334 ja R336 tilaus 45877

Liite 1.3 Takkula kemian analyyseja R331 R3322 R333 ja R340 tilaus 45861

Liite 1.4 Takkula kemian analyyseja R1 R2 ja R3 tilaus 45876

Liite 1.5 Takkula kemian analyyseja koelouhintapaikka minikairanäytteet tilaus 45904

Liite 1.6 Takkula kemian analyyseja koelouhinta lokakuu 2021 ALS tilaus OT22021708

Liitteet 1 Analyysit minidrill-näytteistä, saatavilla GTK:n tietokannasta hinnoitteluperiaatteen mukaisesti

Liite 1.7 Analyysitulokset Takkula ja Jylhä 2019 lohkareita tilaus 45833

Liite 1.8 Analyysitulokset Takkula ja Jylhä 2019 lohkareita tilaus 45859

Liite 1.9 Analyysitulokset Takkula ja Jylhä 2019 lohkareita tilaus 45868

Liite 1.10 Analyysitulokset Takkula ja Jylhä 2020 lohkareita tilaus 45903

Liite 1.11 Analyysitulokset Takkula ja Jylhä 2020 lohkareita tilaus 45914

Liite 1.12 Analyysitulokset Takkula ja Jylhä kallionäytteet 2020 tilaus 45915

Liite 1.13 Analyysitulokset Takkula ja Jylhä 2020 lohkareita tilaus 45924

Liite 1.14 Analyysitulokset Takkula ja Jylhä 2020 lohkareet 45923

Liite 1.15 Analyysitulokset Takkula 2020 kallio 45925

Liitteet 2a Hieet, timanttikairanäytteet (saatavilla GTK:lta)

Hie	Näytetunnus	Kartta 100	Kartta 50	Kartta 25	N	E
кон	2132R334 7.32-7.43	M41	M414	M4142	6798791	368121
кон	2132R334 10.50-10.60	M41	M414	M4142	6798791	368121
кон	2132R334 27.68-27.78	M41	M414	M4142	6798791	368121
кон	2132R334 36.72-36.82	M41	M414	M4142	6798791	368121
кон	2132R334 39.68-39.78	M41	M414	M4142	6798791	368121
кон	2132R334 44.08-44.18	M41	M414	M4142	6798791	368121
кон	2132R336 14.14-14.24	M41	M414	M4142	6798771	368120
кон	2132R336 19.85-19.95	M41	M414	M4142	6798771	368120

LIILE	2a.2 Takkula Illeet N352, N555, N	340 Haytteet 2	7012020 alla	yysituinius 4.	1001	
Hie	Näytetunnus	Kartta 100	Kartta 50	Kartta 25	N	E
кон	2132R332 64.65-64.75	M41	M414	M4142	6798783	368422
кон	2132R332 66.56-66.66	M41	M414	M4142	6798783	368422
кон	2132R332 79.30-79.40	M41	M414	M4142	6798783	368422
кон	2132R332 82.30-82.40	M41	M414	M4142	6798783	368422
кон	2132R332 90.07-90.17	M41	M414	M4142	6798783	368422
кон	2132R332 99.37-99.47	M41	M414	M4142	6798783	368422
кон	2132R332-106.50-106.60	M41	M414	M4142	6798783	368422
кон	2132R332 107.93-108.03	M41	M414	M4142	6798783	368422
кон	2132R332 114.91-115.01	M41	M414	M4142	6798783	368422
кон	2132R332 118.02-118.12	M41	M414	M4142	6798783	368422
кон	2132R332 127.20-127.30	M41	M414	M4142	6798783	368422
кон	2132R332 131.53-131.63	M41	M414	M4142	6798783	368422
кон	2132R332 137.30-137.40	M41	M414	M4142	6798783	368422
кон	2132R332 147.07-147.17	M41	M414	M4142	6798783	368422
кон	2132R332 151.25-151.35	M41	M414	M4142	6798783	368422
кон	2132R332 160.42-160.52	M41	M414	M4142	6798783	368422
кон	2132R332 162.52-162.62	M41	M414	M4142	6798783	368422
кон	2132R333 5.80-5.90	M41	M414	M4142	6798885	368381
кон	2132R333 7.73-7.83	M41	M414	M4142	6798885	368381
кон	2132R333 22.80-22.90	M41	M414	M4142	6798885	368381
кон	2132R333 29.70-29.80	M41	M414	M4142	6798885	368381
кон	2132R333 29.94-30.04	M41	M414	M4142	6798885	368381
кон	2132R333 52.98-53.08	M41	M414	M4142	6798885	368381
кон	2132R333 65.72-65.82	M41	M414	M4142	6798885	368381
кон	2132R333 76.70-76.80	M41	M414	M4142	6798885	368381
кон	2132R333 84.54-84.64	M41	M414	M4142	6798885	368381
кон	2132R333 90.00-90.10	M41	M414	M4142	6798885	368381
кон	2132R333 91.90-92.00	M41	M414	M4142	6798885	368381
кон	2132R333 100.10-100.20	M41	M414	M4142	6798885	368381
кон	2132R333 128.30-128.40	M41	M414	M4142	6798885	368381
кон	2132R333 136.47-136.57	M41	M414	M4142	6798885	368381
кон	2132R340 6.59-6.69	M41	M414	M4142	6799192	368455
кон	2132R340 19.78-19.88	M41	M414	M4142	6799192	368455
кон	2132R340 30.70-30.80	M41	M414	M4142	6799192	368455
КОН	2132R340 35.25-35.35	M41	M414	M4142	6799192	368455
КОН	2132R340-39.25-39.35	M41	M414	M4142	6799192	368455
КОН	2132R340 50.45-50.55	M41	M414	M4142	6799192	368455
кон	2132R340 78.30-78.40	M41	M414	M4142	6799192	368455

Liite 2a.2 Takkula hieet R332, R333, R340 näytteet 27012020 analyysitunnus 45861

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

Liito 25 2 Takkula hi	oot D1 D2 D2	nävttaat 17022020	analysitunnus AE976
LIILE Za.5 Takkula III	εει π1, π2, π3	naylleel 17022020	analyysitunnus 45670

Hie	Näytetunnus	Kartta 100	Kartta 50	Kartta 25	N	E
кон	M4142019R1 6.22-6.36	M41	M414	M4142	6798832	368394
кон	M4142019R1 18.76-18.81	M41	M414	M4142	6798832	368394
кон	M4142019R1 24.70-24.85	M41	M414	M4142	6798832	368394
кон	M4142019R1 31.75-31.90	M41	M414	M4142	6798832	368394
кон	M4142019R1 32.52-32.60	M41	M414	M4142	6798832	368394
кон	M4142019R1 46.25-46.38	M41	M414	M4142	6798832	368394
кон	M4142019R1 52.40-52.54	M41	M414	M4142	6798832	368394
кон	M4142019R1 57.52-57.67	M41	M414	M4142	6798832	368394
кон	M4142019R1 61.35-61.45	M41	M414	M4142	6798832	368394
кон	M4142019R1 63.97-64.10	M41	M414	M4142	6798832	368394
КОН	M4142019R1 69.00-69.12	M41	M414	M4142	6798832	368394
кон	M4142019R1 78.65-78.76	M41	M414	M4142	6798832	368394
кон	M4142019R1 82.53-82.65	M41	M414	M4142	6798832	368394
кон	M4142019R1 91.12-91.25	M41	M414	M4142	6798832	368394
кон	M4142019R1 96.25-96.35	M41	M414	M4142	6798832	368394
кон	M4142019R1 107.23-107.33	M41	M414	M4142	6798832	368394
кон	M4142019R1 112.34-112.44	M41	M414	M4142	6798832	368394
кон	M4142019R1 118.00-118.18	M41	M414	M4142	6798832	368394
КОН	M4142019R1 123.65-123.77	M41	M414	M4142	6798832	368394
кон	M4142019R1 130.42-130.55	M41	M414	M4142	6798832	368394
кон	M4142019R1 146.79-146.91	M41	M414	M4142	6798832	368394
кон	M4142019R2 8.31-8.42	M41	M414	M4142	6799097	368488
кон	M4142019R2 12.05-12.17	M41	M414	M4142	6799097	368488
кон	M4142019R2 17.35-17.51	M41	M414	M4142	6799097	368488
кон	M4142019R2 26.40-26.56	M41	M414	M4142	6799097	368488
кон	M4142019R2 44.82-44.94	M41	M414	M4142	6799097	368488
КОН	M4142019R2 52.36-52.50	M41	M414	M4142	6799097	368488
КОН	M4142019R2 55.04-55.18	M41	M414	M4142	6799097	368488
КОН	M4142019R2 71.43-71.54	M41	M414	M4142	6799097	368488
КОН	M4142019R2 78.44-78.56	M41	M414	M4142	6799097	368488
КОН	M4142019R2 82.50-82.60	M41	M414	M4142	6799097	368488
КОН	M4142019R2 91.30-91.42	M41	M414	M4142	6799097	368488
КОН	M4142019R2 97.27-97.41	M41	M414	M4142	6799097	368488
КОН	M4142019R2 103.04-103.14	M41	M414	M4142	6799097	368488
КОН	M4142019R2 105.55-105.67	M41	M414	M4142	6799097	368488
КОН	M4142019R2 109.98-110.08	M41	M414	M4142	6799097	368488
КОН	M4142019R2 111.88-112.06	M41	M414	M4142	6799097	368488
КОН	M4142019R2 115.33-115.45	M41	M414	M4142	6799097	368488
КОН	M4142019R2 135.21-135.33	M41	M414	M4142	6799097	368488

24

кон	M4142019R2 142.30-142.44	M41	M414	M4142	6799097	368488
кон	M4142019R3 17.38-17.48	M41	M414	M4142	6799622	368490
кон	M4142019R3 49.40-49.50	M41	M414	M4142	6799622	368490
кон	M4142019R3 74.93-75.07	M41	M414	M4142	6799622	368490
кон	M4142019R3 96.08-96.20	M41	M414	M4142	6799622	368490
кон	M4142019R3 119.89-120.00	M41	M414	M4142	6799622	368490
кон	M4142019R3 129.60-129.72	M41	M414	M4142	6799622	368490
кон	M4142019R3 138.09-138.23	M41	M414	M4142	6799622	368490
кон	M4142019R3 141.84-141.95	M41	M414	M4142	6799622	368490
КОН	M4142019R3 146.30-146.40	M41	M414	M4142	6799622	368490
кон	M4142019R3 179.95-180.05	M41	M414	M4142	6799622	368490

Liite 2a.4 Takkula hieet R334, R336 näytteet 27012020 analyysitunnus 45877

Hie	Näytetunnus	Kartta 100	Kartta 50	Kartta 25	N	E
кон	2132R334 9.10-9.15	M41	M414	M4142	6798791	368121
кон	2132R334 9.40-9.45	M41	M414	M4142	6798791	368121
кон	2132R334 13.26-13.31	M41	M414	M4142	6798791	368121
кон	2132R334 18.40-18.45.1	M41	M414	M4142	6798791	368121
кон	2132R334 18.40-18.45.2	M41	M414	M4142	6798791	368121
кон	2132R334 23.32-23.37.1	M41	M414	M4142	6798791	368121
кон	2132R334 23.32-23.37.2	M41	M414	M4142	6798791	368121
кон	2132R334 28.65-28.70.1	M41	M414	M4142	6798791	368121
кон	2132R334 28.65-28.70.2	M41	M414	M4142	6798791	368121
кон	2132R334 34.60-34.65.1	M41	M414	M4142	6798791	368121
кон	2132R334 34.60-34.65.2	M41	M414	M4142	6798791	368121
кон	2132R334 36.37-36.42.1	M41	M414	M4142	6798791	368121
кон	2132R334 36.37-36.42.2	M41	M414	M4142	6798791	368121
кон	2132R334 42.34-42.39	M41	M414	M4142	6798791	368121
КОН	2132R336 6.70-6.75	M41	M414	M4142	6798771	368120
кон	2132R336 21.03-21.08	M41	M414	M4142	6798771	368120

Liite 2a.5 Takkula hieet R333, R336, R1 31082020 ei kemian analyyseja

КОН	2132R333 37.83-37.93	M41	M414	M4142	6798885	368381
кон	2132R333 70.70-70.80	M41	M414	M4142	6798885	368381
кон	2132R333 87.90-88.00	M41	M414	M4142	6798885	368381
кон	2132R333 113.55-113.65	M41	M414	M4142	6798885	368381
КОН	2132R333 113.99-114.09	M41	M414	M4142	6798885	368381
кон	2132R333 119.28-119.38	M41	M414	M4142	6798885	368381
кон	2132R333 129.38-129.48	M41	M414	M4142	6798885	368381
кон	2132R336 4.70-4.80	M41	M414	M4142	6798771	368120
КОН	2132R336 10.04-10.14	M41	M414	M4142	6798771	368120

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

29	.9	.20	23
20		0	20

КОН	2132R336 12.00-12.10	M41	M414	M4142	6798771	368120
кон	2132R336 13.75-13.85	M41	M414	M4142	6798771	368120
кон	2132R336 16.10-16.20	M41	M414	M4142	6798771	368120
КОН	2132R336 18.10-18.20	M41	M414	M4142	6798771	368120
КОН	2132R336 20.15-20.25	M41	M414	M4142	6798771	368120
КОН	2132R336 21.46-21.56	M41	M414	M4142	6798771	368120
КОН	M4142019R1 25.60-25.70	M41	M414	M4142	6798832	368394
кон	M4142019R1 44.88-44.98	M41	M414	M4142	6798832	368394
КОН	M4142019R1 126.47-126.57	M41	M414	M4142	6798832	368394
кон	M4142019R1 133.47-133.57	M41	M414	M4142	6798832	368394

Liitteet 2b Hieet, minikairanäytteet (saatavilla GTK:lta)

Liite 2b.1 Takkula hieet	koelouhintapaikka i	minikaira 18092020	analyysitunnus 45904
	no cio anni capanna i		analy joicannas 1550 i

LIILE Z	b.1 таккија пјест косјойницарајкка пиник		52020 ana	iyysituiiius •	+J904	
КОН	STL2-2020-1225.1	M41	M414	M4142	6798847	368294
КОН	STL2-2020-1226.1	M41	M414	M4142	6798842	368306
кон	STL2-2020-1227.1	N44	N444	N4444	6798847	368306
КОН	STL2-2020-1228.1	M41	M414	M4142	6798844	368300
КОН	STL2-2020-1228.2	M41	M414	M4142	6798844	368300
кон	STL2-2020-1290.1	M41	M414	M4142	6799436	367856
КОН	STL2-2020-1290.2	M41	M414	M4142	6799436	367856
кон	STL2-2020-1290.3	M41	M414	M4142	6799436	367856
кон	STL2-2020-1290.4	M41	M414	M4142	6799436	367856
кон	2132R333 124.94-125.04	M41	M414	M4142	6798885	368381

Liite 2b.2 Takkula ja Jylhä hieet minikaira 04122020 analyysitunnus 45915

КОН	STL2-2020-228.5.2	M41	M414	M4142	6798748	368151	
КОН	STL2-2020-525.5.1	M41	M414	M4142	6800599	372556	Jylhä
КОН	STL2-2020-988.5.1	M41	M414	M4142	6798869	368460	
КОН	STL2-2020-988.5.2	M41	M414	M4142	6798869	368460	
КОН	STL2-2020-1216.5.1	M41	M414	M4142	6798907	368226	
КОН	STL2-2020-1224.5.1	M41	M414	M4142	6798837	368298	
КОН	STL2-2020-1225.5.1	M41	M414	M4142	6798847	368294	
КОН	STL2-2020-1225.5.2	M41	M414	M4142	6798847	368294	
КОН	STL2-2020-1226.5.1	M41	M414	M4142	6798842	368306	
КОН	STL2-2020-1226.5.2	M41	M414	M4142	6798842	368306	
КОН	STL2-2020-1229.5.1	M41	M414	M4142	6798842	368303	
КОН	STL2-2020-1231.5.1	M41	M414	M4142	6798848	368297	
КОН	STL2-2020-1231.5.2	M41	M414	M4142	6798848	368297	
кон	STL2-2020-1264.5.1	M41	M414	M4142	6799256	368203	

20	0	2022	
29	.9	.2023	

КОН	STL2-2020-1264.5.2	M41	M414	M4142	6799256	368203	
кон	STL2-2020-1265.5.1	M41	M414	M4142	6799253	368188	
КОН	STL2-2020-1266.5.1	M41	M414	M4142	6799274	368182	
кон	STL2-2020-1266.5.2	M41	M414	M4142	6799274	368182	
КОН	STL2-2020-1508.5.1	M41	M414	M4142	6798953	368301	
КОН	STL2-2020-1510.5.1	M41	M414	M4142	6799450	367853	
КОН	STL2-2020-1511.5.1	M41	M414	M4142	6799449	367851	
КОН	STL2-2020-1512.5.1	M41	M414	M4142	6799422	367846	
КОН	STL2-2020-1512.5.2	M41	M414	M4142	6799422	367846	
КОН	STL2-2020-1513.5.1	M41	M414	M4142	6799419	367841	
КОН	STL-2002-1516.5.1	M41	M414	M4142	6800509	372513	
КОН	STL2-2020-1517.5.1	M41	M414	M4142	6800453	372639	Jylhä
КОН	STL2-2020-1517.5.2	M41	M414	M4142	6800453	372639	Jylhä
КОН	STL2-2020-1518.5.1	M41	M414	M4142	6800497	372695	Jylhä
КОН	STL2-2020-1519.5.1	M41	M414	M4142	6800442	372625	Jylhä
КОН	STL2-2020-1519.5.2	M41	M414	M4142	6800442	372625	Jylhä
КОН	STL2-2020-1521.5.1	M41	M414	M4142	6800633	372492	Jylhä
КОН	STL2-2020-1524.5.1	M41	M414	M4142	6800456	372380	Jylhä
КОН	STL2-2020-1525.5.1	M41	M414	M4142	6801075	372891	Jylhä
КОН	STL2-2020-1526.5.1	M41	M414	M4142	6800154	372942	Jylhä
КОН	STL2-2020-1527.5.1	M41	M414	M4142	6800183	372956	Jylhä
КОН	STL2-2020-1527.5.2	M41	M414	M4142	6800183	372956	Jylhä
КОН	STL2-2020-1531.5.1	M41	M414	M4142	6800139	372886	Jylhä
КОН	STL2-2020-1531.5.2	M41	M414	M4142	6800139	372886	Jylhä
кон	STL2-2020-1532.1.2	M41	M414	M4142	6800077	372844	Jylhä
КОН	STL2-2020-1532.2.2	M41	M414	M4142	6800077	372844	Jylhä
КОН	STL2-2020-1532.5.1	M41	M414	M4142	6800077	372844	Jylhä
КОН	STL2-2020-1532.5.2	M41	M414	M4142	6800077	372844	Jylhä

Liite 2b.3 Takkula hieet Leppästensuo pohjoinen minikairanäytteet 25012021 45925

кон	JPTS-2020-222.5.1	M41	M414	M4142	6799528	368519
кон	JPTS-2020-222.5.2	M41	M414	M4142	6799528	368519
кон	JPTS-2020-223.5.1	M41	M414	M4142	6799553	368521
кон	JPTS-2020-223.5.2	M41	M414	M4142	6799553	368521
кон	JPTS-2020-224.5.1	M41	M414	M4142	6799713	368467
кон	JPTS-2020-224.5.2	M41	M414	M4142	6799713	368467
кон	JPTS-2020-225.5.1	M41	M414	M4142	6799698	368652
кон	JPTS-2020-225.5.2	M41	M414	M4142	6799698	368652

Liite 3a Geologian tutkimuskeskus maanpintageofysiikan mittaustilaus, Pälkäne, Takkula ja Jylhä

Tilaaia								
inauja	Päiväys	30.03	3.2020		Tulostettu	8.4.2020	11.22.27	
	Projekti	5040 2010	2- 18222	Pi	rojektipäällikkö	Seppo Leinonen		
	Geologi	Sepp Leind	oo onen		Geofyysikko	Jouni Ler	ssi	
Työkohde	Karttalehti	M414	4		Kunta Pä	ilkäne	Į	
	Työmaa	Takk	ula jaJylhä					
	Aihe, perustelu	Grafi	itti esiintymie	n rajaus				
Mittaustapa	Menetelmä			Parametrit			Lisätiedot	
	Overhauser magnetometraus			94.4km, linjoja 86kpl, pv 1m				
	Gem2 minislin	gram		94.4km, linjoja 86kpl, pv 1m, F 1475, 5825, 22225, 755254kHz				
	Eriko	oisolos	uhteet					
	Aikaisemmat	tutkim	ukset	Aerogeofysiikka, maxmin Takkulassa. (pieni alue)				
				I.				
Ajankohta	Aloitus aikaisintaan	6.4.2	2020	Tilaajalla viimeistään	20.04.2020			
				•				
Luvat, kokous	Lupakysymyl	set	Tilaaja han	ankkii ja selvittää kaikki tarvittavat luvat				
	Vahinkoilmoi	Imoitus Ympäristölle aiheutuneista vahingoista ilmoitetaan projektigeofyysikolle.						
	Aloituspalave	eri	skype					
Lisätiedot			•					
	Litteet	I 4 kpl						
	Lisätiedot							
							1	

LINJOJEN PÄÄTEPISTEET (TM35FIN)

Linja	Pituus (m)	X-alku	Y-alku	Z	X-loppu	Y-loppu	Z	Lat-alku	Lon-alku	Lat-	Lon-
				(laser)			(laser)			loppu	loppu
LINE 2	1479.4	368009	6801052	122.8	369290	6800312	114.5	61.32115	24.53426	61.31495	24.55868
LINE 3	1480.2	367988	6801006	125.1	369270	6800266	111.5	61.32073	24.5339	61.31453	24.55834
LINE 4	1480.2	367968	6800960	121.1	369250	6800220	110	61.32031	24.53356	61.31411	24.558

1481.1

1481.6

LINE 5

LINE 6

29.9.2023										
367947	6800914	118.6	369230	6800174	110.3	61.31989	24.5332	61.31369		
367927	6800868	118.3	369210	6800127	109.4	61.31948	24.53286	61.31326		
368029	6801098	125.5	369310	6800359	114.7	61.32157	24.5346	61.31538		
367906	6800822	117.8	369191	6800081	109	61.31906	24.5325	61.31284		
367886	6800776	114.5	369171	6800035	108.3	61.31864	24.53216	61.31242		
367866	6800731	114.1	369151	6799988	108.4	61.31823	24.53182	61.312		
367845	6800685	113.8	369131	6799942	108.8	61.31781	24.53146	61.31158		

LINE 1	1478.9	368029	6801098	125.5	369310	6800359	114.7	61.32157	24.5346	61.31538	24.55902
LINE 7	1483.3	367906	6800822	117.8	369191	6800081	109	61.31906	24.5325	61.31284	24.557
LINE 8	1483.3	367886	6800776	114.5	369171	6800035	108.3	61.31864	24.53216	61.31242	24.55666
LINE 9	1484.3	367866	6800731	114.1	369151	6799988	108.4	61.31823	24.53182	61.312	24.55632
LINE 10	1485.2	367845	6800685	113.8	369131	6799942	108.8	61.31781	24.53146	61.31158	24.55597
LINE 11	1485.2	367825	6800639	113.4	369111	6799896	108.3	61.31739	24.53112	61.31116	24.55563
LINE 12	1486.1	367804	6800593	116.1	369091	6799850	108.4	61.31697	24.53076	61.31074	24.55529
LINE 13	1487.4	367784	6800547	116.5	369072	6799803	108.2	61.31655	24.53042	61.31031	24.55497
LINE 14	1488.3	367763	6800501	117.8	369052	6799757	107.5	61.31613	24.53006	61.30989	24.55463
LINE 15	1488.3	367743	6800455	118.5	369032	6799711	109.7	61.31571	24.52972	61.30947	24.55429
LINE 16	1489.7	367722	6800409	119.5	369012	6799664	110.8	61.31529	24.52936	61.30904	24.55395
LINE 17	1489.7	367702	6800363	116.9	368992	6799618	110.4	61.31487	24.52902	61.30862	24.55361
LINE 18	1490.5	367681	6800317	116.3	368972	6799572	111.3	61.31445	24.52866	61.3082	24.55327
LINE 19	1490.5	367661	6800271	117.2	368952	6799526	113	61.31403	24.52832	61.30778	24.55293
LINE 20	1492.8	367640	6800225	121.8	368933	6799479	110.4	61.31361	24.52796	61.30736	24.55261
LINE 21	1492.8	367620	6800179	126.1	368913	6799433	109.3	61.31319	24.52762	61.30694	24.55226
LINE 22	1493.3	367600	6800134	124.6	368893	6799387	109.2	61.31278	24.52728	61.30652	24.55192
LINE 23	1494.1	367579	6800088	129.3	368873	6799341	112.8	61.31236	24.52692	61.3061	24.55158
LINE 24	1494.6	367559	6800042	130.2	368853	6799294	115.8	61.31194	24.52658	61.30567	24.55124
LINE 25	1495.5	367538	6799996	129.5	368833	6799248	114.4	61.31152	24.52622	61.30525	24.5509
LINE 26	1495.5	367518	6799950	137.8	368813	6799202	114.1	61.3111	24.52588	61.30483	24.55056
LINE 27	1497.7	367497	6799904	128.6	368794	6799155	117.1	61.31068	24.52552	61.3044	24.55024
LINE 28	1497.7	367477	6799858	116.7	368774	6799109	118.7	61.31026	24.52518	61.30398	24.5499
LINE 29	1498.6	367456	6799812	110.2	368754	6799063	121	61.30984	24.52482	61.30357	24.54956
LINE 30	1498.6	367436	6799766	109	368734	6799017	121.3	61.30942	24.52448	61.30315	24.54922
LINE 31	1500	367415	6799720	109	368714	6798970	119.4	61.309	24.52412	61.30272	24.54888
LINE 32	1500	367395	6799674	108.6	368694	6798924	120.8	61.30859	24.52378	61.3023	24.54854
LINE 33	1501.7	367374	6799628	106.2	368675	6798878	123	61.30817	24.52342	61.30188	24.54821

20 0 2023

61.31369 24.55766

24.55732

LINE 34	1502.2	367354	6799583	105.5	368655	6798832	119.8	61.30776	24.52308	61.30146	24.54787
LINE 35	1503.6	367333	6799537	104.7	368635	6798785	119.5	61.30734	24.52272	61.30103	24.54753
LINE 36	1503.6	367313	6799491	105	368615	6798739	119.6	61.30692	24.52238	61.30061	24.54719
LINE 37	1503.6	367293	6799445	105.3	368595	6798693	120.5	61.3065	24.52204	61.30019	24.54685
LINE 38	1504.9	367272	6799399	104.4	368575	6798646	120.9	61.30608	24.52168	61.29976	24.54651
LINE 39	1504.9	367252	6799353	104.3	368555	6798600	121	61.30566	24.52134	61.29935	24.54617
LINE 40	1506.7	367231	6799307	107.9	368536	6798554	122.9	61.30524	24.52098	61.29893	24.54585
LINE 41	1506.7	367211	6799261	109.1	368516	6798508	125.3	61.30482	24.52064	61.29851	24.54551
LINE 42	1508	367190	6799215	117.6	368496	6798461	122.9	61.3044	24.52028	61.29808	24.54517
LINE 43	1508	367170	6799169	117.3	368476	6798415	124	61.30398	24.51994	61.29766	24.54483
LINE 44	1508.9	367149	6799123	116.7	368456	6798369	126	61.30356	24.51958	61.29724	24.54449
LINE 45	948.9	367129	6799077	118.1	367951	6798603	119.6	61.30314	24.51924	61.29917	24.53491
LINE -1	52.4	372183	6801626	94.9	372226	6801656	93.2	61.32769	24.61176	61.32798	24.61255
LINE 0	328.8	371987	6801428	112.1	372256	6801617	95.1	61.32585	24.60824	61.32764	24.61313
LINE 1	604.5	368029	6801098	125.5	369310	6800359	114.7	61.32157	24.5346	61.31538	24.55902
LINE 2	611.7	368009	6801052	122.8	369290	6800312	114.5	61.32115	24.53426	61.31495	24.55868
LINE 3	617.5	367988	6801006	125.1	369270	6800266	111.5	61.32073	24.5339	61.31453	24.55834
LINE 4	624.7	367968	6800960	121.1	369250	6800220	110	61.32031	24.53356	61.31411	24.558
LINE 5	632.5	367947	6800914	118.6	369230	6800174	110.3	61.31989	24.5332	61.31369	24.55766
LINE 7	644.7	367906	6800822	117.8	369191	6800081	109	61.31906	24.5325	61.31284	24.557
LINE 8	652.8	367886	6800776	114.5	369171	6800035	108.3	61.31864	24.53216	61.31242	24.55666
LINE 9	659.2	367866	6800731	114.1	369151	6799988	108.4	61.31823	24.53182	61.312	24.55632
LINE 10	665.5	367845	6800685	113.8	369131	6799942	108.8	61.31781	24.53146	61.31158	24.55597
LINE 11	673.6	367825	6800639	113.4	369111	6799896	108.3	61.31739	24.53112	61.31116	24.55563
LINE 12	680	367804	6800593	116.1	369091	6799850	108.4	61.31697	24.53076	61.31074	24.55529
LINE 13	686.4	367784	6800547	116.5	369072	6799803	108.2	61.31655	24.53042	61.31031	24.55497
LINE 14	692.7	367763	6800501	117.8	369052	6799757	107.5	61.31613	24.53006	61.30989	24.55463
LINE 15	700.2	367743	6800455	118.5	369032	6799711	109.7	61.31571	24.52972	61.30947	24.55429
LINE 16	706.6	367722	6800409	119.5	369012	6799664	110.8	61.31529	24.52936	61.30904	24.55395
LINE 17	713.6	367702	6800363	116.9	368992	6799618	110.4	61.31487	24.52902	61.30862	24.55361

LINE 18	/21.6	367681	6800317	116.3	368972	6/995/2	111.3	61.31445	24.52866	61.3082	24.55327
LINE 19	727.4	367661	6800271	117.2	368952	6799526	113	61.31403	24.52832	61.30778	24.55293
LINE 20	733.8	367640	6800225	121.8	368933	6799479	110.4	61.31361	24.52796	61.30736	24.55261
LINE 21	741.8	367620	6800179	126.1	368913	6799433	109.3	61.31319	24.52762	61.30694	24.55226
LINE 22	748.2	367600	6800134	124.6	368893	6799387	109.2	61.31278	24.52728	61.30652	24.55192
LINE 23	754.6	367579	6800088	129.3	368873	6799341	112.8	61.31236	24.52692	61.3061	24.55158
LINE 24	761.8	367559	6800042	130.2	368853	6799294	115.8	61.31194	24.52658	61.30567	24.55124
LINE 25	769	367538	6799996	129.5	368833	6799248	114.4	61.31152	24.52622	61.30525	24.5509
LINE 26	775.4	367518	6799950	137.8	368813	6799202	114.1	61.3111	24.52588	61.30483	24.55056
LINE 27	781.2	367497	6799904	128.6	368794	6799155	117.1	61.31068	24.52552	61.3044	24.55024
LINE 28	789.8	367477	6799858	116.7	368774	6799109	118.7	61.31026	24.52518	61.30398	24.5499
LINE 29	796.2	367456	6799812	110.2	368754	6799063	121	61.30984	24.52482	61.30357	24.54956
LINE 30	801.2	367436	6799766	109	368734	6799017	121.3	61.30942	24.52448	61.30315	24.54922
LINE 31	797.9	367415	6799720	109	368714	6798970	119.4	61.309	24.52412	61.30272	24.54888
LINE 32	793.4	367395	6799674	108.6	368694	6798924	120.8	61.30859	24.52378	61.3023	24.54854
LINE 33	789	367374	6799628	106.2	368675	6798878	123	61.30817	24.52342	61.30188	24.54821
LINE 34	786.2	367354	6799583	105.5	368655	6798832	119.8	61.30776	24.52308	61.30146	24.54787
LINE 35	781.2	367333	6799537	104.7	368635	6798785	119.5	61.30734	24.52272	61.30103	24.54753
LINE 36	776.8	367313	6799491	105	368615	6798739	119.6	61.30692	24.52238	61.30061	24.54719
LINE 37	774	367293	6799445	105.3	368595	6798693	120.5	61.3065	24.52204	61.30019	24.54685
LINE 38	608.1	367272	6799399	104.4	368575	6798646	120.9	61.30608	24.52168	61.29976	24.54651
LINE 39	145.1	367252	6799353	104.3	368555	6798600	121	61.30566	24.52134	61.29935	24.54617
LINE 6	638.9	367927	6800868	118.3	369210	6800127	109.4	61.31948	24.53286	61.31326	24.55732
YHTEENSÄ	94416.4 m	86 linjaa									

LIITEKARTTA Luopioinen suun.jpg

LIITEKARTTA Luopioinen suun big.jpg

Liite 3b Petrofysiikka

Liite 3b.1 Takkula petrofysiikka R1, R2, R3 analyysitunnus 45876

CLIENT							
T. Ahtola / S. Leinonen							
MAPSHEET M414							
Operator: SEVU							
R1 = resistivity (0.1 Hz)	IP _{PL} = 100*(R1-R2)/R1						
R2 = resistivity (10 Hz)	IP _{PT} = 100*(R1-R3)/R1						
R3 = resistivity (500 Hz)							

Density D = M/VQ-value = $J/(H^*K)$, where H =41.7 A/m

Sininen väri ominaisvastuksen kohdalla tarkoittaa että oikea tulos on esitettyä arvoa pienempi (mittausalueen ulkopuolella) Punainen väri ominaisvastuksen kohdalla tarkoittaa että oikea tulos on esitettyä arvoa suurempi (mittausalueen ulkopuolella)

			Density and magnetic properties						
				Scale		AC-bridge	Fluxgate		
			Mass	Volume	Density	Susceptibility	Remanence		
			М	v	D	к	J		
SAMPLE CODE	Northing	Easting	g	ст³	kg/m³	10 ⁻⁶ (SI)	mA/m		
M4142019R1 6.22-6.30	6798832	368394	444.17	161.71	2747	10012	1420		
M4142019R1 18.67-18.75	6798832	368394	453.39	164.81	2751	9394	3315		
M4142019R1 24.70-24.78	6798832	368394	476.47	164.63	2894	26948	19662		
M4142019R1 31.75-31.84	6798832	368394	470.50	174.20	2701	12363	2062		
M4142019R1 32.52-32.59	6798832	368394	398.16	144.42	2757	19462	5341		
M4142019R1 46.25-46.33	6798832	368394	478.99	169.15	2832	34132	13473		
M4142019R1 52.40-52.48	6798832	368394	467.57	165.79	2820	45238	17397		
M4142019R1 57.52-57.60	6798832	368394	488.94	167.52	2919	31332	7182		
M4142019R1 61.35-61.43	6798832	368394	446.37	164.61	2712	15377	7522		
M4142019R1 63.97-64.06	6798832	368394	493.77	174.07	2837	26269	4333		
M4142019R1 69.00-69.09	6798832	368394	480.12	171.63	2797	18562	4093		
M4142019R1 78.65-78.73	6798832	368394	470.52	166.44	2827	15798	14209		
M4142019R1 82.53-82.61	6798832	368394	457.93	165.08	2774	31274	6323		
M4142019R1 91.12-91.20	6798832	368394	479.68	170.49	2814	33711	14678		
M4142019R1 96.25-96.33	6798832	368394	471.47	167.19	2820	39585	14737		
M4142019R1 107.23-107.31	6798832	368394	448.00	158.56	2825	13629	2851		
M4142019R1 112.34-112.42	6798832	368394	479.30	166.77	2874	17538	8239		
M4142019R1 118.00-118.08	6798832	368394	464.01	164.11	2827	9272	4037		
M4142019R1 123.65-123.73	6798832	368394	486.66	166.68	2920	4899	2877		
Liite 3b.1									

SAMPLE CODE	Northing	Easting	Mass	Volume	Density	Susceptibility	Remanence
M4142019R1 130.42-130.50	6798832	368394	467.89	167.39	2795	2828	1219
M4142019R1 146.79-146.87	6798832	368394	466.43	165.96	2810	14202	7018
M4142019R2 8.31-8.39	6799097	368488	458.53	165.58	2769	18319	4362
M4142019R2 12.05-12.13	6799097	368488	453.58	165.44	2742	15455	1629
M4142019R2 17.35-17.44	6799097	368488	479.58	171.36	2799	27022	5333
M4142019R2 26.40-26.48	6799097	368488	462.12	168.77	2738	11923	3496
M4142019R2 44.82-44.90	6799097	368488	463.07	167.53	2764	26575	9580
M4142019R2 52.36-52.44	6799097	368488	471.85	165.11	2858	39513	10086
M4142019R2 55.04-55.12	6799097	368488	465.48	168.09	2769	16599	709
M4142019R2 71.43-71.51	6799097	368488	453.35	165.09	2746	24123	1668
M4142019R2 78.44-78.52	6799097	368488	459.05	165.45	2775	29857	2429
M4142019R2 82.50-82.58	6799097	368488	490.41	166.56	2944	40525	16995
M4142019R2 91.30-91.38	6799097	368488	480.66	166.84	2881	40613	1155
M4142019R2 97.27-97.35	6799097	368488	472.23	163.74	2884	24025	9910
M4142019R2 103.04-103.12	6799097	368488	448.69	160.65	2793	29959	5608
M4142019R2 105.55-105.63	6799097	368488	459.42	164.83	2787	19145	5294
M4142019R2 109.98-110.06	6799097	368488	479.53	166.24	2884	36351	3508
M4142019R2 111.88-111.96	6799097	368488	465.15	166.66	2791	21771	12275
M4142019R2 115.33-115.42	6799097	368488	493.54	168.11	2936	21533	7503
M4142019R2 135.21-135.29	6799097	368488	441.13	166.36	2652	211	83
M4142019R2 142.30-142.38	6799097	368488	458.38	166.36	2755	14903	3499
M4142019R3 17.38-17.46	6799622	368490	460.11	167.42	2748	890	321
M4142019R3 49.40-49.48	6799622	368490	415.04	147.29	2818	19971	10571
M4142019R3 74.93-75.01	6799622	368490	437.48	164.29	2663	160	33
M4142019R3 96.08-96.16	6799622	368490	453.67	165.41	2743	290	26
M4142019R3 119.89-119.97	6799622	368490	458.71	165.14	2778	30630	22267
M4142019R3 129.60-129.68	6799622	368490	445.70	165.76	2689	12174	5048
M4142019R3 138.09-138.17	6799622	368490	452.53	163.30	2771	20158	7902
M4142019R3 141.84-141.92	6799622	368490	447.42	164.54	2719	1843	1501
M4142019R3 146.30-146.38	6799622	368490	457.10	166.03	2753	11366	9185
M4142019R3 179.95-180.03	6799622	368490	446.49	163.07	2738	309	70

			. .	Inductive resistivity
			Q-value	AC-bridge
			0	Ri
SAMPLE CODE	Northing	Easting	ų	ohmm
M4142019R1 6.22-6.30	6798832	368394	3.4	0.0019
M4142019R1 18.67-18.75	6798832	368394	8.5	0.0016
M4142019R1 24.70-24.78	6798832	368394	17.5	0.0003
M4142019R1 31.75-31.84	6798832	368394	4.0	0.0012
M4142019R1 32.52-32.59	6798832	368394	6.6	0.0007
M4142019R1 46.25-46.33	6798832	368394	9.5	0.0006
M4142019R1 52.40-52.48	6798832	368394	9.2	0.0003
M4142019R1 57.52-57.60	6798832	368394	5.5	0.0004
M4142019R1 61.35-61.43	6798832	368394	11.7	0.0009
M4142019R1 63.97-64.06	6798832	368394	4.0	0.0003
M4142019R1 69.00-69.09	6798832	368394	5.3	0.0006
M4142019R1 78.65-78.73	6798832	368394	21.6	0.0004
M4142019R1 82.53-82.61	6798832	368394	4.8	0.0003
M4142019R1 91.12-91.20	6798832	368394	10.4	0.0002
M4142019R1 96.25-96.33	6798832	368394	8.9	0.0003
M4142019R1 107.23-107.31	6798832	368394	5.0	0.0002
M4142019R1 112.34-112.42	6798832	368394	11.3	0.0003
M4142019R1 118.00-118.08	6798832	368394	10.4	0.0015
M4142019R1 123.65-123.73	6798832	368394	14.1	0.0002
M4142019R1 130.42-130.50	6798832	368394	10.3	0.0004
M4142019R1 146.79-146.87	6798832	368394	11.9	0.0011
M4142019R2 8.31-8.39	6799097	368488	5.7	0.0009
M4142019R2 12.05-12.13	6799097	368488	2.5	0.0008
M4142019R2 17.35-17.44	6799097	368488	4.7	0.0004
M4142019R2 26.40-26.48	6799097	368488	7.0	0.0014
M4142019R2 44.82-44.90	6799097	368488	8.6	0.0004
M4142019R2 52.36-52.44	6799097	368488	6.1	0.0002
M4142019R2 55.04-55.12	6799097	368488	1.0	0.0006
M4142019R2 71.43-71.51	6799097	368488	1.7	0.0004
M4142019R2 78.44-78.52	6799097	368488	2.0	0.0003
M4142019R2 82.50-82.58	6799097	368488	10.1	0.0002
M4142019R2 91.30-91.38	6799097	368488	0.7	0.0002
M4142019R2 97.27-97.35	6799097	368488	9.9	0.0004

Liite 3b.1 Takkula petrofysiikka R1, R2, R3 analyysitunnus 45876

-	2	—
1	5	5
-	-	-

Liite 3b.1				
SAMPLE CODE	Northing	Easting	Q-value	AC-bridge
M4142019R2 103.04-103.12	6799097	368488	4.5	0.0002
M4142019R2 105.55-105.63	6799097	368488	6.6	0.0011
M4142019R2 109.98-110.06	6799097	368488	2.3	0.0002
M4142019R2 111.88-111.96	6799097	368488	13.5	0.0003
M4142019R2 115.33-115.42	6799097	368488	8.4	0.0003
M4142019R2 135.21-135.29	6799097	368488	9.5	0.0100
M4142019R2 142.30-142.38	6799097	368488	5.6	0.0011
M4142019R3 17.38-17.46	6799622	368490	8.7	0.0100
M4142019R3 49.40-49.48	6799622	368490	12.7	0.0007
M4142019R3 74.93-75.01	6799622	368490	5.0	0.0100
M4142019R3 96.08-96.16	6799622	368490	2.1	0.0100
M4142019R3 119.89-119.97	6799622	368490	17.4	0.0002
M4142019R3 129.60-129.68	6799622	368490	9.9	0.0009
M4142019R3 138.09-138.17	6799622	368490	9.4	0.0007
M4142019R3 141.84-141.92	6799622	368490	19.5	0.0130
M4142019R3 146.30-146.38	6799622	368490	19.4	0.0010
M4142019R3 179.95-180.03	6799622	368490	5.5	0.0100

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

Liite 3b.1 Takkula petrofysiikka R1, R2, R3 analyysitunnus 45876

			Galvanic resi	stivity					
			MAFRIP						
			Wet electrodes (2-point)			Dry ele	Dry electrodes (4-point)		
			R _g (0.1 Hz)	R _g (10 Hz)	R _g (500 Hz)	R _g (0.1 Hz)	R _g (10 Hz)	R _g (500 Hz)	
SAMPLE CODE	Northing	Easting	ohmm	ohmm	ohmm	ohmm	ohmm	ohmm	
M4142019R1 6.22-6.30	6798832	368394	20	20	20	5.26	5.15	12.2	
M4142019R1 18.67-18.75	6798832	368394	298	108	76	0.007	0.007	0.007	
M4142019R1 24.70-24.78	6798832	368394	11	11	11	0.003	0.003	0.003	
M4142019R1 31.75-31.84	6798832	368394	1530	644	356	1090	502	182	
M4142019R1 32.52-32.59	6798832	368394	3900	2380	1570	1366	1366	1366	
M4142019R1 46.25-46.33	6798832	368394	11	11	11	0.01	0.01	0.01	
M4142019R1 52.40-52.48	6798832	368394	13	13	13	0.006	0.006	0.006	
M4142019R1 57.52-57.60	6798832	368394	188	58	36	0.138	0.138	0.138	
M4142019R1 61.35-61.43	6798832	368394	3370	1510	822	5720	2970	1430	
M4142019R1 63.97-64.06	6798832	368394	9	9	9	0.003	0.003	0.003	
M4142019R1 69.00-69.09	6798832	368394	11	11	11	0.004	0.004	0.004	
M4142019R1 78.65-78.73	6798832	368394	12	12	12	0.003	0.003	0.003	
M4142019R1 82.53-82.61	6798832	368394	10	10	10	0.003	0.003	0.003	
M4142019R1 91.12-91.20	6798832	368394	14	14	14	0.003	0.003	0.003	
M4142019R1 96.25-96.33	6798832	368394	9	9	9	0.005	0.005	0.005	
M4142019R1 107.23-107.31	6798832	368394	12	12	12	0.004	0.004	0.004	
M4142019R1 112.34-112.42	6798832	368394	9	9	9	0.002	0.002	0.002	
M4142019R1 118.00-118.08	6798832	368394	9	9	9	0.004	0.004	0.004	
M4142019R1 123.65-123.73	6798832	368394	12	12	12	0.003	0.003	0.003	
M4142019R1 130.42-130.50	6798832	368394	9	9	9	0.004	0.004	0.004	
M4142019R1 146.79-146.87	6798832	368394	201	52	26	0.249	0.249	0.249	
M4142019R2 8.31-8.39	6799097	368488	22600	14300	9100	13900	10600	6370	
M4142019R2 12.05-12.13	6799097	368488	463	183	122	1.732	1.732	1.732	
M4142019R2 17.35-17.44	6799097	368488	148	41	24	0.155	0.155	0.155	
M4142019R2 26.40-26.48	6799097	368488	10900	5770	3850	16900	8810	2130	
M4142019R2 44.82-44.90	6799097	368488	13	13	13	0.067	0.067	0.067	
M4142019R2 52.36-52.44	6799097	368488	8	8	8	0.004	0.004	0.004	
M4142019R2 55.04-55.12	6799097	368488	5530	3530	2470	2630	1750	1040	
M4142019R2 71.43-71.51	6799097	368488	13	13	13	0.018	0.018	0.018	
M4142019R2 78.44-78.52	6799097	368488	12	12	12	0.003	0.003	0.003	
M4142019R2 82.50-82.58	6799097	368488	9	9	9	0.003	0.003	0.003	
M4142019R2 91.30-91.38	6799097	368488	10	10	10	0.003	0.003	0.003	
M4142019R2 97.27-97.35	6799097	368488	133	48	29	0.054	0.054	0.054	
M4142019R2 103.04-103.12	6799097	368488	18	18	18	0.003	0.003	0.003	

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

7
/

Liite 3b.1								
SAMPLE CODE	Northing	Easting	R _g (0.1 Hz)	R _g (10 Hz)	R _g (500 Hz)	R _g (0.1 Hz)	R _g (10 Hz)	R _g (500 Hz)
M4142019R2 105.55-105.63	6799097	368488	325	159	127	0.423	0.423	0.423
M4142019R2 109.98-110.06	6799097	368488	15	15	15	0.003	0.003	0.003
M4142019R2 111.88-111.96	6799097	368488	8	8	8	0.05	0.05	0.05
M4142019R2 115.33-115.42	6799097	368488	14	14	14	0.003	0.003	0.003
M4142019R2 135.21-135.29	6799097	368488	18000	17100	16200	17300	16200	5610
M4142019R2 142.30-142.38	6799097	368488	177	55	35	0.279	0.279	0.279
M4142019R3 17.38-17.46	6799622	368490	83200	72000	57800	114000	89800	26300
M4142019R3 49.40-49.48	6799622	368490	54	27	23	0.003	0.003	0.003
M4142019R3 74.93-75.01	6799622	368490	40000	37800	33200	389716	389716	389716
M4142019R3 96.08-96.16	6799622	368490	64900	62200	52600	389716	389716	389716
M4142019R3 119.89-119.97	6799622	368490	11	11	11	0.003	0.003	0.003
M4142019R3 129.60-129.68	6799622	368490	119	57	43	0.012	0.012	0.012
M4142019R3 138.09-138.17	6799622	368490	189	63	35	28.1	29.9	20.5
M4142019R3 141.84-141.92	6799622	368490	8830	5910	4020	36.6	34.2	20.2
M4142019R3 146.30-146.38	6799622	368490	17400	8870	4350	9690	4220	872
M4142019R3 179.95-180.03	6799622	368490	60800	56300	43100	60100	16500	7530

Measurement parameters, units, range and accuracy

Measurement parameter	Symbol	Unit	Range	Accuracy
Mass (weight)	М	g	0-3000 g	0.01 g
Volume	v	cm ³	0-2000 cm ³	±0.1%
Density (specific weight)	D	kg/m³	1500-20000 kg/m ³	±0.1%
Magnetic volume susceptibility (susceptibility)	к	10 ⁻⁶ (SI)	-100 - 5 000 000 [10 ⁻⁶] SI	standard error of the mean: $2*10^{-6}$, when K< $2000*10^{-6}$ (SI)
				relative standard error : 1 %, when K>2000*10 ⁻⁶ (SI)
Remanent magnetization (remanence)	J	10 ⁻³ A/m	10 ⁻³ - 10 ³ A/m	relative standard error: 1 %
Inductive electrical resistivity (resistivity)	R _{ind}	ohmm	10 ⁻² - 10 ⁻⁷ ohmm	± 10 % when k < 200 000 [10 ⁻⁶] SI
Galvanic electrical apparent resistivity (resistivity)	Rg	ohmm	wet 2 point electrodes: 10 - 100 000 ohmm	± 10 %
			dry 4 point electrodes: 0.01 - 100 000 ohmm	± 10 %
P-wave velocity	Pv	m/s	1000 -10000 m/s	±1%

Liite 3b.2 Takkula petrofysiikka R334, R336 analyysitunnus 45877

Measurement apparatus E18

Density, magnetic properties and inductive resistivity measurements

Density D = M/V

Q-value = J/(H*K), where H =41 A/m

Electrical conductivity $S = 1/R_{ind}$

Measurement device M0 Galvanic resistivity and calculated IP parameters R1 = resistivity (0.1 Hz) IP_{PL} = 100*(R1-R2)/R1 R2 = resistivity (10 Hz) IP_{PT} = 100*(R1-R3)/R1

R3 = resistivity (500 Hz)

				Massa	Tiheys	Susk.	Rem
	1			М	D	К	R
SAMPLE CODE	Kivilaji	Northing	Easting	g	kg/m³	10 ⁻⁶ (SI)	mA/m
2132-334-9.10	Suonigneissi	6798791	368121	192.88	2791	20387	4808
2132-334-9.40	Suonigneissi	6798791	368121	182.84	2817	37163	11844
2132-334-13.26	Suonigneissi	6798791	368121	199.36	2825	26757	19607
2132-334-18.40	Grafiitti	6798791	368121	166.26	2577	21615	6403
2132-334-23.32	Grafiitti	6798791	368121	174.33	2638	16824	7077
2132-334-28.65	Grafiitti	6798791	368121	185.61	2658	24891	11359
2132-334-34.60	Grafiitti	6798791	368121	172.25	2679	16061	7607
2132-334-36.37	Grafiitti	6798791	368121	167.28	2588	9880	3199
2132-334-42.34	Suonigneissi	6798791	368121	184.29	2791	141	25
2132-336-6.70-6.79	Suonigneissi	6798771	368120	183.49	2799	1649	1138
2132-336-21.03-21.11	Suonigneissi	6798771	368120	182.91	2765	26263	21973

Liite 3b.2	Indukt.						
				Q	Fe3O4-pit.	Ri	S
SAMPLE CODE	Kivilaji	Northing	Easting		%р	ohmm	S/m
2132-334-9.10	Suonigneissi	6798791	368121	5.8	1.10	0.00024	4248
2132-334-9.40	Suonigneissi	6798791	368121	7.8	1.98	0.00010	9843
2132-334-13.26	Suonigneissi	6798791	368121	17.9	1.42	0.00018	5432
2132-334-18.40	Grafiitti	6798791	368121	7.2	1.26	0.00004	28531
2132-334-23.32	Grafiitti	6798791	368121	10.3	0.96	0.00006	15903
2132-334-28.65	Grafiitti	6798791	368121	11.1	1.40	0.00004	23480
2132-334-34.60	Grafiitti	6798791	368121	11.6	0.90	0.00006	17637
2132-334-36.37	Grafiitti	6798791	368121	7.9	0.57	0.00004	23386
2132-334-42.34	Suonigneissi	6798791	368121	4.3	0.01	>0.01	<100
2132-336-6.70-6.79	Suonigneissi	6798771	368120	16.8	0.09	0.00868	115
2132-336-21.03-21.11	Suonigneissi	6798771	368120	20.4	1.42	0.00017	5882

				MAFRIP	märkä-ele	ektrodit			MAFRIP I	kuiva-elektr	odit		
				R0.1	R10	R500	PL	РТ	R0.1	R10	R500	PL	PT
SAMPLE CODE	Kivilaji	Northing	Easting	ohmm	ohmm	ohmm	%	%	ohmm	ohmm	ohmm	%	%
2132-334-9.10	Suonigneissi	6798791	368121	117	42	24	64	80	0.157	0.157	0.157		
2132-334-9.40	Suonigneissi	6798791	368121	5	5	5			0.035	0.035	0.035		
2132-334-13.26	Suonigneissi	6798791	368121	118	52	36	56	69	1.91	1.89	1.87	0	2
2132-334-18.40	Grafiitti	6798791	368121	3	3	3			0.002	0.002	0.002		
2132-334-23.32	Grafiitti	6798791	368121	3	3	3			0.002	0.002	0.002		
2132-334-28.65	Grafiitti	6798791	368121	3	3	3			0.002	0.002	0.002		
2132-334-34.60	Grafiitti	6798791	368121	3	3	3		_	0.002	0.002	0.002	-	
2132-334-36.37	Grafiitti	6798791	368121	6	6	6			0.002	0.002	0.002		
2132-334-42.34	Suonigneissi	6798791	368121	8700	7820	6890	10	21	149073	149073	149073		
2132-336-6.70-6.79	Suonigneissi	6798771	368120	53200	44700	26500	16	50	55100	33700	11000	39	80
2132-336-21.03-21.11	Suonigneissi	6798771	368120	7	7	7			0.064	0.064	0.064	-	

Punaisella merkityt arvot tarkoittavat että esitetty tulos on ainoastaan ominaisvastuksen ala- tai yläraja, tulos on mittausalueen ulkopuolella

Liite 3b.2	SCIP				
				R	IP(M)
SAMPLE CODE	Kivilaji	Northing	Easting	ohmm	
2132-334-9.10	Suonigneissi	6798791	368121	4.9	160
2132-334-9.40	Suonigneissi	6798791	368121	2.0	216
2132-334-13.26	Suonigneissi	6798791	368121	5.4	172
2132-334-18.40	Grafiitti	6798791	368121	1.5	286
2132-334-23.32	Grafiitti	6798791	368121	1.4	267
2132-334-28.65	Grafiitti	6798791	368121	1.2	259
2132-334-34.60	Grafiitti	6798791	368121	1.3	274
2132-334-36.37	Grafiitti	6798791	368121	1.3	256
2132-334-42.34	Suonigneissi	6798791	368121	6764	10
2132-336-6.70-6.79	Suonigneissi	6798771	368120	46364	20
2132-336-21.03-21.11	Suonigneissi	6798771	368120	3.0	227

Kaikki grafiittinäytteet ovat niin hyvin johtavia, että niille saadaan johtavuus/ominaisvastus määritettyä ainoastaan induktiivisesti, galvaaniset menetelmät (taajuuksilla 0.1, 10 ja 500 Hz) antavat ominaisvastukselle vain laskennallisen ylärajan. Induktiivisesti mitattu johtavuus vaihtelee välillä 16 000 – 29000 S/m

Suonigneisseistä yhden johtokyky on niin alhainen että sitä ei saatu määritettyä induktiivisesti, muiden induktiivisesti määritetty johtokyky vaihtelee välillä 100 – 10 000 S/m

Koska galvaanisilla mittauksilla ei saatu määritettyä ominaisvastusta kuin neljän näytteen kohdalla onnistuu IP-parametrien vertailu ainoastaan SCIP-mittausten (time domain) kohdalla. Kaikkien laskettujen IP-parametrien keskiarvo (M) vaihtelee suonigneissien kohdalla välillä 10 – 227 ja grafiittinäytteiden kohdalla välillä 256 - 286

Kaikkien näytteiden (paitsi 2132-334-42.34) korkeat suskeptibiliteetti-, Q- ja johtavuusarvot viittaavat siihen että niiden magneettisuus aiheutuu magneettikiisusta eikä magnetiitista. Viimeisessä sarakkeessa laskettu magnetiittipitoisuus on siksi vain teoreettinen arvo, käytännössä se kuvastaa magnetiitin asemasta magneettikiisupitoisuutta, joka on kuitenkin todennäköisesti moninkertainen verrattuna laskettuun magnetiittipitoisuusarvoon.

Ominaisvastuksen lisäksi suonigneissit erottuvat selvimmin grafiittinäytteistä korkeamman tiheyden perusteella. Suonigneissien tiheys vaihtelee välillä 2791-2825 kg/m3 ja grafiittinäytteiden välillä 2577-2679

Liite 3b.2

Measurement parameter	Symbol	Unit	Range	Accuracy
Mass (weight)	M	g	0-3000 g	0.01 g
Volume	v	cm ³	0-2000 cm ³	±0.1%
Density (specific weight)	D	kg/m ³	1500-20000 kg/m ³	±0.1%
Magnetic volume susceptibility (susceptibility)	к	10 ⁻⁶ (SI)	-100 - 5 000 000 [10 ⁻⁶] SI	standard error of the mean: $2^{*10^{-6}}$, when K< 2000*10 ⁻⁶ (SI)
				relative standard error : 1 %, when K>2000*10 ⁻⁶ (SI)
Remanent magnetization (remanence)	J	10 ⁻³ A/m	10 ⁻³ - 10 ³ A/m	relative standard error: 1%
Inductive electrical resistivity (resistivity)	R _{ind}	ohmm	10 ⁻² - 10 ⁻⁷ ohmm	\pm 10 % when k < 200 000 [10 ⁻⁶] SI
Galvanic electrical apparent resistivity (resistivity)	R	ohmm	wet 2 point electrodes: 10 - 100 000 ohmm	± 10 %
			dry 4 point electrodes: 0.01 - 100 000 ohmm	± 10 %
P-wave velocity	Pv	m/s	1000 - 10000 m/s	±1%
Porosity	Pe	%	0 - 100	

Liite 3b.3 Takkula ja Jylhä petrofysiikka minikaira analyysitunnus 45915

Q-arvo = J/(H*K), missä H=41 A/m . Arvoa ei ole laskettu kun K < 50 tai J <50 mA/m, tuloksen suuresta suhteellisesta epätarkkuudesta johtuen

Ominaisvastus on mitattu muutaman näytteen kohdalla eri suunnissa, jotka on merkitty kirjaimilla X, Y ja Z

Magnetiitipitoisuus on laskettu suskeptibiliteetti- ja tiheysarvojen perusteella olettaen suskeptibiliteetin aiheutuvan kokonaan magnetiitista.

Galvaaninen ominaisvastus on määritetty lisäksi käyttäen kuivaelektrodeja niiden näytteiden osalta, joilla märkäelektrodeilla saatu tulos on mittausalueen ulkopuolella

Sinisellä värillä merkityt ovat alle mittausalueen, oikea arvo on tätä pienempi

Density and magnetic properties	Galvanic resistivity
Density D = M/V	R1 = resistivity (0.1 Hz)
Q-value = J/(H*K) missä H = magneettikentän voimakkuus	R2 = resistivity (10 Hz)
	R3 = resistivity (500 Hz)

				Density and magn	etic properties		
				Mass	Scale Volume	Density	AC-bridge Suskeptibility
		Newthie		М	V	D	К
SAMPLECODE	Paikka	Northin	Eeasting	g	ст³	kg/m³	10 ⁻⁶ SI
JPTS-2020-222.5	Takkula	6799528	368519	201.62	73.01	2762	2451
JPTS-2020-224.5	Takkula	6799713	368467	196.04	72.46	2705	482
JPTS-2020-225.5	Takkula	6799698	368652	202.05	74.00	2731	318
STL2-2020-525.5.1	Jylhä	6800599	372556	200.27	73.65	2719	159
STL2-2020-1229.5.1	Takkula	6798842	368303	139.56	60.47	2308	61
STL2-2020-1254.5.1	Jylhä	6800490	372676	162.14	61.41	2640	22
STL2-2020-1265.5.1	Takkula	6799253	368188	162.41	59.04	2751	268
STL2-2020-1266.5.1	Takkula	6799274	368182	196.38	68.17	2881	526
STL2-2020-1510.5.1	Takkula	6799450	367853	204.77	73.54	2785	37783
STL2-2020-1517.5.1	Jylhä	6800453	372639	202.97	73.46	2763	402
STL2-2020-1521.5.1	Jylhä	6800633	372492	200.11	74.02	2704	127
STL2-2020-1523.5.1	Jylhä	6800600	371797	180.19	66.05	2728	487
STL2-2020-1524.5.1	Jylhä	6800456	372380	196.87	72.30	2723	245
STL2-2020-1525.5.1	Jylhä	6801075	372891	151.17	55.84	2707	241
STL2-2020-1527.5.1	Jylhä	6800154	372942	188.51	70.05	2691	202
STL2-2020-1530.5.1	Jylhä	6800183	372956	145.83	59.65	2445	113
STL2-2020-1531.5.1	Jylhä	6800139	372886	201.15	73.90	2722	4235
STL2-2020-1532.5.1	Jylhä	6800077	372844	196.83	73.45	2680	190

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

Liite 3b.3				Fluxgate Remanence			Inductive resistivity AC-bridge Big
	1			J	Q	Fe ₃ O ₄	Ri
SAMPLECODE	Paikka	Northing	Eeasting	mA/m		%	ohmm
JPTS-2020-222.5	Takkula	6799528	368519	1582	15.75	0.01	0.00310
JPTS-2020-224.5	Takkula	6799713	368467	244	12.33	0.01	>0.01
JPTS-2020-225.5	Takkula	6799698	368652	138	10.60	0.01	>0.01
STL2-2020-525.5.1	Jylhä	6800599	372556	105	16.12	0.01	>0.01
STL2-2020-1229.5.1	Takkula	6798842	368303	167	66.33	0.01	>0.01
STL2-2020-1254.5.1	Jylhä	6800490	372676	182	-	0.01	>0.01
STL2-2020-1265.5.1	Takkula	6799253	368188	133	12.16	0.01	>0.01
STL2-2020-1266.5.1	Takkula	6799274	368182	104	4.82	0.01	>0.01
STL2-2020-1510.5.1	Takkula	6799450	367853	24430	15.78	0.01	0.00026
STL2-2020-1517.5.1	Jylhä	6800453	372639	99	6.03	0.01	>0.01
STL2-2020-1521.5.1	Jylhä	6800633	372492	27	-	0.01	>0.01
STL2-2020-1523.5.1	Jylhä	6800600	371797	234	11.70	0.01	>0.01
STL2-2020-1524.5.1	Jylhä	6800456	372380	70	6.94	0.01	>0.01
STL2-2020-1525.5.1	Jylhä	6801075	372891	73	7.43	0.01	>0.01
STL2-2020-1527.5.1	Jylhä	6800154	372942	60	7.30	0.01	>0.01
STL2-2020-1530.5.1	Jylhä	6800183	372956	168	36.31	0.01	>0.01
STL2-2020-1531.5.1	Jylhä	6800139	372886	3208	18.48	0.01	0.00292
STL2-2020-1532.5.1	Jylhä	6800077	372844	119	15.27	0.01	>0.01

Galvanic resistivity													
Liite 3b.3					MA	FRIP Wet elect	rodes (2-point)	N	MAFRIP Dry el	ectrodes (4-poir	nt)	
										-		IF) _
												para	met
					Resistivity	'		IP-parameters		Resistivity		er	rs
				R _g (0.1	R _g (10		IP _P		R _g (0.1	R _g (10		IP _P	IP _P
				Hz)	Hz)	R _g (500 Hz)	L	IP _{PT}	Hz)	Hz)	R _g (500 Hz)	L	т
SAMPLEC	Pai												
ODE	kka	Northing	Eeasting	ohmm	ohmm	ohmm	%	%	ohmm	ohmm	ohmm	%	%
JPTS-2020-	Tak												
222.5	kula	6799528	368519	5730	5070	4240	12	26	-	-	-	-	-
JPTS-2020-	Tak												
224.5	kula	6799713	368467	5260	4930	4470	6		-	-	-	-	-
JPTS-2020-	Tak						_						
225.5	kula	6799698	368652	16200	15300	13000	6	20	-	-	-	-	-
STL2-2020-	Jylh					10							
525.5.1	ä	6800599	372556	13	13	13	-	-	0.633	0.633	0.633	-	-
STL2-2020-	Tak			_	_	_							
1229.5.1	kula	6798842	368303	5	5	5	-		0.078	0.078	0.078	-	
STL2-2020-	Jylh												
1254.5.1	ä	6800490	372676	706	715	700	0	1	-	-	-	-	-

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

												- -	
Liite 3b.3													
	Paik												
Code	ka	Northing	Easting										
STL2-2020-	Tak												
1265.5.1	kula	6799253	368188	4630	4750	4610	0	0	-	-	-	-	-
STL2-2020-	Tak												
1266.5.1	kula	6799274	368182	4660	3950	3130	15	33	-	-	-	-	-
STL2-2020-	Tak												
1510.5.1	kula	6799450	367853	3	3	3	-	-	0.005	0.005	0.005	-	-
STL2-2020-	Jylh				_								
1517.5.1	ä	6800453	372639	6	6	6	-	-	0.446	0.446	0.446		-
STL2-2020-	Jylh												
1521.5.1	ä	6800633	372492	534	384	277	28	48	-	-	-		-
STL2-2020-	Jylh												
1523.5.1	ä	6800600	371797	12000	10200	8310	15	31	-	-	-		-
STL2-2020-	Jylh			7570	7440	74.00	2	-					
1524.5.1	ä	6800456	372380	/5/0	/440	/180	2	5			-	-	-
STL2-2020-	Jylh			42500	42000	0000		26					
1525.5.1	ä	6801075	372891	13500	12000	9990	11	26	-	-	-	-	-
STL2-2020-	Jylh			20	20	20			0.701	0.761	0.701		
1527.5.1	ä	6800154	372942	20	20	20	-	-	0.761	0.761	0.761	-	-
STL2-2020-	Jylh 	6000405	27205-5	00	70	53	22	46					
1530.5.1	ä	6800183	372956	98	/6	52	22	46	-	-	-		-
STL2-2020-	Jylh 	6000406	272065	402	226	252	22	40					
1531.5.1	ä	6800139	372886	493	336	253	32	49		-	-		
STL2-2020-	Jylh 	6000077	272244	12	12	12			-	4	4	7	14
1532.5.1	ä	6800077	372844	13	13	13	-	-	5	4	4	/	14

Liite 4 Takkulan grafiittiesiintymän kairaukset vuonna 2019, yhteenveto

Takkula - timanttikairaus vuonna 2019

Luopioisten Takkulaan kairattiin 2019 kolme reikää, yhteensä 500,95 m. R1 kairattiin vuosina 1989-1992 mitattuun (Alviola, 1994) pohjois-eteläsuuntaiseen reaalisähköiseen anomaliaan vuonna 1991 kairattujen profiilien R331-R332 ja R333 väliin (Kuva 1). R2 kairattiin anomalian pohjoisempaan osaan 270 m R1:stä pohjoiseen. R3 kairattiin Leppästensuon pohjoispuolella olevaan anomaliaan 525 m R2:sta pohjoiseen. R1 ja R2 kairattiin idästä länteen ja R3 lännestä itään (Taulukko 1).

Kuva 1. Takkulan tutkimusalueen kairareikien sijainti. Taustalla maastogeofysiikan sähköinen kartta. Kartta Suomen kallioperä – DigiKP © Geologian tutkimuskeskus. Pohjakartta © Maanmittauslaitos.

Reikä	X (TM35FIN)	Y (TM35FIN)	Z	SUUNTA	KALTEVUUS	PITUUS
M4142019R1	6798832	368394	121.253	270	45	149.90
M4142019R2	6799096	368486	117.668	270	45	151.25
M4142019R3	6799624	368489	113.904	90	45	199.80

Taulukko 1.	Takkulan	kairaus 2019.	reikätiedot	R1-R3.
	Turkkululi	Kun uus 2015,	rendencuot	NT NO.

Kohteen kallioperä koostuu pääasiassa suonigneissistä, jossa on välikerroksina kiisupitoista grafiittigneissiä ja – liusketta sekä hapanta vulkaniittia. Edellisiä leikkaa kapeat graniitti- ja pegmatiittijuonet.

Grafiittipitoiset kivet ovat paksuimmillaan ja yhtenäisempinä tutkimusalueen eteläosassa (kuva 2). Profiilin R1 analysoitujen grafiittia sisältävien näytteiden yhteispituus on 93,65 metriä. Keskimmäisellä profiililla kerrokset kapenevat ja niissä on välikerroksina enemmän hapanta vulkaniittia (kuva 3). Pohjoisimmalla profiililla on enää muutama kapea grafiittipitoinen kerros (Kuva 4).

Kuva 2. Kairaprofiili M4142019R1.

Kuva 3. Kairaprofiili M4142019R2.

Kuva 4. Kairaprofiili M4142019R3.

Kaikkien analysoitujen grafiittipitoisten kairasydännäytteiden grafiittipitoisuus (Cg %) vaihtelee 1,6 % ja 14,6 % välillä keskiarvon ollessa n. 7,3 %. Korkeimmat Cg pitoisuudet ovat profiililla R1, jossa keskiarvo n. 9,1 % (Kuva 5 ja Taulukko 2). Grafiittipitoiset kivet sisältävät aina myös magneetti- ja rikkikiisua. Rikkipitoisuus vaihtelee analysoiduissa näytteissä 2,5 % ja 8,5 % välillä.

Kerrosten, liuskeisuuden ja raitaisuuden kaateet vaihtelevat kairausten perusteella pystystä lähes pystyyn (80°-85°). Kaadesuunnat osoittavat välillä länteen ja välillä itään.

Kuva 5. Reiän M4142019R1 grafiittikiveä. Näytevälin 120.4 – 123 m Cg pitoisuus on 11,7 % ja välin 123 – 125,6 m 12,1 %.

Taukukko 2. Vuoden 2019 kairasydännäytteiden max, min ja keskiarvopitoisuudet grafiitin ja rikin osalta.

reikätunnus	näytepituus yhteensä	näytteiden lkm	Cg %	S %
M4142019R1	93,65 m	36		
max			14.6	8.5
min			3.1	3.4
keskiarvo			9.1	5.9
M4142019R2	60,1 m	22		
max			7.4	12.3
min			2.5	1.7
keskiarvo			4.9	5.4
M4142019R3	15,25 m	7		
max			5.1	9.4
min			2.5	1.7
keskiarvo			3.7	4.5

Kirjallisuus

Alviola, R. ja Nurmela, P. 1994. Tutkimustyöselostus Luopioisten kunnassa, valtausalueella Niinimetsä 1, kaiv.rek. n:o 4701/1, suoritetuista tutkimuksista. Geologian tutkimuskeskus. arkistoraportti M06/2132/-94/1/81. 11 s., 18 liites.

Liite 5 Rikastustesti Production of high-purity graphite 27.8.2020

Production of high-purity graphite by flotation and alkali roasting

Tero Korhonen

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland Espoo • Kokkola • Kuopio • Loppi • Outokumpu • Rovaniemi www.gtk.fi • Puh/Tel +358 29 503 0000 • Y-tunnus / FO-nummer / Business ID: 0244680-7

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

GEOLOGICAL SURVEY OF FINLAND

DOCUMENTATION PAGE

Authors Tero Korhonen		Type of report Research report					
Oleg Knauf Akseli Torppa		Commission by Seppo Leinonen, GTK					
Title of report Production of high-purity gr	aphite by flotation and alkali r	oasting					
Bench scale testwork on two g southern Finland was conducte Käpysuo made by Dandara Sal- flotation and alkali roasting for	Ab: raphite ore samples from Käpysu d at GTK Mintec during autumn vador and Krista Koistinen. The r further studies.	stract 10 Rautalampi deposit in eastern 2019 – April 2020. These tests w nain purpose was to produce higl	Finland and from Luopioinen in rere linked to earlier studies with n-purity graphite concentrates by				
About 93 % carbon grades with $86 - 91$ % recoveries were achieved after flotation both with Käpysuo and Luopioinen samples. The regrinding of the rougher flotation concentrate prior to the cleaning flotation improved the quality of the final concentrate, this was noticed in the earlier tests with Käpysuo too. The depressant dosages need to be optimized in order to remain high graphite recoveries and grades, based on these tests about 500 – 750 g/t of sodium silicate seemed to work rather well for both Käpysuo and Luopioinen.							
The graphite purification tests v with 25 % NaOH at 250 °C for The carbon grades in the feed m and Luopioinen materials. In ge regrinding of graphite concentra milling in order to avoid process was the positive thing.	The graphite purification tests were done for the sieved graphite flotation concentrates in the following conditions: alkaline roasting with 25 % NaOH at 250 °C for 2 h followed by water wash and acidic leaching with 10 w–% sulfuric acid at room temperature. The carbon grades in the feed materials were $79.5 - 95.5$ % and after the purification > 99 % grade was achieved both with Käpysuo and Luopioinen materials. In general, the finer feed material contained more impurities than coarser material. In addition, the possible regrinding of graphite concentrate prior to the purification should be done carefully with ceramic grinding media only or with jet milling in order to avoid process iron in the concentrate. Anyhow, most of the iron were removed in the purification process which						
Keywords graphite, flotation, alka	li roasting						
Geographical area Rautalampi, Luopioiner	n, Finland						
Report serial		Archive code C/MT/2020/7					
Total pages 19+Appendices	Language English	Price	Confidentiality confidential				
Unit and section Circular Economy Solu	tions	Project code 50402-20108222, 50404-40137					
Signature/name		Signature/name					
Tomi Maksimainen Team Manager		Tero Korhonen Senior Scientist					

6.1.1 Contents

Documentation page

1	Inti	Introduction						
2	Lał	boratory test work	4					
	2.1	Sample preparation and feed analyses	4					
	2.2	Flotation tests	7					
	2.3	Graphite purification tests	11					
3	Tes	st results	13					
	3.1	Käpysuo flotation tests	13					
	3.2	Käpysuo purification tests	15					
	3.3	Luopioinen flotation tests	16					
	3.4	Luopioinen purification tests	18					
4	Co	nclusions	19					

Appendix 1: Chemical analyses Appendix 2: Flotation Test Reports Appendix 3: Purification Test Reports Appendix 4: Graphite Mineralogy of Purification Test Samples LT24-32

1 INTRODUCTION

This bench scale beneficiation testwork was related to co-funded Green Minerals project and GTK's own Battery Minerals project. These tests were linked to earlier tests with Käpysuo graphite ore sample made by Dandara Salvador and Krista Koistinen. The main purpose was to produce high-purity graphite concentrates from Käpysuo and Luopioinen graphite ore samples by flotation, alkali roasting and acidic leaching. The second task was to find out favorable process conditions for flotation and purification and produce high-purity graphite for following battery tests.

2 LABORATORY TEST WORK

These bench scale tests and mineralogical characterization were carried out at GTK Mintec of the Geological Survey of Finland (GTK) in Outokumpu.

Mineralogical characterization was conducted with MLA, which is a scanning electron microscope fitted with two energy-dispersive spectrometers for rapid elemental analysis and special software to automatically perform a range of quantitative mineralogical measurements and calculations.

Chemical analyses were performed by X-ray fluorescence (XRF) by Eurofins Oy in Outokumpu. The total carbon and carbonate carbon analyses were done with combustion technique (Eltra, Kuopio) by Eurofins Oy in Kuopio. In addition, for some samples carbon analyses were performed by "gravimetric method (not standard method)" in Eurofins Oy, Outokumpu.

2.1 Sample preparation and feed analyses

Timo Ahtola from GTK delivered drill core samples from Luopioinen in August 2019, totally about 55 kg for graphite beneficiation tests Table 1.

Depth.	Length.	kg
67.90-72.30 m	4.40 m	3.7
81.00-87.60 m	6.60 m	5.8
89.00-95.00 m	6.00 m	5.2
95.00-101.30 m	6.30 m	5.4
111.50-117.50 m	6.00 m	5.5
117.50-123.50 m	6.00 m	5.6
123.50-128.50 m	5.00 m	4.6
130.00-135.00 m	5.00 m	3.8
135.00-140.40 m	5.40 m	5.5
149.40-154.40 m	5.00 m	5.5
154.40-159.40 m	5.00 m	4.5
	Total	55.0

Table 1. Drill core samples from Luopioinen (drill hole M52/2132/R332).

4

The drill core samples from Luopioinen were crushed to < 1.5 mm particle size with jaw and roller crusher. After the crushing, all material was combined and homogenized by mixing as one sample. Then 1 kg and 5 kg samples were divided for the bench scale tests.

The main feed analyses of the crushed Luopioinen sample are presented in Table 2. The complete feed analyses from Luopioinen are presented in Appendix 1. Based on the on the calculated feeds of the flotation tests, the carbon grade should be about 13 % in Luopioinen instead of 16 %. In addition, the other used feed sample in this testwork was Käpysuo Blend 2 which was combined already earlier from sample R25 and R26 (GTK research report C/MT/2019/22).

Sample	C (%)	SiO2 (%)	Al2O3 (%)	MgO (%)	Fe (%)	Ca (%)	S (%)
Luopioinen	16	44.9	11.4	3.06	10.6	1.39	7.29
Käpysuo Blend 2	10.2	53.7	13.8	3.41	5.8	2.40	3.50

Table 2. The Luopioinen graphite ore feed analyses by XRF and total carbon by Eltra.

The modal mineralogy of feed samples is presented in Table 3. The main minerals in both samples were pyrite, quartz and plagioclase. Secondary abundant minerals were mica, K-feldspar and chlorite. Graphite content was 4.6 % in Käpysuo Blend 2 and 7.2 % in Luopioinen.

The graphite contents are expected to be underestimated due to limitation of sample preparation for graphite measurements. In order to make graphite clearly visible and measurable for MLA the specimen is prepared by using special epoxy. The material is being all the time mixed by stick while the epoxy is hardening, and plate like graphite particles has no opportunity to settle down such a way that the particle will be exposed by the maximum area to the specimen surface. Most of the particles are turned on their sides and looks like flame like particles in the measured results. Most likely the graphite contents shown in Table 3 should be multiplied by two.

Mineral	Käpysuo blend 2	Luopioinen		
Graphite	4.63	7.23		
Quartz	18.38	19.28		
Plagioclase	26.93	14.30		
K-feldspar	3.62	3.28		
Diopside	2.60	0.09		
Mica	9.94	16.64		
Talc	0.00	0.00		
Chlorite	4.73	0.53		
Kaolinite	0.46	0.18		
Epidote	1.24	0.61		
Spessartine	0.19	0.03		
Titanite	0.42	0.01		
Carbonates	0.07	0.01		
Apatite	0.59	0.14		
Monazite	0.01	0.01		
Rutile	0.28	0.58		
Pyrite	24.82	36.20		
Sphalerite	0.17	0.54		
Molybdenite	0.00	0.01		
Chalcopyrite	0.04	0.11		
Pentlandite	0.09	0.11		
Goethite	0.75	0.08		
Unclassified	0.04	0.05		
Total	100.00	100.00		
Amount of measured particles	19972	19589		

Table 3. Modal mineralogy, Käpysuo Blend 2 and Luopioinen.

2.2 Flotation tests

Totally five flotation tests were done, two tests with Käpysuo Blend 2 sample and three tests with Luopioinen sample. The main flotation test variables are shown in Tables 4&5. With Käpysuo Blend 2, the main purpose was graphite concentrate production. In general, graphite flotation included three rougher stages followed by five cleanings. Sodium silicate and starch were used as depressant, kerosene as collector and MIBC as frother. The pH was adjusted with sodium hydroxide around pH 8.5.

The grinding was done with a Mergan rod mill in Tests 17&18. The used slurry density was 50 %, ore sample 5.0 kg, water 5.0 L and 22 kg rods. After the rougher flotation, RC1–3 was split in two part and both were reground extra 45 minutes with a stainless steel laboratory ball mill with different size ceramic and steel balls (ball charge 5 kg). The general flotation flowsheet is shown in Figure 1. The flotation products were analysed by XRF and Eltra (Kuopio).

Test	Feed	Grinding	Flotation	Time	MIBC	Kerosene	Na ₂ SiO ₃	Starch	Notes
	kg	min		min	g/t	g/t	g/t	g/t	
17	5	75	Rougher x 3	13	160	120	500	100	Concentrate
		2*45	Cleanings x 5	28	224	84			production
			Total	41	384	204	500	100	
18	5	75	Rougher x 3	14	140	110	750	150	Concentrate
		2*45	Cleanings x 5	30	165	45			production
			Total	44	305	155	750	150	

Table 4. The main variables in flotation tests, Käpysuo Blend 2.

7

Figure 1. General flotation flowsheet for Käpysuo Blend 2 tests: grinding, rougher and cleaner flotation.

With Luopioinen, one basic flotation test was done at first in order to see how the material behaves in graphite flotation. The grinding was done with a mild steel laboratory ball mill in Test 1 and the used grinding time was 60 minutes. The used slurry density was 50 %, ore sample 1.0 kg, water 1.0 L and balls 8 kg.

In tests 2&3 the purpose was to improve graphite flotation and at the same time produce graphite concentrate for the further tests. The grinding was done with a Mergan rod mill in Tests 2&3. The used slurry density was 50 %, ore sample 5.0 kg, water 5.0 L and 22 kg rods. The rougher graphite concentrate was split in two part and both were reground extra 45 minutes with a stainless steel laboratory ball mill with 5 kg different size ceramic and steel balls. The pH was adjusted with sodium hydroxide around pH 8.5 in all flotation tests.

The flotation tests with Luopionen samples were based on the Käpysuo Blend 2 tests. Table 5. The main variables in flotation tests,

Test	Feed	Grinding	Flotation	Time	MIBC	Kerosene	Na ₂ SiO ₃	Starch	Notes
	kg	min		min	g/t	g/t	g/t	g/t	
1	1	60	Rougher x 3	11	160	120	1500	300	Basic
			Cleanings x 5	26	174	54			test
			Total	37	334	174	1500	300	
2	5	75	Rougher x 7	38	560	520	1500	300	Concentrate
		2*45	Cleanings x 6	29	174	54			Production
			Total	67	734	574	1500	300	
3	5	75	Rougher x 4	16	200	140	750	150	Concentrate
		2*45	Cleanings x 6	29	174	54			Production
			Total	45	374	194	750	150	

Luopioinen.

The used flotation chemicals both for Käpysuo Blend 2 and Luopioinen are shown in Table 6. Table 6. Flotation

chemicals.

Trade Name	Chemical composition	Concentration	Purpose of Use	
Zeopol 33	Sodium silicate, Na ₂ SiO ₃	5 %	depressant	
Raisamyl 088-50	Starch	1 %	depressant	
MIBC	4-metyl-2-pentanol	100 %	frother	
Kerosene		100 %	collector	
NaOH	sodium hvdroxide	5 %	рН	

Figure 2. Particle size distributions, Luopioinen flotation tests.

The grinding fineness was determined by wet and dry sieving. At first, wet sieving with 20 µm screen was done and after this the overflow of the wet sieving phase was sieved as dry by Ro-Tap sieve shaker. The particle size distributions of Luopioinen flotation tests are shown in Figure 2.

In addition size by size analyses were done for Luopioinen Test 1. According to the results, the graphite grade was the highest in the coarsest fractions and lowest in the -20 µm fraction (Table 7).

Fraction	Mass		C
μm	%	%	Rec %
75	10.5	39.2	32.3
45	16.1	28.1	35.5
20	33.7	8.6	22.7
-20	39.6	3.1	9.5
Total	100.0	12.8	100.0

Table 7. Luopioinen size by size analyses Test 1, D80~57 µm.

2.3 Graphite purification tests

The graphite purification method included three steps; an alkaline roasting, a water wash and a sulfuric acid leaching. At first was carried out alkaline roasting with 25 % sodium hydroxide at 250 °C, in this stage impurities were converted to soluble form. The used roasting time was 2 hours and the liquid- solid ratio was 2:1. Then the graphite was washed with water to dilute soluble impurities and extra alkali. Last stage was acidic leaching with 10 % sulfuric acid at room temperature, where it was removed acid soluble impurities. The used leaching time was 2 hours and the liquid-solid ratio was 5:1. Finally, the graphite was washed and neutralized with ionized water and then dried and weighted.

Six purification tests (LT24-LT29) were performed for Käpysuo Blend 2 graphite flotation concentrate (Figure 4). The raw material was combined from flotation tests 16-18 concentrates. The following size fractions were sieved for the purifications tests LT24-LT26.

- 1. D50~20 μm
- 2. D50~50 μ m, (In practice this was D50~45 μ m)
- 3. D50~80 μ m, (In practice this was D50~75 μ m)

Then the rest of combined graphite flotation concentrate from tests 16-18 was reground with the stainless steel ball mill. At first it was used the combination of ceramic and steel balls 5 kg (the diameter of balls 5-20 mm, Figure 3). Later on the ball charge was changed to steel balls only 8 kg (the diameter of balls 10-15 mm, Figure 3) due to the slow production of fine material. The graphite concentrate was ground in two batches with 350-400 g solids and 0.5 I waster. The total grinding time was about 26 hours. Finally, the following size fractions were sieved for the purifications tests LT27-LT29.

- 4. D50~20 μm
- 5. D50~50 μ m, (In practice this was D50~45 μ m)
- 6. $D50 << 20 \,\mu m$ (In practice this was 64 % < 20 μm)

Figure 3. The used ball charges in graphite concentrate regrinding, combination of ceramic and steel balls on the left and steel balls on the right.

Three purification tests were done for Luopioinen graphite flotation concentrate, material was combined from flotation tests 2-3 (Figure 4). The following size fractions were sieved for the purifications tests LT30-LT32.

- 1. D50~20 μm
- 2. D50~50 μ m, (In practice this was D50~45 μ m)
- 3. D50~80 μm, (In practice this was D50~75 μm)

Figure 4. Particle size distributions of the graphite flotation concentrates for the purification tests.

3 TEST RESULTS

The main results from flotation- and graphite purification tests with Käpysuo Blend 2 and Luopioinen samples are presented in the following chapters. The detailed results are shown in Appendices 1 - 4.

3.1 Käpysuo flotation tests

In Test 17, the graphite recovery to rougher concentrate was 97.9 % with 42.8 % grade. After the 5th cleaning the carbon grade was 92.6 % and the recovery remained still at high level 91.4 %. The carbon recoveries were a little bit lower and grades higher in Test 18 due to the higher depressant dosages and lower frother and collector dosages. The carbon grade was already 61.9 % with 92 % recovery in rougher concentrate and in the final concentrate 93.3 % with 85.8 % recovery.

Test	Product	Mass	C	(Eltra)	SiO ₂	SiO ₂ (XRF)		l2O3	MgC	O (XRF)	Fe	(XRF)	Ca	(XRF)
		%	%	Rec%	%	Rec%	(X %	.KF) Rec%	%	Rec%	%	Rec%	%	Rec%
17	RC1-3	23.1	42.8	97.9	32.3	14.0	9.9	16.7	2.3	15.9	3.9	14.4	1.7	16.5
	Tails	76.9	0.3	2.1	59.5	86.0	14.8	83.3	3.7	84.1	6.9	85.6	2.6	83.5
	CC1	15.2	64.8	97.7	19.2	5.5	6.1	6.8	1.3	6.0	2.7	6.6	1.0	6.7
	CC2	12.5	78.7	97.4	11.0	2.6	3.7	3.4	0.8	2.9	1.9	3.8	0.6	3.2
	CC3	11.3	87.0	97.2	6.1	1.3	2.2	1.8	0.5	1.6	1.4	2.5	0.3	1.6
	CC4	10.7	91.0	96.3	3.8	0.8	1.5	1.2	0.3	1.0	1.1	1.9	0.2	1.0
	CC5	10.0	92.6	91.4	3.1	0.6	1.3	0.9	0.3	0.8	1.0	1.6	0.2	0.7
	Calc Feed	100.0	10.1	100.0	53.2	100.0	13.7	100.0	3.3	100.0	6.2	100.0	2.4	100.0
18	RC1-3	15.1	61.9	92.0	20.7	5.9	7.1	7.8	1.5	6.8	2.5	6.3	1.8	10.7
	Tails	84.9	1.0	8.0	59.1	94.1	14.9	92.2	3.7	93.2	6.6	93.7	2.6	89.3
	CC1	11.1	83.0	90.6	8.2	1.7	3.1	2.5	0.7	2.4	1.4	2.6	1.3	5.7
	CC2	10.2	90.0	89.9	4.2	0.8	1.8	1.3	0.5	1.5	1.0	1.6	1.1	4.5
	CC3	9.9	92.0	89.4	3.0	0.6	1.4	1.0	0.4	1.2	0.8	1.3	1.1	4.3
	CC4	9.7	92.7	88.4	2.7	0.5	1.3	0.9	0.4	1.1	0.8	1.2	1.1	4.2
	CC5	9.4	93.3	85.8	2.5	0.4	1.2	0.8	0.3	0.9	0.7	1.1	1.1	4.1
	Calc Feed	100.0	10.2	100.0	53.3	100.0	13.7	100.0	3.4	100.0	6.0	100.0	2.5	100.0

Table 8. The main results from Käpysuo Blend 2 flotation tests.

3.2 Käpysuo purification tests

The main results from graphite purification tests are shown in Tables 9&10. The highest graphite purity was achieved in Test LT26, the carbon grade was almost 100 % after alkaline roasting, water wash and acidic leaching. The particle size of the feed material in Test LT26 was the coarsest D50~80 μ m and carbon grade was also the highest 95 %.

Tests LT27-28 were performed for the reground graphite concentrate, it should be noted the very high iron grade in the feed material roughly 7 – 9 %. The high iron content was caused at least partly by very long regrinding time, most likely some iron was loosening from the grinding mill and steel balls. According to mineralogical studies it was identified some "tramp iron" 0.8-1.1 % and goethite 3.7-6.7 % these were the main iron impurities. Anyhow, most of the iron was removed during the purification process, the iron grades were 0.05-0.1 % in the residue.

In general, the coarser the feed material was the higher the graphite grade was before and after the purification. If the regrinding of graphite concentrate will be applied it would be better to do with ceramic grinding media only or with jet milling in order to avoid process iron in the ground concentrate. The sulphur contents were 0.02-0.05 % in the residues.

Leachin	Feed	Feed	Residue	Upgrade	SiO2 Feed	SiO2 residue	S Feed	S residue	Fe Feed	Fe residue
g Test		C (%)	C (%)	%	<u>%</u>	%	%	%	%	%
LT24	D50~20 µm	89.2	99.4	1.4	4.31	0.47	0.56	0.05	1.13	0.04
LT25	D50~50 µm	93.3	99.6	6.8	2.67	0.26	0.33	0.03	0.79	0.03
LT26	D50~80 µm	95.0	100.0	5.3	2.20	0.26	0.26	0.03	0.57	0.02
LT27	D50~20 µm	81.9	99.4	21.4	2.96	0.94	0.25	0.02	8.08	0.10
LT28	D50~50 µm	84.9	99.6	17.3	2.30	0.72	0.19	0.02	7.23	0.05
LT29	D50<<20	79.5	99.1	24.7	3.34	1.06	0.28	0.02	8.98	0.06
	μm									

Table 9. The main graphite purification test results with Käpysuo Blend 2 material.

Based on the mineralogical analyses the concentrates were almost pure graphite after the purification. The particle size distributions of the feed material were different in comparison to the MLA measurements. In the residues, particle size distributions were closer to the feed. The coarser residue in comparison to the feed might indicate that during the purification process mostly the fine material is removed. This would make sense because the finest fractions contained more impurities than coarser size fractions.

Table 10. The graphite mineral grades with Käpysuo Blend 2 material, bas	sed on the MLA analyses.
--	--------------------------

Leaching	Feed	Feed	Residue	Residue Upgrade		Residue
Test	recu	Graphite %	Graphite %	%	MLA	MLA
LT24	D50~20 µm	82.5	99.7	20.8	D50~35 µm	D50~40 µm
LT25	D50~50 µm	90.1	99.8	1.8	D50~40 µm	D50~50 µm
LT26	D50~80 µm	93.4	99.7	6.8	D50~45 µm	D50~70 µm
LT27	D50~20 µm	79.6	99.7	25.4	-	-
LT28	D50~50 µm	88.7	99.5	1 .2	-	-
LT29	D50<<20 μm	82.7	99.4	20.2	_	-

*- not measured

3.3 Luopioinen flotation tests

The main flotation test results are shown in Table 11 and Figure 6. In 1st test the graphite recovery to rougher concentrate was high 97.7 % with 56.6 % grade. Thus the upgrading was modest in the cleanings, the carbon grade was 79.7 % with 69.2 % recovery in the final concentrate. Better results were achieved in Tests 2&3 which were done with 5 kg batches. In Test 2, the graphite recovery in rougher concentrate was the lowest 91.2 % this was caused by too high silicate depressant dosages. Anyhow, the carbon grade was high in the final concentrate 94.5 %. The best results were obtained in Test 3, where the graphite recovery remained high also in the cleanings. The graphite recovery in rougher concentrate was 98.7 % and in the final concentrate 91 % with 93.3 % grade.

Table 11. The main results from Luopioinen flotation tests.

														15
Test	Product	Mass	С	(Eltra)	SiO ₂	2 (XRF)	Al ₂ O3	s (XRF)	MgO	(XRF)	Fe	(XRF)	Ca	(XRF)
		%	%	Rec%	%	Rec%	%	Rec%	%	Rec%	%	Rec%	%	Rec%
1	RC1-3	22.5	56.6	97.7	21.6	10.8	6.5	12.9	1.9	14.2	3.9	7.8	0.8	12.3
	Tails	77.5	0.4	2.3	51.7	89.2	12.8	87.1	3.4	85.8	13.5	92.2	1.6	87.7
	CC1	18.0	68.5	94.9	14.4	5.8	4.9	7.8	1.7	10.0	2.5	3.9	0.5	6.9
	CC2	16.7	72.1	92.6	12.2	4.6	4.4	6.5	1.6	8.6	2.1	3.0	0.5	5.5
	CC3	16.0	73.9	90.5	11.2	4.0	4.1	5.7	1.5	7.6	1.9	2.7	0.4	4.8
	CC4	13.9	76.9	82.3	9.5	2.9	3.5	4.3	1.2	5.7	1.8	2.2	0.4	3.6
	CC5	11.3	79.7	69.2	8.1	2.0	3.1	3.1	1.1	4.0	1.7	1.7	0.3	2.5
	Calc Feed	100.0	13.0	100.0	44.9	100.0	11.4	100.0	3.1	100.0	11.3	100.0	1.4	100.0
2	RC1-7	23.3	51.5	91.2	27.9	14.4	7.8	16.0	1.8	14.0	3.6	7.3	1.0	15.9
	Tails	76.7	1.5	8.8	50.3	85.6	12.5	84.0	3.4	86.0	13.8	92.7	1.6	84.1
	CC1	16.6	70.9	89.2	16.0	5.9	4.7	6.8	1.0	5.8	2.4	3.5	0.6	6.8
	CC2	13.9	83.5	88.0	8.3	2.6	2.6	3.1	0.6	2.8	1.6	1.9	0.3	3.1
	CC3	12.8	89.7	87.0	4.6	1.3	1.6	1.8	0.4	1.6	1.2	1.3	0.2	1.6
	CC4	12.3	92.5	86.3	2.9	0.8	1.1	1.2	0.3	1.2	0.9	1.0	0.1	1.0
	CC5	11.7	93.7	83.4	2.2	0.6	0.9	0.9	0.2	0.9	0.8	0.9	0.1	0.7
	CC6	10.0	94.5	71.7	1.9	0.4	0.8	0.7	0.2	0.7	0.8	0.7	0.1	0.5
	Calc Feed	100.0	13.2	100.0	45.1	100.0	11.4	100.0	3.0	100.0	11.4	100.0	1.4	100.0
3	RC1-4	30.8	42.4	98.7	30.5	21.0	8.8	23.4	2.4	23.6	5.9	16.1	1.0	22.7
	Tails	69.2	0.2	1.3	51.1	79.0	12.8	76.6	3.5	76.4	13.8	83.9	1.6	77.3
	CC1	20.5	63.6	98.5	19.1	8.8	5.5	9.8	1.4	9.2	3.8	6.8	0.7	10.0
	CC2	16.9	77.3	98.3	11.4	4.3	3.5	5.1	0.9	4.8	2.4	3.6	0.4	5.1
	CC3	15.3	85.2	98.1	6.9	2.3	2.3	3.0	0.6	3.0	1.7	2.3	0.3	3.0
	CC4	14.5	89.4	97.6	4.5	1.4	1.6	2.0	0.5	2.1	1.3	1.6	0.2	1.9
	CC5	14.0	91.6	96.5	3.3	1.0	1.3	1.6	0.4	1.6	1.1	1.3	0.1	1.4
	CC6	12.9	93.3	91.0	2.5	0.7	1.1	1.2	0.3	1.1	0.9	1.0	0.1	1.0
	Calc Feed	100.0	13.3	100.0	44.7	100.0	11.6	100.0	3.2	100.0	11.4	100.0	1.4	100.0

Figure 6. Flotation tests with Luopioinen, carbon grades and recoveries.

Figure 7. Graphite flotation, Luopioinen.

3.4 Luopioinen purification tests

The main results from graphite purification tests are shown in Tables 12&13. The highest graphite purity was achieved in Test LT32 where the feed material was the coarsest D50~80 µm. The graphite grade was 95.3 % in the feed and after purification 99.5 %.

Leachin	Feed	Feed	Residue	Upg	grade	SiO ₂ Feed	SiO ₂	S Feed	S residue	Fe Feed	Fe residue
g	recu						residue				
Test		C (%)	C (%)	0,	%	%	%	%	%	%	%
LT30	D50~20 µm	90.3	99.3		10.0	3.84	0.42	0.74	0.03	1.27	0.02
LT31	D50~50 µm	94.8	99.2	4	6	2.00	0.27	0.42	0.02	0.72	0.01
LT32	D50~80 µm	95.3	99.5	4	4	1.72	0.20	0.40	0.02	0.72	0.01

Table 12. The main graphite purification test results with Luopioinen material.

Based on the mineralogical analyses the concentrates were almost pure graphite after purification, too. The graphite grades in the finest fraction were the lowest in the feed and after the purification too. The particle size distributions were somewhat different determined by MLA measurements in comparison to sieved feed material.

Leaching		Feed	Residue	Upgrade	Feed	Residue
Test	recu	Graphite %	Graphite %	%	MLA	MLA
LT30	D50~20 µm	94.1	99.4	5.6	D50~28 µm	D50~31 µm
LT31	D50~50 µm	96.9	99.7	2. 9	D50~37 µm	D50~37 µm
LT32	D50~80 µm	97.4	99.7	2.3	D50~48 µm	D50~48 µm

Table 13. The graphite mineral grades with Luopioinen material based on the MLA analyses.

4 CONCLUSIONS

The main purpose was to produce high purity graphite concentrates by flotation, alkali roasting and acidic leaching from Käpysuo and Luopioinen graphite ore samples. Regarding the flotation, with Käpysuo it was achieved about 93 % carbon grade with 86-91 % recoveries in Tests 17-18. Somewhat similar results were achieved with Luopioinen in Test 3 where the carbon grade was 93 % with 91 % recovery in the final flotation concentrate.

Based on the flotation tests, it seems that regrinding of the rougher flotation concentrate prior to the cleaning flotation will improve the quality of the final concentrate. This was noticed in the earlier tests with Käpysuo too. The depressant dosages need to be optimized in order to remain high graphite recoveries and grades, based on these tests about 500 – 750 g/t of sodium silicate seemed to work rather well for both Käpysuo and Luopioinen.

The graphite purification tests were done for the sieved graphite flotation concentrates. The following test conditions were used in all tests: alkaline roasting with 25 % NaOH at 250 °C for 2 h followed by water wash and acidic leaching with 10 w–% sulfuric acid at room temperature. The carbon concentration in the feed materials varied from 79.5 – 95.5 % and after the purification > 99 % grade was achieved both with Käpysuo and Luopioinen materials. In general, the finer feed material contained more impurities than coarser material. In addition, it was noticed that possible regrinding of graphite concentrate prior to the purification should be done carefully with ceramic grinding media only or with jet milling in order to avoid process iron in the ground concentrate. Anyhow, most of the iron were removed in the purification process which was the positive thing.

Appendix 1

7 CHEMICAL ANALYSES

Element	Feed Luopioine	n
SiO2	44.9	
TiO2	0.52	
Al2O3	11.4	
Cr2O3	0.023	
V2O3	0.110	
FeO	13.6	
MnO	0.041	
MgO	3.06	
CaO	1.94	
Rb2O	0.0077	
SrO	0.011	
BaO	0.037	
Na2O	1.08	
K2O	2.53	
ZrO2	0.017	
P2O5	0.121	
CO2	58.7	
OxSumm	99.50	
Cu	0.058	
Ni	0.042	
	0.042	
7n	0.004	
Dh	0.190	
10	0.003	
Ag	7.20	
	0.000	
AS CL	0.000	
50 D:	0.013	
BI	0.003	
le	0.002	
	0.0042	
ND	0.0020	
Mo	0.0068	
Sn	0.004	
W	0.000	
Cl	0.005	
Th	0.0011	
U	0.0000	
Cs	0.001	
La	0.006	
Ce	0.004	
Та	0.000	
LOI	0.0000	
Ga	0.0016	
Si	21.0	
Ti	0.309	
Cr	0.016	
V	0.074	
Fe	10.6	

Mn	0.032	
Mg	1.84	
Ca	1.39	
Ba	0.033	
Eltra C	16.0	

Käpys	uo Blend 2	2 flotation	test 17				
Element	T17 tails	T17 CT1	T17 CT2	T17 CT3	T17 CT4	T17 CT5	T17 CC5
SiO2	59.5	57.4	57.2	56.2	47.1	13.8	3.06
TiO2	0.64	0.61	0.56	0.55	0.497	0.187	0.043
A12O3	14.8	17.1	17.3	17.3	15.1	4.82	1.25
Cr2O3	0.078	0.099	0.102	0.110	0.104	0.041	0.011
V2O3	0.101	0.139	0.127	0.122	0.117	0.048	0.013
FeO	8.87	7.93	8.01	8.51	8.18	3.34	1.30
MnO	0.081	0.101	0.095	0.096	0.092	0.035	0.011
MgO	3.65	4.20	3.80	3.61	3.38	1.14	0.26
CaO	3.61	4.12	4.29	4.24	3.63	1.15	0.241
Rb2O	0.0071	0.0065	0.0067	0.0065	0.0048	0.0000	0.0004
SrO	0.023	0.025	0.026	0.025	0.022	0.0072	0.0000
BaO	0.053	0.055	0.051	0.054	0.043	0.015	0.005
Na2O	2.50	2.61	2.52	2.51	1.96	0.50	0.09
K2O	2.21	2.41	2.28	2.18	1.91	0.65	0.148
ZrO2	0.018	0.021	0.022	0.023	0.020	0.006	0.002
P2O5	0.236	0.202	0.196	0.189	0.162	0.047	0.011
CO2	0.99	1.21	3.19	6.23	55.7	253.4	339.6
OxSumm	99.00	99.10	99.00	99.00	99.00	95.60	99.30
Cu	0.015	0.035	0.038	0.040	0.040	0.015	0.004
Ni	0.051	0.050	0.050	0.052	0.050	0.020	0.007
Со	0.018	0.023	0.014	0.017	0.019	0.002	0.002
Zn	0.060	0.056	0.058	0.060	0.055	0.020	0.006
Pb	0.009	0.010	0.009	0.011	0.009	0.012	0.007
Ag	0.002	0.001	0.001	0.001	0.001	0.000	0.000
S	4.29	2.81	2.52	2.56	2.34	0.92	0.369
As	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Sb	0.012	0.011	0.012	0.011	0.011	0.002	0.000
Bi	0.003	0.002	0.003	0.002	0.003	0.003	0.002
Те	0.003	0.004	0.002	0.003	0.003	0.001	0.002
Y	0.0043	0.0053	0.0060	0.0060	0.0059	0.0009	0.0010
Nb	0.0019	0.0027	0.0017	0.0016	0.0020	0.0031	0.0013
Мо	0.0054	0.0091	0.016	0.029	0.066	0.050	0.015
Sn	0.003	0.002	0.003	0.003	0.003	0.001	0.001
W	0.001	0.000	0.000	0.001	0.000	0.001	0.001
Cl	0.005	0.004	0.003	0.004	0.004	0.003	0.002
Th	0.0011	0.0018	0.0020	0.0021	0.0018	0.0020	0.0014
U	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cs	0.002	0.002	0.001	0.003	0.002	0.001	0.001
La	0.005	0.008	0.005	0.007	0.007	0.004	0.001
Ce	0.005	0.007	0.007	0.008	0.006	0.004	0.001
Та	0.001	0.002	0.001	0.000	0.000	0.001	0.000
LOI	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ga	0.0024	0.0025	0.0022	0.0025	0.0021	0.0010	0.0006
Si	27.8	26.8	26.8	26.3	22.0	6.47	1.43
Ti	0.384	0.369	0.336	0.332	0.298	0.112	0.026
Cr	0.053	0.068	0.070	0.075	0.071	0.028	0.0077
V	0.069	0.094	0.086	0.083	0.079	0.033	0.0087
Fe	6.90	6.17	6.23	6.62	6.36	2.60	1.01
Mn	0.062	0.078	0.073	0.074	0.071	0.027	0.009
Mg	2.20	2.53	2.29	2.18	2.04	0.69	0.15
Са	2.58	2.95	3.06	3.03	2.59	0.82	0.172
Ba	0.048	0.049	0.045	0.048	0.039	0.013	0.004
Eltra C	0.270	0.330	0.87	1.70	15.2	69.1	92.6

Gravim.				
С				92.5

Käpys	uo Blend 2	2, flotation	test 18				
Element	Tails	CT1	CT2	CT3	CT4	CC5	CT5
SiO2	59.1	55.1	51.8	43.9	20.6	2.51	8.70
TiO2	0.63	0.52	0.466	0.438	0.349	0.049	0.194
A12O3	14.9	18.1	17.3	15.1	7.96	1.20	3.68
Cr2O3	0.073	0.146	0.160	0.168	0.084	0.0070	0.032
V2O3	0.100	0.123	0.113	0.107	0.107	0.019	0.066
FeO	8.52	7.13	7.79	7.98	4.87	0.92	2.42
MnO	0.079	0.098	0.099	0.097	0.072	0.012	0.039
MgO	3.69	3.74	3.26	3.05	2.45	0.34	1.33
CaO	3.66	4.37	4.17	3.60	1.73	0.153	0.69
Rb2O	0.0063	0.0065	0.0068	0.0056	0.0021	0.0009	0.0000
SrO	0.023	0.026	0.026	0.022	0.010	0.0000	0.0041
BaO	0.055	0.052	0.051	0.043	0.027	0.004	0.013
Na2O	2.52	2.56	2.32	1.83	0.65	0.04	0.24
K2O	2.22	2.25	1.99	1.76	1.27	0.188	0.68
ZrO2	0.018	0.021	0.021	0.019	0.011	0.002	0.005
P2O5	0.232	0.162	0.156	0.132	0.056	0.006	0.023
CO2	3.52	12.8	29.2	68.9	198.8	342.1	279.8
OxSumm	99.10	99.20	99.10	98.60	95.30	99.00	94.90
Cu	0.020	0.042	0.047	0.051	0.024	0.005	0.010
Ni	0.055	0.079	0.089	0.093	0.043	0.005	0.017
Со	0.007	0.017	0.014	0.016	0.006	0.005	0.006
Zn	0.059	0.051	0.051	0.051	0.027	0.005	0.014
Pb	0.009	0.010	0.009	0.010	0.010	0.007	0.010
Ag	0.002	0.000	0.002	0.002	0.001	0.000	0.000
S	4.12	2.01	2.14	2.15	1.27	0.307	0.69
As	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Sb	0.011	0.010	0.012	0.011	0.003	0.000	0.002
Bi	0.002	0.003	0.003	0.003	0.003	0.001	0.003
Те	0.003	0.004	0.003	0.002	0.000	0.002	0.001
Y	0.0040	0.0054	0.0056	0.0062	0.0032	0.0009	0.0004
Nb	0.0023	0.0016	0.0018	0.0019	0.0026	0.0010	0.0013
Мо	0.0071	0.021	0.034	0.057	0.054	0.0093	0.029
Sn	0.003	0.002	0.004	0.003	0.001	0.000	0.001
W	0.000	0.001	0.000	0.001	0.000	0.000	0.000
Cl	0.002	0.003	0.006	0.004	0.005	0.004	0.004
Th	0.0015	0.0014	0.0014	0.0016	0.0005	0.0012	0.0017
U	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cs	0.000	0.002	0.001	0.003	0.000	0.002	0.001
La	0.005	0.007	0.005	0.006	0.003	0.001	0.002
Ce	0.005	0.009	0.006	0.005	0.004	0.000	0.002
Та	0.000	0.001	0.000	0.001	0.000	0.001	0.000
LOI	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ga	0.0018	0.0021	0.0024	0.0016	0.0014	0.0004	0.0008
Si	27.6	25.8	24.2	20.5	9.62	1.17	4.07
Ti	0.379	0.309	0.280	0.263	0.209	0.029	0.116
Cr	0.050	0.100	0.109	0.115	0.058	0.0048	0.022
V	0.068	0.084	0.077	0.073	0.072	0.013	0.045
Fe	6.63	5.55	6.06	6.20	3.78	0.72	1.88
Mn	0.061	0.076	0.076	0.075	0.056	0.009	0.030
Mg	2.22	2.26	1.96	1.84	1.48	0.20	0.80
Ca	2.61	3.12	2.98	2.57	1.23	0.109	0.496
Ba	0.049	0.046	0.045	0.039	0.024	0.004	0.012
Eltra C	0.96	3.49	7.96	18.8	54.2	93.3	76.3

Gravim.				
С			92.9	

Luopioi	inen, flotati Tails	on test 1 CT1	CT2	СТ3	CT4	CT5	CC5
SiO2	51.7	50.8	42.1	34.0	22.9	15.5	8.07
TiO2	0.59	0.483	0.429	0.403	0.315	0.219	0.107
Al2O3	12.8	12.9	12.0	11.0	7.82	5.35	3.10
Cr2O3	0.025	0.022	0.024	0.028	0.026	0.018	0.0089
V2O3	0.120	0.107	0.118	0.137	0.120	0.082	0.039
FeO	17.3	12.7	9.94	6.73	3.37	2.71	2.24
MnO	0.046	0.052	0.054	0.056	0.047	0.034	0.022
MgO	3.39	2.93	3.21	3.71	3.00	2.00	1.07
CaO	2.26	2.44	2.19	1.74	1.16	0.83	0.447
Rb2O	0.0092	0.0082	0.0068	0.0069	0.0037	0.0000	0.0000
SrO	0.012	0.015	0.013	0.010	0.0067	0.0056	0.0009
BaO	0.041	0.043	0.035	0.032	0.023	0.015	0.008
Na2O	1.26	1.28	1.04	0.76	0.48	0.31	0.12
K2O	2.90	2.67	2.61	2.72	2.17	1.43	0.67
ZrO2	0.018	0.019	0.018	0.014	0.010	0.008	0.005
P2O5	0.167	0.192	0.146	0.086	0.039	0.031	0.018
CO2	1.40	30.6	82.8	130.3	195.2	237.7	292.1
OxSumm	98.10	99.00	99.70	99.00	95.70	94.10	96.20
Cu	0.064	0.145	0.187	0.126	0.056	0.043	0.045
Ni	0.060	0.042	0.032	0.020	0.011	0.009	0.008
Со	0.015	0.012	0.013	0.009	0.005	0.004	0.004
Zn	0.235	0.232	0.172	0.109	0.051	0.040	0.034
Pb	0.006	0.011	0.010	0.012	0.012	0.011	0.011
Ag	0.002	0.002	0.002	0.001	0.000	0.001	0.001
S	9.10	6.57	5.04	3.24	1.50	1.17	0.87
As	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Sb	0.014	0.012	0.012	0.008	0.001	0.001	0.000
Bi	0.002	0.003	0.002	0.003	0.002	0.002	0.002
Te	0.000	0.002	0.003	0.005	0.000	0.001	0.001
Y	0.0048	0.0043	0.0047	0.0040	0.0019	0.0020	0.0022
Nb	0.0014	0.0016	0.0018	0.0030	0.0029	0.0027	0.0018
Мо	0.0023	0.027	0.048	0.042	0.023	0.017	0.011
Sn	0.004	0.004	0.003	0.001	0.001	0.001	0.001
W	0.000	0.001	0.000	0.001	0.001	0.000	0.001
Cl	0.008	0.006	0.005	0.005	0.006	0.004	0.004
Th	0.0021	0.0018	0.0012	0.0006	0.0007	0.0000	0.0020
U	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cs	0.002	0.001	0.002	0.002	0.001	0.001	0.001
La	0.004	0.007	0.006	0.005	0.003	0.003	0.002
Се	0.007	0.007	0.007	0.006	0.004	0.004	0.002
Та	0.003	0.002	0.003	0.001	0.001	0.000	0.001
LOI	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ga	0.0015	0.0020	0.0017	0.0012	0.0016	0.0014	0.0008
Si	24.2	23.8	19.7	15.9	10.7	7.24	3.77
Ti	0.356	0.290	0.257	0.242	0.189	0.132	0.064
Cr	0.017	0.015	0.017	0.019	0.018	0.012	0.0061
V	0.082	0.073	0.080	0.093	0.081	0.056	0.026
Fe	13.5	9.87	7.73	5.23	2.62	2.10	1.74
Mn	0.036	0.040	0.042	0.044	0.037	0.026	0.017
Mg	2.05	1.77	1.94	2.24	1.81	1.21	0.65
Ca	1.62	1.74	1.56	1.24	0.83	0.59	0.320
Ba	0.037	0.039	0.031	0.029	0.020	0.014	0.007
C gravim C	0.382	8.35	22.6	35.5	53.2	64.8	79.7 80.4

Luopioinen flotation test 1 size by size analyses								
Element	- 20µm	20-45 µm	45-75 µm	+75µm				
Si02	50.2	48.9	37.0	25.9				
Ti02	0.472	0.59	0.60	0.58				
A1203	11.0	11.0	12.4	Ť18				
Cr2O3	0.014	0.013	0.034	0 067				
V2O3	0.062	0.075	0.177	70.310				
FeO	198	1 6.3	8.74	÷2.99				
MnO	0.038	0.027	0.053	-0.083				
MgO	1 58	2.08	4.96	37.07				
CaO	2.46	2.32	1.32	2-0.385				
Rb2O	0.0062	0.0059	0.011	^{**} 0.0086				
StO	0.015	0.013	0.00/8	²³ 0.0035				
BaO	0.041	0.035	0.033	0.031				
Na2O	1.36	1 28	0.69	0.22				
K20	1.85	2.00	3 57	¥.92				
7r02	0.025	0.013	0.010	0.006				
P205	0.025	0.013	0.060	0.022				
002	11.2	31.5	103.0	°1°43.7				
OxSumm	98.00	98.50	1 00 10	294.30				
Cu	0 107	0.050	0.030	o .024				
Ni	0.068	0.052	0.027	0.009				
Co	0.014	0.015	0.012	^{**} 0.014				
70	0.014	0.202	0.012	0.029				
Dh	0.302	0.006	0.009	0.015				
PD	0.003	0.000	0.009	0.001				
Ag	102	0.002	4.20	1.07				
) A.	0.000	9.00	4.30	000.0				
AS	0.000	0.000	0.000	°Ó.000				
50	0.013	0.013	0.009	0.004				
BI	0.003	0.002	0.003	T .002				
le	0.000	0.000	0.004	0.0012				
y	0.0033	0.0015		0.0037				
Nb	0.0008	0.0015	0.0022	* <u>0.0067</u>				
Mo	0.0000	0.0046	0.0083	<u>ð.000</u>				
Sn	0.004	0.004	0.002	<u>°.000</u>				
W	0.000	0.001	0.000	0.009				
CI	0.005	0.006	0.007	0.0032				
Th	0.0026	0.0016	0.0006	0.0000				
u	0.0021	0.0000	0.0000	0 003				
Cs	0.003	0.002	0.002	0.003				
La	0.007	0.004	0.003	रे.001				
Ce	0.008	0.005	0.003	0.002				
Та	0.001	0.002	0.003	0.0000				
LOI	0.0000.0	0.0000	0.0000	0.0023				
Ga	0.0020	0.0018	0.0014	Ť 2.1				
Si	23.5	22.9	1 7.3	0.351				
Ti	0.283	0.352	0.359	0.046				
Cr	0.0096	0.0091	0.023	··· 0 211				
V	0.042	0.051	0.121	···· 2 22				
Fe	Í5.4	12.6	6.80					
Min	0.030	0.021	0.041	0.064				
Mg	0.95	1 25	2.99	4.26				
Ca	1.76	1.66	0.94	0.275				
Ba	0.036	0.031	0.029	0.028				
C	3.07	8.59	28.1	39.2				
				and the second se				

Luopioiner	n, flotatior	n test 2						
Element	Tails	CT1	CT2	CT3	CT4	CT5	CC6	CT6
SiO2	50.3	57.0	55.5	52.1	45.3	18.4	1.86	4.16
TiO2	0.61	0.451	0.427	0.406	0.366	0.188	0.022	0.054
Al2O3	12.5	15.6	15.3	14.4	12.8	5.50	0.81	1.48
Cr2O3	0.082	0.108	0.104	0.112	0.119	0.067	0.0099	0.020
V2O3	0.126	0.128	0.117	0.110	0.098	0.054	0.0084	0.018
FeO	17.7	8.24	8.37	8.56	8.43	4.26	1.00	1.45
MnO	0.044	0.072	0.075	0.076	0.074	0.041	0.009	0.015
MgO	3.37	3.67	3.35	3.10	2.77	1.36	0.20	0.42
CaO	2.20	2.74	2.74	2.64	2.35	1.05	0.107	0.247
Rb2O	0.0098	0.0083	0.0080	0.0062	0.0058	0.0000	0.0007	0.0010
SrO	0.012	0.016	0.017	0.016	0.013	0.0066	0.0000	0.0000
BaO	0.041	0.049	0.047	0.041	0.038	0.019	0.003	0.005
Na2O	1.23	1.46	1.42	1.30	1.11	0.37	0.01	0.05
K2O	2.84	3.18	2.96	2.73	2.37	1.13	0.128	0.309
ZrO2	0.018	0.022	0.023	0.021	0.018	0.009	0.002	0.003
P2O5	0.189	0.140	0.140	0.131	0.116	0.048	0.007	0.014
CO2	5.54	14.3	22.8	40.0	77.0	241.3	346.5	327.8
OxSumm	98.10	99.30	99.30	99.20	99.50	99.60	99.00	98.10
Cu	0.055	0.162	0.198	0.239	0.265	0.150	0.029	0.050
Ni	0.076	0.055	0.059	0.061	0.065	0.034	0.007	0.011
Со	0.024	0.022	0.025	0.022	0.023	0.009	0.004	0.007
Zn	0.229	0.193	0.213	0.230	0.226	0.114	0.019	0.032
Pb	0.007	0.011	0.011	0.013	0.014	0.013	0.008	0.010
Ag	0.002	0.002	0.002	0.002	0.002	0.001	0.000	0.000
S	9.52	3.50	3.42	3.44	3.37	1.66	0.435	0.63
As	0.001	0.001	0.001	0.001	0.002	0.000	0.000	0.000
Sb	0.016	0.011	0.012	0.011	0.011	0.002	0.000	0.000
Bi	0.002	0.003	0.003	0.003	0.002	0.003	0.001	0.002
Те	0.000	0.003	0.003	0.002	0.003	0.000	0.002	0.002
Y	0.0040	0.0050	0.0058	0.0053	0.0053	0.0027	0.0008	0.0012
Nb	0.0015	0.0023	0.0028	0.0027	0.0027	0.0031	0.0009	0.0014
Мо	0.0070	0.023	0.030	0.039	0.048	0.039	0.0069	0.011
Sn	0.005	0.003	0.004	0.003	0.003	0.000	0.000	0.001
W	0.000	0.001	0.001	0.001	0.001	0.000	0.001	0.000
Cl	0.005	0.006	0.005	0.005	0.005	0.004	0.003	0.004
Th	0.0019	0.0016	0.0009	0.0012	0.0019	0.0001	0.0011	0.0014
U	0.0012	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cs	0.003	0.002	0.004	0.000	0.003	0.002	0.001	0.001
La	0.006	0.006	0.008	0.007	0.006	0.003	0.002	0.002
Ce	0.006	0.007	0.008	0.008	0.007	0.004	0.001	0.001
Та	0.003	0.003	0.002	0.002	0.001	0.000	0.001	0.000
LOI	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ga	0.0024	0.0016	0.0019	0.0016	0.0018	0.0008	0.0005	0.0006
Si	23.5	26.7	25.9	24.4	21.2	8.61	0.87	1.95
Ti	0.365	0.270	0.256	0.243	0.220	0.113	0.013	0.032
Cr	0.056	0.074	0.071	0.077	0.082	0.046	0.0068	0.014
V	0.085	0.087	0.080	0.075	0.067	0.037	0.0057	0.012
Fe	13.8	6.41	6.51	6.66	6.56	3.32	0.78	1.13
Mn	0.034	0.056	0.058	0.059	0.057	0.032	0.007	0.012

Luopioiner	n, flotatior	n test 3						
Mg	2.03	2.21	2.02	1.87	1.67	0.82	0.12	0.25
Ca	1.57	• 1.95	1.96	1.88	1.68	0.75	•0.076	•0.176
Ba .	0.037	- 0.044 ·	0.042	• 0.036	0.034	0.017	-0.002	-0.005
Eltra C	1.51	• 3.90	6.22	• 10.9	- 21.0	65.8	- 94.5	- 89.4
Element	Tails	CT1	CT2	CT3	CT4	CT5	CC6	CT6
SiO2	51.1	53.1	54.5	54.4	50.1	36.8	2.51	13.3
TiO2	0.58	0.57	0.55	0.53	0.52	0.409	0.033	0.179
Al2O3	12.8	15.2	14.9	14.9	14.0	11.0	1.05	4.28
Cr2O3	0.081	0.104	0.102	0.097	0.100	0.082	0.008	5 0.038
V2O3	0.121	0.153	0.133	0.127	0.127	0.110	0.011	0.053
FeO	17.8	13.3	12.7	12.2	11.8	9.08	1.17	3.81
MnO	0.044	0.062	0.065	0.066	0.072	0.064	0.011	0.033
MgO	3.52	4.47	3.78	3.55	3.74	3.30	0.27	1.41
CaO	2.18	2.40	2.61	2.67	2.49	1.94	0.156	0.78
Rb2O	0.0100	0.011	0.0098	0.0098	0.0088	0.006	1 0.000	7 0.000
SrO	0.012	0.014	0.015	0.016	0.013	0.011	0.000	0.005
BaO	0.041	0.045	0.046	0.046	0.040	0.032	0.003	0.014
Na2O	1.24	1.31	1.42	1.42	1.25	0.82	0.02	0.24
K2O	2.92	3.43	3.08	2.96	2.87	2.32	0.176	0.98
ZrO2	0.018	0.020	0.022	0.023	0.022	0.017	0.003	0.008
P2O5	0.151	0.116	0.128	0.129	0.126	0.094	0.009	0.034
CO2	0.90	0.86	2.82	7.15	28.9	111.5	325.3	252.7
OxSumm	98.10	98.60	98.70	98.70	98.90	99.30	94.50	95.30
Cu	0.035	0.200	0.214	0.230	0.251	0.206	0.034	0.099
Ni	0.076	0.070	0.070	0.067	0.068	0.053	0.007	0.022
Со	0.016	0.017	0.020	0.022	0.020	0.010	0.003	0.008
Zn	0.237	0.194	0.216	0.232	0.231	0.180	0.023	0.080
Pb	0.007	0.008	0.009	0.012	0.011	0.012	0.009	0.013
Ag	0.002	0.002	0.002	0.002	0.003	0.003	0.000	0.00
S	9.43	6.55	6.22	5.79	5.61	4.13	0.53	1.65
As	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sb	0.014	0.013	0.014	0.013	0.012	0.010	0.000	0.002
Bi	0.003	0.002	0.003	0.003	0.003	0.003	0.001	0.00
Те	0.000	0.000	0.001	0.003	0.001	0.002	0.002	0.001
Y	0.0034	0.0050	0.0058	0.0063	0.0058	0.005	2 0.001	2 0.000
Nb	0.0012	0.0012	0.0013	0.0024	0.0018	0.001	4 0.001	0.003
Mo	0.0045	0.013	0.022	0.032	0.067	0.090	0.015	0.049
Sn	0.005	0.004	0.004	0.003	0.003	0.002	0.000	0.002
W	0.000	0.000	0.001	0.000	0.001	0.001	0.000	0.00
Cl	0.008	0.006	0.007	0.007	0.006	0.005	0.003	0.005
Th	0.0017	0.0021	0.0022	0.0019	0.0021	0.001	6 0.001	3 0.000
U	0.0005	0.0003	0.0002	0.0000	0.0000	0.000	0.000	0.000
Cs	0.003	0.003	0.004	0.004	0.002	0.004	0.001	0.002
La	0.004	0.006	0.009	0.007	0.007	0.005	0.002	0.00
Ce	0.005	0.007	0.009	0.009	0.011	0.007	0.001	0.004
Ta	0.001	0.000	0.000	0.000	0.001	0.003	0.000	0.00
LOI	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0.000
Ga	0.0026	0.0024	0.0021	0.0015	0.0020	0.000	9 0.000	5 0.000
Si	23.9	24.8	25.5	25.4	23.4	17 2	1 17	6.22
	23.7	- 21.0		- 20.1		17.2	, 1.17	r 0.22
		·		•		•	•	•
		-	•	-		•	•	-
		e (•	•	-	•	•	*

Geologian tutkimuskeskus | Geologiska forskningscent alen | Geological Survey of Finland

1		toot 1						
Luopioine	n, flotation	test 4	0 320	0 320	0.311	0.246	0.020	0.107
Cr	0.550	0.071	0.529	0.067	0.011	0.240	0.020	0.107
	0.033	0.071	0.070	0.007	0.009	0.030	0.0038	0.020
- V Ea	0.082	0.104	0.091	0.080	0.080	0.075	0.0070	0.030
re Ma	15.0	10.5	9.05	9.40	9.19	7.00	0.91	2.90
Ma	0.034	0.048	0.030	0.031	0.030	1.00	0.008	0.025
- Mig	2.12	2.70	2.20	2.14	2.23	1.99	0.10	0.85
Da	1.30	1.72	1.80	1.91	1.70	1.30	0.111	0.30
Da Eltro C	0.037	0.041	0.041	1.05	0.030	20.4	0.003	68.0
Eltra C	0.243	0.234	0.77	1.95	7.89	50.4	00.7	08.9
		-	•	-	-	-	-	•
		-	-	-	•	-	-	•
		-	•	-	-	•	-	•
		-	-	-	-	•	-	•
		r	-	-	-	•	-	•
		-	-	-	-	•	-	•
		r.	-	-	-	•	-	•
		-	-	-	-	-	-	-
		r.	-	-	-	-	-	-
		-	-	-	-	•	-	-
		-	•	•	•	•	-	
		-	•	•	•	•	•	
		-	•		•	-	-	
		-	•	-	r	•	-	
		-	•		r	•	-	
			•		-	•		-
		-	•	-	r	•	-	-
		-						
		-	•		•	•	-	
		-	•	•	•	•	•	•
		-	•		•	•	•	-
		-	•		•	•	•	•
			•	•	•	•	•	
		-	•	•	r	•	-	-
		-	•	•	•	•	-	-
		-	•		•	•	-	
		-	•		•	•	•	
		-	-	-	-	•	-	
		-	-	-	-	-	-	-
		r	-	-	-	-	-	-
		-	-	-	-	-	-	-
		-	-	-	-	-	-	-
		-	-	-	-	-	-	-
		-	-	-	-	-	-	-
		r.	-	-	-	-	-	-
		r	-	-	-	-	-	-
		r.	-	-	-	-	-	-
		-	-	-	-	•	-	-
		-	-	-	-	•	-	-
	-		•	•	,	•	-	-
		,	-	-	-	-	-	-
			•	-	-	•	-	-
		-	-	-	-	•	-	- 4
				L	L			

Element	1.D50 20µm	2.D50 50µm	3.D50 80µm	LT24	LT25	LT26
SiO2	4.31	2.67	2.20	0.47	0.26	0.26
TiO2	0.061	0.043	0.038	0.011	0.007	0.007
Al2O3	1.77	1.17	1.00	0.04	0.04	0.04
Cr2O3	0.013	0.0088	0.0067	0.0009	0.0004	0.0009
V2O3	0.018	0.015	0.014	0.0013	0.0018	0.0021
FeO	1.45	1.02	0.74	0.05	0.03	0.03
MnO	0.014	0.011	0.009	0.000	0.000	0.000
MgO	0.35	0.26	0.24	0.00	0.00	0.01
CaO	0.366	0.181	0.127	0.029	0.019	0.012
Rb2O	0.0007	0.0008	0.0004	0.0002	0.0000	0.0001
SrO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
BaO	0.006	0.004	0.004	0.003	0.002	0.003
Na2O	0.12	0.06	0.04	0.01	0.00	0.01
K2O	0.205	0.157	0.146	0.008	0.012	0.017
ZrO2	0.002	0.002	0.001	0.001	0.001	0.000
P2O5	0.018	0.011	0.009	0.001	0.001	0.001
CO2	327.1	342.1	348.4	364.5	365.2	366.7
OxSumm	98.20	99.10	99.70	100.10	100.00	100.40
Cu	0.006	0.005	0.004	0.000	0.000	0.000
Ni	0.008	0.006	0.004	0.001	0.001	0.001
Со	0.009	0.008	0.008	0.003	0.005	0.005
Zn	0.007	0.005	0.004	0.000	0.000	0.000
Pb	0.009	0.007	0.006	0.004	0.004	0.004
Ag	0.000	0.000	0.000	0.000	0.000	0.000
S	0.500	0.310	0.252	0.038	0.027	0.018
As	0.000	0.000	0.000	0.000	0.000	0.000
Sb	0.000	0.000	0.000	0.000	0.000	0.000
Bi	0.002	0.002	0.002	0.001	0.001	0.001
Te	0.002	0.002	0.002	0.002	0.002	0.002
Y	0.0010	0.0009	0.0007	0.0002	0.0003	0.0003
Nb	0.0012	0.0009	0.0008	0.0005	0.0006	0.0008
Мо	0.0099	0.0094	0.0049	0.0009	0.0008	0.0009
Sn	0.000	0.000	0.000	0.000	0.000	0.000
W	0.001	0.000	0.000	0.001	0.000	0.001
Cl	0.004	0.003	0.003	0.002	0.003	0.003
Th	0.0016	0.0011	0.0010	0.0006	0.0006	0.0004
U	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cs	0.000	0.001	0.001	0.001	0.001	0.001
La	0.002	0.001	0.001	0.001	0.001	0.002
Ce	0.001	0.001	0.001	0.000	0.000	0.000
Та	0.000	0.001	0.001	0.001	0.000	0.000
LOI	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ga	0.0007	0.0005	0.0004	0.0003	0.0001	0.0002
Si	2.02	1.25	1.03	0.22	0.12	0.12
Ti	0.037	0.025	0.023	0.006	0.004	0.004
Cr	0.0091	0.0060	0.0046	0.0006	0.0003	0.0006
V	0.012	0.0099	0.0092	0.0009	0.0012	0.0014
•	0.012	0.0077	0.0072	0.0007	0.0012	

Käpysuo Blend 2, feed samples and residues from purification tests LT24-LT26

Käpysuo Bl	end 2, feed s	amples and r	esidues fron	n purificatio	n tests LT2	4-LT26	
Fe	1.13	0.79	0.57	0.04	0.03	0.02	
Mn	0.011	0.008	0.007	0.000	0.000	0.000	
Mg	0.21	0.16	0.15	0.00	0.00	0.01	
Ca	0.262	0.129	0.090	0.021	0.014	0.009	
Ba	0.005	0.004	0.004	0.003	0.002	0.003	
Eltra C	89.2	93.3	95.0	99.4	99.6	100.0	KUOPIO
Eltra S	0.56	0.33	0.26	99.5	99.7	99.7	OKU
Eltra S		,	•	, 0.05	0.03	0.03	KUOPIO
		•	•	•	-	-	
		-	•	•	-	-	
		· .	•	r	•	•	
		•	•	•	•	•	
-		· 1	•	•	•	•	
		· 1				•	
•			•	*		•	
		,				•	
	1	•		•		•	
-		r		-		_	
					-	-	
		-			-	r	
		-	•		-	r	
		-	-		-	-	
		· 1	•	•	-	•	
		•	-	•	-	-	
		• I	•	•	•	•	
		· ·	•	•	-	-	
•		· .	•	•	•	•	
-		•	•	r (-	•	
•	,	•				r	
-		•				•	
		· .		-		_	
•						_	
						-	
					-		
		, I	•	, ,	-	r	
		,	•		-	r	
		· .	-	•	-	-	
-		•	•	•	•	•	
		· ·	•	•	-	-	
		• I	•	•	-	•	
•		· 1	•	· ·	•	•	
•	1	•				-	
		· .				•	
•	,					r	
-						_	
				-		-	
		, , , , , , , , , , , , , , , , , , ,			-	F	
		· .			-	-	
	,	,	•		-	-	
		-	•		•	-	
	,	• I	•	•	-	-	

Element	4.D50 20µm	5.D50 50µm	6.D50<<20µ	LT27	LT28	LT29
	• • •	• • •	m		0.70	1.0.6
SiO2	2.96	2.30	3.34	0.94	0.72	1.06
T1O2	0.046	0.035	0.051	0.006	0.004	0.005
Al2O3	1.24	0.94	1.40	0.01	0.01	0.01
Cr2O3	0.252	0.208	0.281	0.015	0.0035	0.011
V2O3	0.017	0.014	0.019	0.0007	0.0006	0.0006
FeO	10.4	9.29	11.6	0.12	0.06	0.08
MnO	0.052	0.044	0.057	0.001	0.000	0.000
MgO	0.33	0.24	0.37	0.00	0.00	0.00
CaO	0.162	0.124	0.175	0.007	0.004	0.004
Rb2O	0.0000	0.0000	0.0000	0.0002	0.0002	0.0002
SrO	0.0033	0.0025	0.0018	0.0000	0.0000	0.0000
BaO	0.005	0.004	0.005	0.005	0.003	0.006
Na2O	0.05	0.04	0.06	0.01	0.01	0.01
K2O	0.155	0.116	0.174	0.002	0.002	0.001
ZrO2	0.004	0.004	0.005	0.001	0.001	0.001
P2O5	0.013	0.011	0.014	0.005	0.002	0.003
CO2	300.3	311.3	291.5	364.5	365.2	363.4
OxSumm	97.90	98.60	97.40	100.60	100.50	100.30
Cu	0.018	0.015	0.018	0.000	0.000	0.000
Ni	0.096	0.079	0.100	0.005	0.003	0.006
Со	0.004	0.005	0.005	0.001	0.003	0.005
Zn	0.009	0.007	0.009	0.000	0.000	0.000
Pb	0.018	0.014	0.011	0.005	0.005	0.005
Ag	0.001	0.001	0.001	0.000	0.000	0.000
S	0.245	0.192	0.268	0.021	0.016	0.021
As	0.000	0.000	0.002	0.000	0.000	0.000
Sb	0.001	0.003	0.002	0.000	0.000	0.000
Bi	0.005	0.003	0.003	0.001	0.001	0.001
Te	0.002	0.001	0.006	0.002	0.002	0.002
Y	0.0000	0.0000	0.0000	0.0004	0.0003	0.0004
Nb	0.0038	0.0047	0.0045	0.0011	0.0008	0.0011
Мо	0.024	0.025	0.039	0.0010	0.0009	0.0010
Sn	0.002	0.003	0.001	0.000	0.000	0.000
W	0.001	0.001	0.001	0.000	0.000	0.000
C1	0.003	0.005	0.002	0.002	0.002	0.003
Th	0.0027	0,0000	0.0000	0.0002	0.0002	0.0007
- II	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cs	0.002	0.002	0.002	0.000	0.000	0.000
 	0.002	0.002	0.002	0.001	0.001	0.001
Ce	0.002	0.002	0.002	0.001	0.001	0.001
 	0.002	0.003	0.001	0.001	0.002	0.000
	0.002	0.000	0.000	0.002	0.002	0.002
Ga	0.0000	0.0000	0.0011	0.0000	0.0000	0.0000
G	1 38	1.07	1 56	0.0002	0.0002	0.0005
 т;	0.020	0.021	0.020	0.44	0.04	0.50
 	0.020	0.021	0.030	0.004	0.002	0.003
	0.172	0.142	0.192	0.010	0.0024	0.0073
 	0.012	0.0092	0.015	0.0003	0.0004	0.0004
ге	0.040	1.23	0.98	0.10	0.05	0.00
Mn	0.040	0.034	0.044	0.001	0.000	0.000

Käpysuo Blend 2, feed samples and residues from purification tests LT27-LT29 Element 4 D50 20µm 5 D50 50µm 6 D50<<20µ L T27 L T28 L T2

Käpysuo Bl	lend 2, feed	samples and r	esidues from p	urification	tests LT27-	LT29
Mg	0.20	0.15	0.22	0.00	0.00	0.00
Ca	0.116	0.088	0.125	0.005	0.003	0.003
Ba	0.005	0.004	0.005	0.004	0.003	0.005
Eltra C	81.9	84.9	79.5	99.4	99.6	99.1
Eltra S	0.25	0.19	0.28	0.02	0.02	0.02
		F				
		F	•	•		
		F		•		
		F				
		F				
		F				
•		F	_			
		F	-			
		F	-			_
		F	_			
		F	-			_
		F	-	_		_
'		r -	-	-		
		-				
		r -				
		-			-	-
		, 7	F	r		-
		7	F	, ,		
		F	F	, 7		-
		F	F	, 7		
		-	-	r 1	-	-
		-	-	r 1	-	-
		r	-	r 1	-	-
		7	•	r 1	-	-
		r	-	r 1	-	
		-	-	r 1	-	-
		r	-	r 1	-	-
		F	-	r 1	-	-
		•	-	r 1	-	•
		F	-	r 1	-	-
		r	•	r 1	• •	•
		•	•	r 1	-	•
		•	•	r 1	-	•
		r	r	r 1	- 1	•
		F	•	r 1	•	•
		r	•	•	-	•
		F	•	r 1	-	•
		F	•	•	• · ·	•
		F	•	•	-	•
		F	•	r 1	· ·	•
		F	•	F		
		F	•	F	-	
		r	•	r 1		
		F	•	r 1		•
		F	•	r 1		
		F	-	-		_
		F	-	r		
1 · ·		r i i i i i i i i i i i i i i i i i i i	r	r	-	

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

Luopioine	en, feed sampl	es and residu	es from purfic	cation tests	LT30-32	
Element	D50 20µm	D50 50µm	D50 80µm	LT30	LT31	LT32
SiO2	3.84	2.00	1.72	0.42	0.27	0.20
TiO2	0.044	0.024	0.023	0.017	0.007	0.005
A12O3	1.35	0.86	0.77	0 04	0.02	0.03
Cr2O3	0.015	0.0077	0.0083	0.012	0.0004	0.0013
V2O3	0.012	0.0088	0.0090	0.0012	0.0010	0.0015
FeO	1.64	0.92	0.92	0.02	0.01	0.02
MnO	0.013	0.009	0.011	0 001	0.000	0.000
MgO	0.27	0.23	0.21	0.001	0.00	0.00
CaO	0.314	0.106	0.086	0.029	0.009	0.007
Rb2O	0.0010	0.0004	0.0004	0.0001	0.0001	0.0002
SrO	0.0001	0.0000	0.0000	0.0001	0.0000	0.0000
BaO	0.005	0.003	0.003	0.0000	0.003	0.002
Na2O	0.05	0.01	0.00	0.00	0.00	0.00
K2O	0.197	0.140	0.136	0.011	0.010	0.016
ZrO2	0.003	0.002	0.002	0.001	0.001	0.001
P2O5	0.018	0.008	0.006	0.001	0.002	0.001
CO2	331.1	347.6	349.5	364.1	363.8	364.9
OxSumm	98.60	99.40	99.50	99.90	99.60	99.80
Cu	0.048	0.024	0.028	0.005	0.001	0.001
Ni	0.011	0.006	0.006	0.001	0.001	0.001
Со	0.001	0.009	0.006	0.006	0.005	0.004
Zn	0.032	0.016	0.017	0.000	0.000	0.000
Pb	0.010	0.008	0.007	0.005	0.005	0.005
Ag	0.000	0.000	0.000	0.000	0.000	0.000
S	0.74	0.415	0.396	0.024	0.014	0.015
As	0.000	0.000	0.000	0.000	0.000	0.000

Sb	0.000	0.000	0.000	0.000	0.000	0.000
Bi	0.002	0.002	0.002	0.000	0.001	0.001
Те	0.002	0.002	0.002	0.001	0.002	0.002
Y	0.0012	0.0009	0.0005	0.002	0.0005	0.0004
Nb	0.0014	0.0008	0.0010	0.0005	0.0006	0.0006
Мо	0.014	0.0073	0.0068	0.0008	0.0010	0.0010
Sn	0.000	0.0075	0.000	0.0013	0.000	0.000
W	0.001	0.001	0.001	0.000	0.000	0.001
Cl	0.003	0.003	0.003	0.000	0.002	0.003
Th	0.0016	0.0012	0.0009	0.002	0.0007	0.0007
U	0.0000	0.0000	0.0000	0.0008	0.0000	0.0000
Cs	0.001	0.002	0.001	0.0000	0.001	0.001
La	0.002	0.002	0.001	0.001	0.001	0.001
Ce	0.002	0.001	0.001	0.000	0.001	0.001
Та	0.000	0.001	0.000	0.000	0.001	0.001
LOI	0.0000	0.0000	0.0000	0.000	0.0000	0.0000
Ga	0.0005	0.0004	0.0005	0.0000	0.0002	0.0002
Si	1.79	0.93	0.80	0.20	0.13	0.09
Ti	0.026	0.015	0.014	0.20	0.004	0.003
Cr	0.010	0.0053	0.0057	0.010	0.0003	0.0009
V	0.0080	0.0060	0.0061	0.0008	0.0007	0.0010
Fe	1.27	0.72	0.72	0.0011	0.01	0.01
Mn	0.010	0.007	0.009	0.02	0.000	0.000
Mg	0.16	0.14	0.13	0.000	0.00	0.00
Ca	0.224	0.075	0.061	0.00	0.007	0.005
Ba	0.005	0.003	0.002	0.003	0.003	0.002
Eltra C	90.3	94.8	95.3	99. 3	99.2	99.5

			-
Eltra S	0.03	0.02	0.02

Raporttinumero: 074063

5.5.2020

GTK KTR Oku rikastuslaboratorio Tero Korhonen

Tutkijankatu 1

83500 OUTOKUMPU

Tilaus: S20-22279

Asiakkaan viite: Grafiittitutkimukset Tilausnumero: S20-22279 Vastaanottopvm: 5.5.2020

Testaustulokset

Suorite:

817G

Suoritteen kuvaus: Grafiitin puhtauc Analysointipaikka: Outokumpu

Analyysikoodi	817G
Parametri	С
Yksikkö	%
Määritysraja	
Näytetunnus / LIMS näytetunnus / Näytteen	
LT30 / S20036240 /	99,29
LT31 / S20036241 /	99,51
LT32 / S20036242 /	99,51

Grafiitin puhtauden määritys gravimetrisesti

1

Eurofins Labtium Oy Tutkijankatu 1

83500 Outokumpu

Raporttinumero: 074063		5.5.2020
Lisakommentti	Grafiitiitutkimukset	
	Tilaukselle tehty jo aiemmin C-analyysit Kuopiossa aiemmalla tilausnumerolla S20-21625. C-analyysit tehty uudelleen gravimetrisesti.	

5.5.2020

Veera Jokinen

2 (2)

Analyysitulos koskee vastaanotettua ja tutkittua näytettä. Asiakirjan osittainen kopioiminen on kielletty. Mittausepävarmuudet saatavissa pyydettäessä.

Eurofins Labtium Oy

Tutkijankatu 1

83500 Outokumpu

Appendix 2

	\searrow	U			Sample:		Käpysuo	blend 2		G	Brind:	Mill:			Mergan			Remar	rks:				taul	koaika 1	.5 s		
					Project:	Batter	y Minerals {	50402-200	9022			Charge	e:		22 kg rods							va	ahdotus	kone 2,	titraattori	i 2	
					Date:		17.10.2	2019					Wa	ater:		5,0 I					RC1-8 ja	auhettu	kahdess	a erässä	i, 2*45 n	nin, vett	iä 2
					Author:		KM	S		I	Feed				5	k	cg				-						
					Test no.:		T17	7		Scre	en anal:																
				Rea	gents (g/1	t) / mL							Cum							Gr	ades	and	Recov	erie	5		
Feed	Grind	Cond	Na2SiO2	Starch	NaOH	MIBC	Kerosene	Cell	Air	Rotor	pН	Flot	Flot	Product	We	eight		C (Eltra)	SiO2	2 (XRF)	AI203	3 (XRF)	Mg	D (XRF)	Fe	e (XRF)	
	min	min	5 %	1 %	5%	100 %	100 %	I	l/min	rpm		min	min		g	%	%	Rec%	%	Rec%	%	Rec%	%	Rec%	%	Rec%	
-1.5mm	75																										F
								13		2400	7																
säädetä	iän pH 8.5				400						84																
ouuou	an pri dio	3	500		40						0.1																-
		5	50.0		40																						t
		2		100																							
		_		50.0																							
		2			30	80	80				8.3																
					3.000	0.400	0.400		8		8.5	9	9	RC1													
RT1		2			48	40	20				8																T
					4.800	0.200	0.100		8		8.5	3	12	RC2													
RT2		2			36	40	20		-		8.4																1
		-			3.600	0.200	0.100		8		84	1	13	RC3													-
RT3		2							0		0.4		10	1100													1
IXI3		2																									
																											-
																											-
																											t
																											L
														RC1-3	1149.5	23.1	42.78	97.94	32.26	14.00	9.87	16.67	2.31	15.95	3.87	14.41	L
														Tails	3828.8	76.9	0.27	2.06	59.50	86.00	14.80	83.33	3.65	84.05	6.90	85.59	\vdash
RC1-3	45*2		`+1L vettä		keraamiset+	teräs kuulat 5	kg + HK-mylly				7.9																L
säädetä	iän pH 8.5				42			7		2100																	
RC1-3		2			4.2	200	60		5			8	8	CC1	756.8	15.2	64.81	97.68	19.21	5.49	6.11	6.80	1.32	6.03	2.68	6.56	L
						1.000	0.300				8.1			CT1	392.7	7.9	0.3	0.26	57.4	8.51	17.1	9.87	4.2	9.92	6.2	7.85	L
säädetä	àän pH 8.5							7.0		2100																	L
CC1		2							5			6.2	14.2	CC2	622.0	12.5	78.67	97.45	10.98	2.58	3.69	3.37	0.79	2.94	1.91	3.84	
						0.000	#VALUE!				8.1			CT2	134.8	2.7	0.9	0.23	57.2	2.91	17.3	3.43	3.8	3.08	6.2	2.72	
säädetä	iän pH 8.5				7			7.0		2100																	
CC2		2			0.7	12	12		5			5	19.2	CC3	561.3	11.3	86.98	97.24	6.09	1.29	2.21	1.83	0.48	1.63	1.40	2.54	
						0.060	0.060				8.3			CT3	60.65	1.2	1.7	0.21	56.2	1.29	17.3	1.54	3.6	1.32	6.6	1.30	
säädetä	iän pH 8.5				5.5			7.0		2100																	

2*0.5L	
Ca	a (XRF)
%	Rec%
1.69	16.46
2.58	83.54
1.04	6.67
3.0	9.80
0.60	3.18
3.1	3.49
0.34	1.62
3.0	1.55

CC3		2			0.55	7	7		5			5	24.2	CC4	531.4	10.7	91.02	96.34	3.78	0.76	1.49	1.16	0.32	1.02	1.12	1.92	0.22	0.97
						0.035	0.035				8.3			CT4	29.88	0.6	15.2	0.90	47.1	0.53	15.1	0.66	3.4	0.61	6.4	0.62	2.6	0.65
säädetä	iän pH 8.5				4			7.0		2100																		
CC4		2			0.4	5	5		5			4	28.2	CC5	495.64	10.0	92.6	91.41	3.1	0.57	1.3	0.91	0.3	0.78	1.0	1.62	0.2	0.72
						0.025	0.025				8.3			CT5	35.79	0.7	69.1	4.93	13.8	0.19	4.8	0.25	1.1	0.25	2.6	0.30	0.8	0.25
Total	75	23	500	100	572.5	384	204				Total	41.2	28.2	Calc Feed	4978.3	100.0	10.1	100.0	53.2	100.0	13.7	100.0	3.3	100.0	6.2	100.0	2.4	100.0
														Assayed Feed	5000.0		10.2		53.67		13.83		3.41		5.81		2.40	
													Rela	t. Difference (%)	0.4348		1.124		0.852		1.2488		1.9633		-6.656		1.0279	

	\ge	U			Sample:		Käpysuo	blend 2		G	rind:	Mill:			Mergan			Rema	rks:	_			tauł	oaika 0	.7 s	
					Project:	Battery	/ Minerals {	50402-2009	9022			Charg	e:		22 kg rods							Va	ahdotus	kone 2, t	titraattori 2	
					Date:		30.10.2	2019					Wate	r:		5.01			RC1-3	S	uodatettu	ı. iauhett	tu kahde:	ssa eräs	sä. 2*45 min.	vettä 2'
				-	Author:		AEN	N		F	eed				5	1	кg									
				-	Test no.:		T18	3		Scree	en anal:															
				Rea	aents (a/i	t)/mL							Cum							G	rades	and	Recov	eries	s	
Food	Grind	Cond	Na2SiO3	Starch		MIBC	Kerosene	Cell	Air	Rotor	nH	Flot	Flot	Product	M	aight		C (Eltra)	SiO	2 (XRE)	A12C	3 (XRE)	Mat		Ee (XRE	,
1 eeu	min	min	Nazolog	Otaron	Naon	MIDO	Refosche	I.	l/min	rpm	pri	min	min	rioddet			0/		010		AI20		wige			/
			5 %	1 %	5 %	100 %	100 %								g	%	%	Rec%	%	Rec‰	%	Rec%	%	Rec%	% Rec	%
-1.5mm	75																									
								13		2400	7.1															
säädetä	iän pH 8.5				370						8.5															
		3	750		37.0					"	"															
			75.0								"															
		2		150							"															
				75.0							"															
		2			30	80	80				"															
					3.0	400 µl	400 µl		8		8.0	9	9	RC1												
RT1		2			65	30	15				8.5															
					6.5	150 µl	75 µl		8		8.3	3	12	RC2												
RT2		2			28	30	15				8.5															
					2.8	150 µl	75 µl		8		8.4	2	14	RC3												
RT3		2									-															
																										_
																										-
														RC1-3	753.3	15.1	61.89	91.99	20.68	5.86	7.09	7.81	1.52	6.85	2.50 6.2	9 1
														Tails	4230.0	84.9	0.96	8.01	59.10	94.14	14.90	92.19	3.69	93.15	6.63 93.7	'1 2

à 2*0.5L

Ca	a (XRF)
%	Rec%
1.76	10.74
2.61	89.26

			1							1		1	1	1					· · · · · ·									
RC1-3	45*2		`0.5Lx2 vettä		keraamiset+	kg + HK-mylly				8.0																		
säädetä	ään pH 8.5				13			7		2100	8.5																	
RC1-3		2			1.3	100	20		5		8.3	8	8	CC1	553.3	11.1	83.01	90.61	8.23	1.72	3.11	2.51	0.72	2.38	1.40	2.58	1.27	5.69
						500 µl	100 µl				8.4			CT1	200.0	4.0	3.5	1.38	55.1	4.15	18.1	5.30	3.7	4.46	5.6	3.71	3.1	5.05
säädetä	ään pH 8.5				4			7		2100	8.5																	
CC1		2			0.4	50	10		5		8.3	7	15	CC2	505.9	10.2	90.04	89.87	4.15	0.79	1.78	1.31	0.48	1.46	0.96	1.62	1.11	4.55
						250 µl	50 µl				8.3			CT2	47.4	1.0	8.0	0.74	51.8	0.92	17.3	1.20	3.3	0.92	6.1	0.96	3.0	1.14
säädetä	ään pH 8.5				2			7		2100	8.5																	
CC2		2			0.2	10	10		5		8.3	6	21	CC3	492.2	9.9	92.02	89.36	3.04	0.56	1.41	1.01	0.41	1.21	0.81	1.34	1.07	4.26
						50 µl	50 µl				8.5			CT3	13.7	0.3	18.8	0.51	43.9	0.23	15.1	0.30	3.1	0.25	6.2	0.28	2.6	0.28
säädetä	ään pH 8.5				1			4		1800	8.5																	
CC3		2			0.1	3	3		3		8.3	5	26	CC4	483.6	9.7	92.69	88.44	2.73	0.50	1.29	0.91	0.38	1.08	0.76	1.23	1.07	4.18
						15 µl	15 µl				8.4			CT4	8.6	0.2	54.2	0.92	20.6	0.07	8.0	0.10	2.5	0.13	3.8	0.11	1.2	0.09
säädetä	ään pH 8.5				1			4		1800	8.5																	
CC4		2			0.1	2	2		3		8.3	4	30	CC5	466.3	9.4	93.3	85.83	2.5	0.44	1.2	0.82	0.3	0.95	0.7	1.12	1.1	4.11
						10 µl	10 µl							CT5	17.3	0.3	76.3	2.60	8.7	0.06	3.7	0.09	1.3	0.14	1.9	0.11	0.5	0.07
Total	75	23	750	150	144	305	155				Total	44	30	Calc Feed	4983.3	100.0	10.2	100.0	53.3	100.0	13.7	100.0	3.4	100.0	6.0	100.0	2.5	100.0
														Assayed Feed	5000.0		10.2		53.67		13.83		3.41		5.81		2.40	
													Rel	at. Difference (%)	0.334		0.283		0.699		0.827		1.3007		-3.308		-3.414	

(\geq		Ť	K	Sample:		Luopio	inen			G	rind:	Mill:			Mild steel			Rema	rks:				taul	koaika 1	.5 s			
	-				Project:	Battery	/ Minerals {	50402-20	009022				Charg	e:		8 kg balls							va	ahdotus	kone 1, t	itraatto	ri 1		
					Date:		12.11	.2019					0	Wat	er.	U	101												
					Author:		KM	S			F	eed		Wat		1	1.01	cg	-										
					Test no.:		T1				Scro	oou anal:						-											
					Peagent	e (a/t)/ml					Scree			Cum									G	rado	h n e a	Pace	vori	0.6	
Feed	Grind	Cond	Nate	Ctorch	Neou		Karagana	NaOU	Cell	Air	Rotor		Flot	Flot	Dueduet	14/-			C (Eltra)	8:07		4120		Made				5 3	
гееа	min	min	11423102	Starch	NaOn	WIDC	Relosene	NaOn	1	l/min	rpm	рп	min	min	Product	VVE	agni			3102		AIZO		ivige		Fe		U.C.	
			5 %	1 %	5 %	100 %	100 %	5 %								g	%	%	Rec%	%	Rec%	%	Rec%	%	Rec%	%	Rec%	%	Rec%
-1.5mm	60																												
									4		1800																		<u> </u>
säädetä	ään pH 8.5											8.6																	<u> </u>
		3	1500									9.3																	<u> </u>
			30.0																										<u> </u>
		2		300																									<u> </u>
				30.0																									<u> </u>
		2				80	80				"	9.3															 		<u> </u>
säädet	ään ph 8,5					0.080	0.080			3	"	7.8	5	5	RC1												 		<u> </u>
RT1		2			88	40	20					8.5															 		<u> </u>
					1.700	0.040	0.020			3		8.3	3	8	RC2												 		<u> </u>
RT2		2			32	40	20					8.5																	
					0.650	0.040	0.020			3		8.3	3	11	RC3														
											"				RC1-3	225.2	22.5	56.56	97.73	21.64	10.85	6.52	12.91	1.94	14.24	3.95	7.84	0.78	12.33
											"				Tails	774.37	77.5	0.382	2.27	51.7	89.15	12.8	87.09	3.39	85.76	13.5	92.16	1.62	87.67
RC1-3					23																								<u> </u>
sääde	etään ph	2			0.45	100	20		2.5	2	1500	8.6	6	17	CC1	190.4	10.0	69 50	04.96	14.40	E 70	4.04	7 0 2	1.60	0.06	2.40	2.04	0.55	6 00
RC1-3		2				0.100	0.020			2		7.9	0	17	CT1	44.78	4.5	8.35	94.00 2.87	50.8	5.78	12.94	5.08	2.93	9.90	9.87	3.94	1 74	5 45
									2.5		1500	8.6						0.00	2.07	00.0	0.01	.2.0	0.00	2.00		0.01			0.10
CC1		2			15	50	10			2	"	7.9	5	22	CC2	167.3	16.7	72.12	92.59	12.23	4.56	4.39	6.45	1.57	8.58	2.07	3.05	0.47	5.45
					0.300	0.050	0.010								CT2	13.1	1.3	22.6	2.27	42.1	1.23	12.0	1.38	3.21	1.37	7.73	0.89	1.56	1.43
sääde	etään ph								2.5		1500	8.6															 	'	<u> </u>
CC2		2			12	12	12			2		7.8	5	27	CC3	159.5	16.0	73.92	90.45	11.15	3.96	4.06	5.69	1.47	7.63	1.91	2.68	0.43	4.77
sääde	etään nh				0.250	0.012	0.012		25		1500	85			013	60.1	0.8	35.5	2.14	34.0	0.59	11.0	0.76	3.71	0.95	5.23	0.36	1.24	0.68
003		2			7	7	7		2.0	2	"	7.7	5	30	CC4	130 /	13.0	76.00	82.27	0.47	2.04	3.52	1 3 2	1.24	5.67	1 91	2.22	0.37	3.61
003		2			0.150	0.007	0.007			2		1.1	5	JZ	CT4	20.03	2.0	53.2	8.18	9.47 22.9	1.02	7.82	1.38	3.00	1.96	2.62	0.46	0.83	1.16
sääde	etään ph	1							2.5		1500	8.5	1																
CC4		2			10	5	5			2	"	8	5	37	CC5	113.2	11.3	79.7	69.23	8.07	2.03	3.10	3.08	1.07	3.96	1.74	1.74	0.320	2.53
					0.200	0.005	0.005				"				CT5	26.22	2.6	64.8	13.04	15.5	0.91	5.35	1.23	2.00	1.71	2.10	0.49	0.59	1.08
																											T 		Ļ
Total	60	21	1500	300	164	334	174					Total	37	37	Calc Feed	999.6	100.0	13.0	100.0	44.9	100.0	11.4	100.0	3.1	100.0	11.3	100.0	1.4	100.0
														Del	Assayed Feed	1000.0		16.000		44.90		11.40		3.06		10.60		1.39	
1		1							1				1	Rela	n. Dillerence (%)	0.045		10.52		-0.06		0.1219		-0.083		-1.000	1	-2.988	1

	\sim	G		K	Sample:		Luopi	oinen			G	rind:		Mill	:	М	ergan		Rema	rks:				tauk	oaika 0	.7 s			
	-				Project:	Task 2.2 0	Grafiittitutk	. 50402-	-201082	22				Charge	:	22,5	kg rods	;					vaa	ahdotusk	one 2, p	H-mittari 5			
					Date:		1415.	1.2020						Wa	ater:		5.0 I			RC1-7	รเ	uodatettu	ı, jauhett	tu kahdes	sa eräs	sä, 2*45 mii	ı, vettä ź	2*0.7L	
				-	Author:		AE	N			F	eed				5	k	g											
					Test no.:		T	2			Scre	en anal:																	
					Reagent	ts(g/t)/mL	-							Cum									G	arade	sand	Recove	ries		
Feed	Grind	Cond	Na2SiO3	Starch	NaOH	MIBC	Kerosene		Cell	Air	Rotor	pН	Flot	Flot	Product	We	ight		C (Eltra)	SiO	2 (XRF)	AI2O	3 (XRF)	MgC	(XRF)	Fe (XR	-)	Ca (XRF)
	min	min	5 %	1 %	5 %	100 %	100 %		1	i/min	rpm		min	min		g	%	%	Rec%	%	Rec%	%	Rec%	%	Rec%	% Re	:% °	%	Rec%
-1.5mm	75																												
									13		2400	8.2																	
säädetä	iän pH 8.5				19							8.5																	
		3	1500		1.90							9.3																	
			150																										
		2		300																									
				150																									
		2				80	80					9.3																	
säädet	ään ph 8,5					400	400			8		8.5	5	5	RC1														
RT1		2				40	20																						
						200	100			8		8.3	3	8	RC2														
RT2		2			13	40	20					8.5																	
					1.30	200	100			8		8.3	4	12	RC3														
RT3		2			9	160	160					8.5																	
					0.90	800	800			8		8.5	11	23	RC4														
RT4		2			9	80	80					8.3																	
					0.90	400	400			8		8.3	6	29	RC5														
RT5		2			10	80	80					8.5																	
					1.00	400	400			8		8.3	5	34	RC6														
RT6		2			10	80	80					8.5																	
					1.00	400	400			8		8.4	4	38	RC7														
															RC1-7	1166.5	23.3	51.54	91.23	27.86	14.43	7.82	16.00	1.80	14.01	3.56	.28 (0.98	15.95
RC1-7	45*2		0.7*2 vettä		keraamis	set+teräs kuulat 5 ko	g + HK-mylly								Tails	3829.6	76.7	1.51	8.77	50.30	85.57	12.50	84.00	3.37	85.99	13.80 92	.72	1.57	84.05
RC1-7					23						2100	7.7																	

säädet	ään ph 8,5				2.30			7 "	8.5																	1
		2				100	20	5 "	8.2	6	44	CC1	829.6	16.6	70.89	89.23	16.02	5.90	4.66	6.78	1.04	5.77	2.40	3.49	0.58	6.77
						500	100					CT1	336.9	6.7	3.90	1.99	57.00	8.53	15.60	9.22	3.67	8.24	6.41	3.79	1.95	9.18
sääde	etään ph							7 2100	7.9																	
CC1		2			8	50	10	5 "	8.6	5	49	CC2	694.3	13.9	83.49	87.96	8.33	2.57	2.58	3.15	0.59	2.75	1.60	1.94	0.32	3.06
					0.80	250	50		8.4			CT2	135.3	2.7	6.22	1.28	55.50	3.34	15.30	3.63	3.35	3.02	6.51	1.55	1.96	3.71
sääde	etään ph							7 2100	8,5																	
CC2		2				12	12	5 "		5	54	CC3	639.5	12.8	89.71	87.05	4.57	1.30	1.57	1.76	0.38	1.62	1.16	1.30	0.18	1.62
						60	60		8.2			CT3	54.8	1.1	10.90	0.91	52.10	1.27	14.40	1.38	3.10	1.13	6.66	0.64	1.88	1.44
sääde	etään ph							7 2100	8.2																	
CC3		2			4	7	7	5 "	8.5	5	59	CC4	614.9	12.3	92.46	86.27	2.95	0.80	1.12	1.21	0.28	1.17	0.95	1.02	0.12	1.04
					0.40	35	35		8.2			CT4	24.6	0.5	21.00	0.78	45.30	0.50	12.80	0.55	2.77	0.45	6.56	0.28	1.68	0.58
sääde	etään ph							7 2100	8.4																	
CC4		2			2	5	5	5 "	8.5	4	63	CC5	586.6	11.7	93.75	83.44	2.20	0.57	0.91	0.94	0.23	0.91	0.83	0.86	0.09	0.74
					0.15	25	25	н	8.1			CT5	28.3	0.6	65.80	2.83	18.40	0.23	5.50	0.27	1.36	0.26	3.32	0.16	0.75	0.30
sääde	etään ph							7 2100	8.3																	
CC5					1			5 "	8.5	4	67	CC6	499.9	10.0	94.50	71.68	1.86	0.41	0.81	0.71	0.20	0.67	0.78	0.68	0.08	0.53
					0.10	0	0	н	8.2			CT6	86.7	1.7	89.40	11.76	4.16	0.16	1.48	0.23	0.42	0.24	1.13	0.17	0.18	0.21
Total	75	29	1500	300	108	734	574		Total	67	67	Calc Feed	4996.1	100.0	13.19	100.00	45.06	100.00	11.41	100.00	3.00	100.00	11.41	100.00	1.43	100.00
												Assayed Feed	5000.0		16.00		44.90		11.40		3.06		10.60		1.39	
											Rela	at. Difference (%)	0.078		17.55		-0.355		-0.058		1.8297		-7.625		-3.008	

í	\sim	G		K	Sample:		Luopio	binen			G	Frind:		Mill	:	N	lergan		Remarks				tau	koaika 0.7	7 s		
,	-				Project:	Task 2.2 G	Grafiittitutk	50402-2	201082	22				Charge	:	22,5	5 kg rod	s				va	ahdotus	kone 2, pH	I-mittari	5	
					Date:		2223.	1.2020						Wa	iter:		5.0 I		R	1-4	suodate	tu, jauhet	tu kahde	ssa erässä	ä, 2*45 ı	min, vet	ttä 2*0.8L
					Author:		AE	N			F	Feed				5	1	kg									
					Test no.:		т	3			Scre	en anal:															
					Reagent	∶s(g/t)/mL								Cum								Gı	rades	and Re	ecove	eries	
Feed	Grind	Cond	Na2SiO3	Starch	NaOH	MIBC	Kerosene		Cell	Air	Rotor	pН	Flot	Flot	Product	We	eight		C (Eltra)	SiO2 (XI	RF) Al2	O3 (XRF)	Mg	D (XRF)	Fe ((XRF)	Ca (XRF)
	min	min	5 %	1 %	5 %	100 %	100 %		1	l/min	rpm		min	min		g	%	%	Rec%	6 Re	ec% %	Rec%	%	Rec%	%	Rec%	% Rec%
-1.5mm	75																										

			1						I	L O	ΤΑΤ	ON	TEST	REPO	RT													
								13		2400	8.0																	
säädet	ään pH 8.5				19						8.5																	
		3	750		1.90						8.8																	
			75																									
		2		150							8.9																	
				75																								
		2				80	80				8.8																	
säädet	ään ph 8.5					400	400		8		8.0	5	5	RC1														
RT1		2			31	40	20				8.5																	
					3.10	200	100		8		8.2	4	9	RC2														
RT2		2			15	40	20				8.5																	
					1.50	200	100		8		8.3	4	13	RC3														
RT3		2			9	40	20		-		8.5																	
					0.90	200	100		8		8.4	3	16	RC4														
											0.1	0	10															
														RC1-4	1529.8	30.8	42.42	98.72	30.45	21.00	8.75	23.37	2.44	23.61	5.94	16.10	1.03	22.74
RC1-4	45*2		0.8*2 vettä		keraamise	t+teräs kuulat 5 ko	y + HK-mylly							Tails	3430.0	69.2	0.25	1.28	51.10	79.00	12.80	76.63	3.52	76.39	13.80	83.90	1.56	77.26
RC1-4					36	-				2100	7.6																	
säädet	ään ph 8.5				3.60			7			8.5																	
		2				100	20		5		7.9	6	22	CC1	1018.7	20.5	63.58	98.54	19.09	8.76	5.52	9.81	1.42	9.15	3.75	6.77	0.68	10.04
						500	100		-			-		CT1	511.1	10.3	0.23	0.18	53 10	12.23	15 20	13.56	4 47	14 46	10.30	9.33	1 72	12 69
sääd	etään nh							7		2100	84																	
CC1	pro	2			18	50	10		5		8.6	5	27	CC2	836.4	16.9	77.27	98.33	11.37	4.29	3.47	5.07	0.91	4.79	2.42	3.59	0.43	5.15
		_			1.80	250	50		-		8.4	-		CT2	182.3	3.7	0.77	0.21	54.50	4.48	14.90	4.74	3.78	4.36	9.85	3.18	1.86	4.90
sääd	etään oh							7		2100	8.3																	
0.02	p	2			7	12	12		5		8.5	5	32	CC3	757.0	15.3	85.17	98.09	6.86	234	2 27	3.00	0.63	3.01	1.68	2.26	0 27	2.96
002		-			0.70	60	60		5		83	, ,		CT3	79.4	1.6	1 95	0.24	54.40	1 95	14 90	2.06	3 55	1 78	9.46	1 33	1 01	2 10
hëëa	etään nh	1			-	-		7		2100	8.3			010		1.0	1.55	0.24	04.40	1.00	17.30	2.00	0.00	1.70	0.40	1.00	1.31	2.10
0.03		2			2	7	7		5		8.5	5	37	CC4	717 6	14.5	89.41	97 62	4 48	145	1.63	2 ∩4	0.46	2.08	1 27	1.62	0 19	1 94
000		~			-						0.0			004	00.4	14.5	50.41	01.02	0	1.40	1.00	2.04	0.70	2.00	1.27	1.02	0.13	1.04
					0.20	35	35				83		1	CT4	39,4	0.8	7 80 1	04/	50 10	0.80	14 00	0 06	374	0 03	0 10 1	0.64	1 78	
cääd	atään nh				0.20	35	35	7		" 2100	8.3			CT4	39.4	0.8	7.89	0.47	50.10	0.89	14.00	0.96	3.74	0.93	9.19	0.64	1.78	1.01
sääd	etään ph	2			0.20	35	35	7	5	" 2100	8.3	4	41	CT4	39.4	0.8	7.89	0.47	2.20	0.89	14.00	0.96	3.74	0.93	9.19	0.64	1.78	1.01

			0.30	25	25				8.1			CT5	25.2	0.5	30.40	1.17	36.80	0.42	11.00	0.48	3.30	0.53	7.06	0.32	1.38	0.50
säädetään ph						7		2100	8.2																	
CC5			2				5		8.5	4	45	CC6	641.4	12.9	93.30	91.04	2.51	0.73	1.05	1.18	0.27	1.10	0.91	1.03	0.11	1.03
			0.20	0	0				8.2			CT6	51.0	1.0	69.70	5.41	13.30	0.31	4.28	0.38	1.41	0.45	2.96	0.27	0.56	0.41
Total 75	23 750	150	142	374	194				Total	45	45	Calc Feed	4959.8	100.0	13.25	100.00	44.73	100.00	11.55	100.00	3.19	100.00	11.38	100.00	1.40	100.00
												Assayed Feed	5000.0		16.00		44.90		11.40		3.06		10.60		1.39	
											Re	lat. Difference (%)	0.804		17.17		0.376		-1.328		-4.137		-7.315		-0.452	

Appendix 3

9 PURFICATION TEST REPORTS

GRA	PHITE PURIFICAT	ION TEST REPO	ORT					
Sample:	Käpysuo	graphite blend 2	, CC5, 1. D50) 20µm				
Project:	Green M	linerals 50404-40)137					
Date:	25.11.2019							
Author:	MKP							
Test no.:	LT24							
Alkalin	e Roasting							
NaOH		25	w-%	pasute	ettu kahdessa	erässä		
Tem	perature	250	°C					
Time		2	h					
L/S ratio		2:1				yht.		
Sample		78.52	g	78.36	g	156.88	g	
NaOH		157.1	g	156.9	g	314	g	
Wat	er wash							
Deionize	ed hot water	2000	mL					
Time		30	min					
1 step	liete 60C	12.6	pН	К	oko näytemää	rä pestään kerral	lla	
2 step	liete 60C	12.01	pН	suodatte	uu hyvin			
3 step	liete 60 C	11.4	pН					
4 step			pН		lopuksi huuh	telu runsaalla ky	/Imällä vedellä	
Acid	Leaching							
H2SO4		10	w-%	103	g H2SO4+897g	1 H2O		
Tem	perature	25	°C					
Time		2	h					
L/S ratio		5:1						
H2SO4		784.4	g	736 ml				
	loppusakka	136 74	a					
	oppusatitu	100.74	я					

GRA	PHITE PURIFICAT	ION TEST REP	ORT				
Sample:	Käpysuo	graphite blend	2, CC5, 2. D50	50µm			
Project:	Green M	linerals 50404-4	0137				
Date:	25.11.2019						
Author:	MKP						
Test no.:	LT25						
<u>Alkalin</u>	e Roasting						
NaOH		25	w-%				
Terr	perature	250	°C				
Time		2	h				
L/S ratio		2:1				yht.	
Sample		78.49	g	78.96	g	157.45	
NaOH		157	g	158.2	g	315.2	
Wa	ter wash						
Deionize	ed hot water	2000	mL				
Time		30	min				
1 step	liete 60C	12.44	pН				
2 step	liete 60C	12.18	pН	suodattu	iu hyvin		
3 step	liete 60C	11.65	pН				
4 step	liete 60C	11.06	pН				
<u>Acid</u>	Leaching						
H2SO4		10	w-%		103	g H2SO4+897g H	20
Terr	perature	25	°C				
Time		2	h				
L/S ratio		5:1					
H2SO4		787.25	g				
	loppusakka	144.00	g				

GRA	PHITE PURIFICAT	ION TEST REP	ORT				
Sample:	Käpysuo	graphite blend	2, CC5, 3. D5	0 80µm			
Project:	Green M	linerals 50404-4	0137				
Date:	27.11.2019						
Author:	MKP						
Test no.:	LT26						
Alkalin	e Roasting						
NaOH		25	w-%				
Tem	perature	250	°C				
Time		2	h				
L/S ratio		2:1					
Sample		78.9	g	78.38	g	157.28	
NaOH		157.8	g	156.8	g	314.6	
Wat	er wash						
Deionize	ed hot water	2000	mL				
Time		30	min				
1 step	liete 60C	12.61	pН				
2 step	liete 60C	11.98	pН	suodatt	uu hyvin		
3 step	liete 60C	11.79	pН				
4 step	liete 60C	11.04	pН				
<u>Acid</u>	Leaching						
H2SO4		10	w-%		103	g H2SO4+897g H2O	
Tem	perature	25	°C				
Time		2	h				
L/S ratio		5:1					
H2SO4		786.4	g				
	loppusakka	145.15	g				

GRA	PHITE PURIFICAT	TION TEST REP	ORT					
Sample:		Käpysuo grap	hite blend 2,	CC5, test 16-18,	lisäjauhettu 4.	D50 20µm		
Project:	Batte	ry Minerals 5040	2-					
Date:	27.12.2019							
Author:	MKP							
Test no.:	LT27							
Alkaline	e Roasting							
NaOH		25	w-%	pasute	ettu kahdessa	erässä		
Tem	perature	250	°C					
Time		2	h					
L/S ratio		2:1				yht.		
Sample		78.51	g	79.7	g	158.21	g	
NaOH		157.02	g	159.4	g	316.42	g	
Wat	er wash							
Deionize	ed hot water	2000	mL					
Time		30	min					
1 step	liete 60C	12.08	pН	K	oko näytemää	rä pestään kerrall	a	
2 step	liete 60C	11.64	pН	suodos	keltainen			
3 step	liete 60 C	11.22	pН					
4 step			pН		lopuksi huuh	itelu runsaalla ky	Imällä vedellä	
Acid	Leaching							
H2SO4		10	w-%	103	g H2SO4+897) H2O		
Tem	perature	25	°C					
Time		2	h	300 rpm				
L/S ratio		5:1						
H2SO4		791.1	g	750 ml				
	loppusakka	125.1	g	suod	os ruskean ke	Itainen		

GRA	PHITE PURIFICAT	ION TEST REP	ORT					
Sample:		Käpysuo grap	hite blend 2,	CC5, test 16-18,	lisäjauhettu 5.	D50 50µm		
Project:	Green M	linerals 50404-4	0137					
Date:	30.12.2019							
Author:	MKP							
Test no.:	LT28							
Alkalin	e Roasting							
NaOH		25	w-%	pasut	ettu kahdessa	erässä		
Tem	perature	250	°C					
Time		2	h					
L/S ratio		2:1				yht.		
Sample		79.22	g	80.15	g	159.37	g	
NaOH		158.44	g	160.3	g	318.74	g	
Wat	ter wash							
Deionize	ed hot water	2000	mL					
Time		30	min					
1 step	liete 60C	11.98	pН	к	oko näytemää	ä pestään kerral	lla	
2 step	liete 60C	11.7	pН	suodos	keltainen			
3 step	liete 60 C	11.2	pН					
4 step			pН		lopuksi huuh	telu runsaalla ky	/Imällä vedellä	
Acid	Leaching							
H2SO4		10	w-%	103	g H2SO4+897g	H2O		
Tem	perature	25	°C					
Time		2	h					
L/S ratio		5:1						
H2SO4		796.85	g	752 ml				
	loppusakka	130.37	g					

GRA	PHITE PURIFICAT	TION TEST REF	PORT					
Sample:		Käpysuo grapł	nite blend 2, C	C5, test 16-18, li	säjauhettu 6. I	⊃50 <<20µm		
Project:	Green M	linerals 50404-4	0137					
Date:	31.12.2019							
Author:	MKP							
Test no.:	LT29							
Alkaline	e Roasting							
NaOH		25	w-%	pasute	ettu kahdessa	erässä		
Tem	perature	250	°C					
Time		2	h					
L/S ratio		2:1				yht.		
Sample		85.93	g	83.66	g	169.59	g	
NaOH		171.86	g	167.32	g	419.18	g	
		40	g	40	g			
			Lisätty NaOH:	a, koska oli liian	paksua puuro	a		
Wat	er wash							
Deionize	Deionized hot water		mL					
Time		30	min					
1 step	liete 60C	12.11	pН	К	oko näytemää	rä pestään kerral	la	
2 step	liete 60C	11.88	pН	keltainer	suodos			
3 step	liete 60 C	11.57	pН					
4 step			pН		lopuksi huuh	itelu runsaalla ky	/lmällä vedellä	
Acid	Leaching							
H2SO4		10	w-%	103	g H2SO4+897g	g H2O		
Tem	perature	25	°C					
Time		2	h					
L/S ratio		5:1						
H2SO4		847.95	g	800 ml				
	loppusakka	129.85	g					

GRA	PHITE PURIFICAT	ION TEST REP	ORT					
Sample:	Luopic	oinen Test 2&3 r	ikaste D50 20	μm				
Project:	Graf	iittitutkimukset {	50402-2010822	22				
Date:	5.3.2020							
Author:	MKP							
Test no.:	LT30							
Alkaline	e Roasting							
NaOH		25	w-%	pasute	ettu kahdessa	erässä		
Tem	perature	250	°C					
Time		2	h					
L/S ratio		2:1				yht.		
Sample		77.67	g	74.87	g	152.54	g	
NaOH		155.34	g	149.74	g	305.08	g	
<u>Wat</u>	<u>er wash</u>							
Deionize	ed hot water	2500	mL					
Time		30	min					
1 step	liete 60C	12	pН	K	oko näytemääi			
2 step	liete 60C	11.33	pН					
3 step	liete 60 C	11	pН					
4 step			pН		lopuksi huuh	telu runsaalla ky	Imällä vedellä	
<u>Acid</u>	<u>Leaching</u>							
H2SO4		10	w-%	103	g H2SO4+897g	H2O		
Tem	perature	25	°C					
Time		2	h					
L/S ratio		5:1						
H2SO4		762.7	g					
	loppusakka	132.34	g					

GRA	PHITE PURIFICAT	ION TEST REP	ORT					
Sample:	Luopi	oinen Test 2&3	rikaste D50 50	μm				
Project:	Graf	iittitutkimukset	50402-2010822	22				
Date:	18.3.2020							
Author:	MKP							
Test no.:	LT31							
Alkalin	e Roasting							
NaOH	<u>e Roasung</u>	25	N/ 9/-	pacuté	ottu kabdossa	oräcsä		
Tom	perature	250	°C	pasut	ettu kanuessa	ciassa		
Time	perature	230	b					
L/S ratio		2.1	1			vht		
C/O TAUO		2.1	~	74 70	~	yrit.	~	
Sample		//.5	g	74.72	g	152.22	g	
NaOH		155	g	150.44	g	305.44	g	
Wat	er wash							
Deionize	ed hot water	2500	mL					
Time		30	min					
1 step	liete 60C	12	pН	К	oko näytemää			
2 step	liete 60C	11.5	pН					
3 step	liete 60 C	10.7	pН					
4 step			pН		lopuksi huuh	itelu runsaalla k	/Imällä vedellä	
<u>Acid</u>	Leaching							
H2SO4		10	w-%	103	g H2SO4+897g) H2O		
Tem	perature	25	°C					
Time		2	h					
L/S ratio		5:1						
H2SO4		761.1	g					
	loppusakka	120.7						
	юрризакка	139.7	g					

GRA	PHITE PURIFICAT	ION TEST REP	ORT					
Sample:	Luopi	oinen Test 2&3	rikaste D50 80	μm				
Project:	Graf	iittitutkimukset	50402-2010822	22				
Date:	26.3.2020							
Author:	MKP							
Test no.:	LT32							
Alkalin	e Roasting							
NaOH	<u>i nouoling</u>	25	w-%	pasute	ettu kahdessa	erässä		
Tem	perature	250	°C	paout				
Time	porataro	2	h					
L/S ratio		2:1				yht.		
Sample		77.37	g	74.99	g	152.36	g	
NaOH		154.74	g	149.98	g	304.72	g	
Wat	er wash							
Deionize	ed hot water	2500	mL					
Time		30	min					
1 atan	lists 600	10			aka mäytamää	rä nastään korra	lle	
T step		12	pn		oko naytemaa	ra pestaan kerra	lia	
2 step		11.3	pn					
3 step	liele 60 C		pn		landa kata			
4 step			рн		iopuksi nuur	itelu runsaalla ky	yimalia vedella	
Acid	Leaching							
H2SO4		10	w-%	103	g H2SO4+897g	g H2O		
Tem	perature	25	°C					
Time		2	h					
L/S ratio		5:1						
H2SO4		761.8	g					
	loppusakka	142.66	g					

Appendix 4

10 GRAPHITE MINERALOGY OF PURIFICATION TEST SAMPLES LT24-32

10.1MLA-MEASUREMENTS KÄPYSUO BLEND 2 CC5SAMPLES BEFORE PURIFICATION TESTS

1. Sample 1, D50 20 μM

One quick-polished thin-section was prepared from the sample. The sample ID is Käpysuo Blend 2_1_{D50} 20 μ m. The thin-section specimen code is: OK 16722.

The sample was studied with FEI QUANTA 650 SEM EDS MLA-instrument using XBSE-measurement mode.

The measurement parameters were: acceleration voltage 25 kV, emission current 146 μ A, vacuum pressure 5.37*10-6 mbar.

The particle-size distribution of studied sample based on the MLA data is shown in Figure 1.

Figure 1. Particle size distribution, Käpysuo Blend 2, D50 20 μ m (MLA data).

Modal mineral composition of the studied sample is given in Table 1. The main minerals are graphite, plagioclase, biotite, pyrite and quartz, which comprise 95.4 wt-% of the sample. Total of 20 718 particles were measured from the sample.

Mineral	Wt%	Particle Count
Graphite	82,53	13513
Plagioclase	5,80	2599
Biotite	4,04	1263
Pyrite	1,84	550
Quartz	1,15	548
Muscovite	0,74	230
K_feldspar	0,69	315
Almandine	0,68	274
Cordierite	0,66	423
Epidote	0,43	339
Pyrrhotite	0,32	77
Amphibole	0,25	85
Clays	0,13	142
Chlorite	0,10	85
Forsterite	0,10	7
Titanite	0,09	56
Goethite	0,08	30
Apatite	0,07	25
Magnetite	0,05	14
Sphalerite	0,05	17
Chalcopyrite	0,03	17
Zircon	0,01	4
Diopside	0,01	5
Calcite	0,01	6
Rutile	0,01	4
Albite	0,00	4
Unknown	0,14	86
Total	100,00	20718
Total number of measured particles		20718

Table 1. Modal composition, Käpysuo Blend 2, D50 20 μm.

Based on the MLA data, 98.1 wt-% of graphite occurs as liberated grains. The non-liberated graphite grains are mainly associated with biotite, epidote, garnet, pyrite and pyrrhotite. The association of graphite with other minerals is given in Table 2. The liberation of graphite is shown in Figure 2.

Table 2. Association of graphite (wt-%).

Almandine	Biotite	Calcite	Epidote	Chalcopyrite	Chlorite	Cordierite	Clays	Forsterite	Muscovite	Plagioclase	Pyrrhotite	Pyrite	Quartz	Sphalerite	Unknown	Free grpahite
0,26	0,46	0,00	0,33	0,03	0,01	0,05	0,04	0,01	0,03	0,12	0,16	0,21	0,05	0,09	0,02	98,13

Figure 2. Liberation of graphite, Käpysuo Blend 2, D50 20 μm .

The grain size distribution of graphite is shown in Figure 3. Particle images of graphite are shown in Figures 5-10. The color legend for the particle images is given in Figure 4.

Figure 4. Color legend for particle images in Figure 5-10.

Figure 5. Particle images of graphite, Käpysuo Blend 2, D50 20 $\mu m.$

Figure 6. Particle images of graphite, Käpysuo Blend 2, D50 20 $\mu m.$

Figure 7. Particle images of graphite, Käpysuo Blend 2, D50 20 $\mu m.$

Figure 8. Particle images of graphite, Käpysuo Blend 2, D50 20 $\mu m.$

Figure 9. Particle images of graphite, Käpysuo Blend 2, D50 20 $\mu m.$

Figure 10. Particle images of graphite, Käpysuo Blend 2, D50 20 µm.

2. Sample 2, D50 50 μM

One quick-polished thin-section was prepared from the sample. The sample ID is Käpysuo Blend 2_2D50 50 μ m. The thin-section specimen code is: OK 16721.

The sample was studied with FEI QUANTA 650 SEM EDS MLA-instrument using XBSE-measurement mode.

The measurement parameters were: acceleration voltage 25 kV, emission current 146 μ A, vacuum pressure 5.37*10-6 mbar.

The particle-size distribution of studied sample based on the MLA data is shown in Figure 11.

Figure 11. Particle size distribution, Käpysuo Blend 2, D50 50 µm (MLA data).

Modal mineral composition of the studied sample is given in Table 3. The main minerals are graphite, biotite, plagioclase and pyrite, which comprise 96.5 wt-% of the sample. Total of 20 948 particles were measured from the sample.

Mineral	Wt%	Particle Count
Graphite	90,06	17669
Biotite	3,38	734
Plagioclase	2,15	923
Pyrite	0,94	260
Epidote	0,46	234
Quartz	0,45	191
Muscovite	0,42	173
K_feldspar	0,38	140
Almandine	0,33	115
Cordierite	0,24	182
Apatite	0,20	18
Pyrrhotite	0,18	55
Amphibole	0,07	32
Clays	0,05	60
Goethite	0,04	14
Chlorite	0,04	43
Titanite	0,04	19
Zircon	0,04	3
Chalcopyrite	0,02	16
Sphalerite	0,02	11
Magnetite	0,01	7
Rutile	0,00	2
Forsterite	0,00	1
Calcite	0,00	1
Albite	0,00	1
Unknown	0,49	44
Total	100,00	20948
Total number of measured particles		20948

Table 3. Modal composition, Käpysuo Blend 2, D50 50 µm.

Based on the MLA data, 97.1 wt-% of graphite occurs as liberated grains. The non-liberated graphite grains are mainly associated with epidote, biotite, pyrite and plagioclase. The association of graphite with other minerals is given in Table 4. The liberation of graphite is shown in Figure 12.

Table 4. Association of graphite (wt-%).

Amphibole	Almandine	Biotite	Epidote	Chalcopyrite	Chlorite	Cordierite	Clays	K_feldspar	Muscovite	Plagioclase	Pyrrhotite	Pyrite	Quartz	Unknown	Free graphite
0,02	0,18	0,61	0,72	0,05	0,03	0,04	0,03	0,07	0,04	0,36	0,29	0,43	0,08	0,01	97,05

Figure 12. Liberation of graphite, Käpysuo Blend 2, D50 50 $\mu m.$

The grain size distribution of graphite is shown in Figure 13. Particle images of graphite are shown in Figures 15-20. The color legend for the particle images is given in Figure 14.

Figure 14. Color legend for particle images in Figure 15-20.

Figure 15. Particle images of graphite, Käpysuo Blend 2, D50 50 $\mu m.$

Figure 16. Particle images of graphite, Käpysuo Blend 2, D50 50 $\mu m.$

Figure 17. Particle images of graphite, Käpysuo Blend 2, D50 50 $\mu m.$

Figure 18. Particle images of graphite, Käpysuo Blend 2, D50 50 $\mu m.$

Figure 19. Particle images of graphite, Käpysuo Blend 2, D50 50 $\mu m.$

Figure 20. Particle images of graphite, Käpysuo Blend 2, D50 50 μ m.

3. Sample 3, D50 80 μM

One quick-polished thin-section was prepared from the sample. The sample ID is Käpysuo Blend2_2_D50 80 μ m. The thin-section specimen code is: OK 16720.

The sample was studied with FEI QUANTA 650 SEM EDS MLA-instrument using XBSE-measurement mode.

The measurement parameters were: acceleration voltage 25 kV, emission current 146 μ A, vacuum pressure 5.37*10-6 mbar.

The particle-size distribution of studied sample based on the MLA data is shown in Figure 21.

Figure 21. Particle size distribution, Käpysuo Blend 2, D50 80 μ m (MLA data).

Modal mineral composition of the studied sample is given in Table 5. The main minerals are graphite, biotite and plagioclase, which comprise 97 wt-% of the sample. Total of 21 995 particles were measured from the sample.

Mineral	Wt%	Particle Count
Graphite	93,36	18775
Biotite	2,59	778
Plagioclase	1,43	738
Pyrite	0,53	254
Muscovite	0,36	190
Epidote	0,33	252
Quartz	0,28	191
Cordierite	0,22	249
Pyrrhotite	0,20	56
K_feldspar	0,17	99
Almandine	0,14	108
Clays	0,06	70
Goethite	0,05	14
Amphibole	0,05	29
Chalcopyrite	0,04	25
Forsterite	0,04	3
Zircon	0,04	11
Chlorite	0,03	61
Titanite	0,02	22
Sphalerite	0,01	11
Magnetite	0,01	7
Apatite	0,00	8
Diopside	0,00	3
Albite	0,00	5
Rutile	0,00	2
Unclassified	0,03	34
Total	100,00	21995
Total number of measured particles		21995

Table 5. Modal composition, Käpysuo Blend 2, D50 80 µm.

Based on the MLA data, 97.8 wt-% of graphite occurs as liberated grains. The non-liberated graphite grains are mainly associated with biotite, pyrite, epidote and plagioclase. The association of graphite with other minerals is given in Table 6. The liberation of graphite is shown in Figure 22.

Table 6. Association of graphite (wt-%).

Almandine	Apatite	Biotite	Epidote	Chalcopyrite	Chlorite	Cordierite	Clays	K_feldspar	Muscovite	Plagioclase	Pyrrhotite	Pyrite	Quartz	Sphalerite	Titanite	Zircon	Free graphite
0,02	0,01	0,66	0,31	0,02	0,01	0,02	0,01	0,01	0,04	0,19	0,17	0,41	0,15	0,01	0,04	0,11	97,81

Figure 22. Liberation of graphite, Käpysuo Blend 2, D50 80 $\mu m.$

Figure 23. Grain-size distribution of graphite, Käpysuo Blend 2, D50 80 $\mu m.$

The grain size distribution of graphite is shown in Figure 23. Particle images of graphite are shown in Figures 25-30. The color legend for the particle images is given in Figure 24.

Figure 24. Color legend for particle images in Figure 5-10.

Figure 25. Particle images of graphite, Käpysuo Blend 2, D50 80 $\mu m.$

Figure 26. Particle images of graphite, Käpysuo Blend 2, D50 80 $\mu m.$

Figure 27. Particle images of graphite, Käpysuo Blend 2, D50 80 $\mu m.$

Figure 28. Particle images of graphite, Käpysuo Blend 2, D50 80 $\mu m.$

Figure 29. Particle images of graphite, Käpysuo Blend 2, D50 80 $\mu m.$

Figure 30. Particle images of graphite, Käpysuo Blend 2, D50 80 $\mu m.$

11 MINERALOGICAL CHARACTERISTIC OF GRAPHITE SAMPLES AFTER PURIFICATION TESTS

Mineral	LT24 1.D50 20µm	LT25 2.D50 50µm	LT26 3.D50 80µm
Graphite	99.70	99.79	99.74
Quartz	0.02	0.00	0.03
Biotite	0.04	0.09	0.17
Muscovite	0.00	0.00	0.00
Chlorite	0.00	0.00	0.00
Albite	0.00	0.00	0.01
Plagioclase	0.00	0.00	0.00
K-feldspar	0.01	0.00	0.00
Zeolite	0.00	0.00	0.00
Tremolite	0.01	0.01	0.01
Kaolinite	0.01	0.00	0.00
Epidote	0.07	0.09	0.00
Titanite	0.01	0.00	0.02
Zircon	0.00	0.00	0.00
Apatite	0.00	0.00	0.00
Magnetite	0.00	0.00	0.00
Rutile	0.00	0.00	0.00
Pyrrhotite	0.00	0.00	0.00
Pyrite	0.06	0.01	0.02
Chalcopyrite	0.00	0.00	0.00
Unclassified	0.05	0.00	0.00
Total	100.00	100.00	100.00
Amount of measured particles	22603	28805	23521

Table 7. Modal mineralogy of samples after purification (wt%)

Figure 31. Graphite grains size distribution after purification.

One special polished section per sample were prepared using fast hardening petropoxy with 12% addition of iodoform. Modal mineralogy, showed in Table 7, confirms that the concentrates are almost totally consist of graphite. In that sense liberation as well as association data become unnecessary. Grain size distribution, presented in Figure 31, confirms D50s of LT25 and LT26 samples (50 and 80 μ m respectively), when the LT24, which D50 is expected around 20 μ m, is elevated to 40 μ m according to the graph.

Figure 32. Graphite concentrate after purification, LT24, D50~20 μm overview.

Figure 33. Graphite concentrate after purification, LT25, D50~50 μm overview.

Figure 34. Graphite concentrate after purification, LT26, D50~80 μm overview.

11.1 MLA-MEASUREMENTS KÄPYSUO BLEND 2 CC5 REGROUND SAMPLES

The modal mineralogy of the reground Käpysuo Blend 2 CC5 graphite concentrates before and after the purification tests are shown in Table 8. The D50 20 μ m was the feed for test LT27 and D50 50 μ m was the feed for test LT28 and D50 < 20 μ m was the feed for test LT29. After the purification, the residues consists almost only graphite 99.4-99.7 %.

Mineral	D50 20µm	D50 50µm	D50 < 20µm	LT28_Residue	LT27_Residue	LT29_Residue
Graphite	79.56	88.72	82.71	99.52	99.73	99.42
Quartz	1.68	0.11	0.33	0.01	0.11	0.10
Plagioclase	0.95	0.61	1.01	0.02	0.00	0.03
K-feldspar	0.08	0.02	0.05	0.00	0.00	0.00
Diopside	0.01	0.01	0.00	0.00	0.00	0.00
Epidote	0.17	0.10	0.22	0.00	0.01	0.01
Phlogopite	0.43	0.29	0.51	0.01	0.01	0.00
Biotite	0.79	0.25	0.85	0.00	0.00	0.00
Muscovite	0.08	0.07	0.05	0.02	0.00	0.15
Chlorite	3.91	2.46	4.11	0.21	0.00	0.00
Kaolinite	0.10	0.12	0.22	0.00	0.00	0.00
Cordierite	0.21	0.08	0.13	0.06	0.00	0.00
Titanite_small	0.04	0.03	0.05	0.00	0.00	0.00
Apatite	3.41	1.56	0.02	0.09	0.06	0.16
Carbonate_mixture	0.49	0.38	0.51	0.00	0.01	0.00
Goethite	5.48	3.70	6.72	0.00	0.00	0.01
Pyrite	0.40	0.18	0.36	0.00	0.00	0.04
Chalcopyrite	0.03	0.03	0.05	0.00	0.00	0.00
Sphalerite	0.02	0.00	0.01	0.00	0.00	0.00
Molybdenite	0.49	0.04	0.45	0.00	0.00	0.00
Pentlandite	0.09	0.04	0.12	0.00	0.00	0.00
Tramp_Iron	1.15	0.77	1.14	0.03	0.04	0.07
Unclassified	0.43	0.46	0.37	0.01	0.02	0.01
Total	100.00	100.00	100.00	100.00	100.00	100.00
Amount of measured particles	24180	23898	23107	23653	24017	23796

Table 8. Modal mineralogy of samples before after purification (wt%), tests LT27-29.

Figure 35. Graphite concentrate after purification, LT27, D50~20 μm overview.

Figure 36. Graphite concentrate after purification, LT28, D50~50 μm overview.

Figure 37. Graphite concentrate after purification, LT29, D50 < 20 μ m overview.

Mineral	D50=80µm	D50=50µm	D50=20µm	LT30	LT31	LT32
Graphite	97.44	96.88	94.06	99.36	99.73	99.66
Quartz	0.22	0.30	0.87	0.04	0.00	0.00
Plagioclase	0.24	0.44	1.45	0.04	0.01	0.00
K-feldspar	0.05	0.07	0.21	0.01	0.00	0.00
Diopside	0.00	0.00	0.01	0.00	0.00	0.00
Mica	0.73	0.80	0.70	0.30	0.21	0.28
Talc	0.00	0.00	0.03	0.00	0.00	0.00
Chlorite	0.25	0.33	0.47	0.00	0.01	0.01
Kaolinite	0.06	0.08	0.10	0.00	0.00	0.00
Epidote	0.08	0.10	0.45	0.12	0.03	0.04
Titanite	0.01	0.01	0.02	0.03	0.00	0.00
Carbonates	0.00	0.00	0.00	0.00	0.00	0.00
Apatite	0.01	0.01	0.02	0.00	0.00	0.00
Monazite	0.00	0.00	0.01	0.00	0.00	0.00
Rutile	0.00	0.00	0.02	0.00	0.01	0.01
Pyrite	0.39	0.44	0.89	0.05	0.01	0.00
Sphalerite	0.01	0.01	0.02	0.00	0.00	0.00
Molybdenite	0.02	0.02	0.17	0.00	0.00	0.00
Chalcopyrite	0.01	0.03	0.03	0.02	0.00	0.00
Pentlandite	0.00	0.00	0.00	0.00	0.00	0.00
Goethite	0.01	0.00	0.02	0.03	0.00	0.00
Unclassified	0.46	0.47	0.46	0.00	0.00	0.00
Total	100.00	100.00	100.00	100.00	100.00	100.00
Amount of measured particles	24625	24766	24930	26012	26222	25510

Table 9. Modal mineralogy of Luopioinen samples before and after purification (wt%).

Figure 38. Graphite grains size distribution of Luopioinen samples before purification.

Figure 39. Graphite grains size distribution of Luopioinen samples after purification.
Liite 6 Akkutestaus Geologian tutkimuskeskuksen toteuttamaan Green Minerals-projektiin

Graphite Report

Project name: Akkutestaus Geologian tutkimuskeskuksen toteuttamaan Green Minerals -projektiin

20.8.2020

Juho Välikangas

Tao Hu

Marianna

Hietaniemi Ulla Lassi

University of Oulu, Kokkola University Consortium Chydenius

12 CONTENT OF THE REPORT

- 1. Objectives of the work
- 2. Experimental
- 3. Results and discussion
- 4. Conclusions

References

1. Objectives of the work

The aim of project was to determine the electrochemical performance of graphite materials in Li-ion cell application. The graphite materials under study were Heinävesi midfraction, LT24-32, sieved version of LT24-26<25µm, sieved version of Lt24-26 25µm-40µm and commercial graphite (Ref.) as reference material. In addition to cell assembling (half-cells and full cells), physical properties of the samples were also characterized by particle size analyzer (PSA), tap density instrument (T.de) and field emission scanning electron microscope (FESEM).

2. Experimental

2.1 Electrode preparation

Electrode slurry was made by mixing dry components and binder, in ratios shown in Table 1, and n- methyl-2 pyrrolidone (NMP) as solvent in planetary type mixer. The mixed slurry was spread (coated) on copper foil, using mechanical slurry spreader with fixed spreader height. Coating wet thickness was 180µm. Electrode foil was dried for 1 hour at 50°C on the heat plate and 12 hours at 80°C in vacuum oven. After the drying, the foil was calandered once. The electrode compositions and dry mass percentage of the slurry are shown in Table 1.

Sample	Conductivity carbon	PVDF	Graphite	Dry mass	Electrode Loading	
	%	%	%	%	mg/cm2	
Ref.	4	4	92	38,5	5,92	
Heinävesi midfraction	4	4	92	38,5		
LT6 Käpysuo	4	4	92	38,5	4,38	
LT7 Käpysuo	4	4	92	38,5	4,78	
LT11 Käpysuo	4	4	92	38,5	4,60	
LT12 Käpysuo	4	4	92	38,5	4,77	
LT13 Käpysuo	4	4	92	38,5	4,71	
LT14 Käpysuo	4	4	92	38,5	5,01	
LT24 Käpysuo	4	4	92	36.5	5,94	
LT25 Käpysuo	4	4	92	36	5,07	
LT26 Käpysuo	4	4	92	35.5	4,81	
LT27 Käpysuo	4	4	92	36	4,51	
LT28 Käpysuo	4	4	92	36	4,71	
LT29 Käpysuo	4	4	92	36	4,67	
LT 30 Takkula	4	4	92	36	5,33	
LT 31 Takkula	4	4	92	36	5,29	
LT 32 Takkula	4	4	92	36	3,43	
LT (24-26) <25µm	4	4	92	36	5,02	
LT (24-26) 25-40µm	4	4	92	36	3,42	

Table 1. Electrode composition and dry mass percentages of slurry.

2.2 Electrochemical measurement

Electrochemical performance was tested in coin cell and pouch cell. Coin cell was half-cell type, prepared with metallic lithium as counter electrode.

Pouch cell was full cell type, prepared with commercial cathode material LiNi0.88Co0.09Mn0.03O2 (NCM) Electrolyte was commercial electrolyte designed for graphite – NCM cells. Pouch cells are charged to 4.2V and discharged to 2.8V.

Testing program for the pouch cells includes formation cycles at low C rate and rate performance cycles. Long-term cycling tests for the Ref sample include 2 x (100 cycles at 1C rate, capacity control at 0.2C, and 100 cycles at 0.5C and capacity control at 0.2C). Testing program for LT samples includes 4 x (100cycles at 1C rate, and capacity control at 0.2C).

2.3 Particle size analyzer

Particle size was measured using laser diffraction particle size analyzer (Malvern Mastersizer 3000). In the calibration of the device, the reference sample was used.

2.4 Tap Density

Tap density was measured according to the standard measurement using instrument (ERWEKA SVM 222) with stroke high of 3mm and number of strokes 3500.

2.5 Field emission scanning electron microscope

The FESEM images were taken by *Zeiss Sigma* field emission scanning electron microscope, with 15 kV voltage.

3. Results

3.1 Particle size, tap density and moisture measurement results

Physical properties of materials are shown in Table 2. Heinävesi and LT samples show lower tap density compared with the reference sample.

Sieved sample LT24-26 <25µm show similar particle size distribution with reference sample.

Table 2 Physical properties of tested materials

Sample name		PSA	T.de	H2O	
	D10	D50	D90	g/ml	%
Ref.	11,9	20,5	36,4	1,09	0,007
Heinävesi midfraction	66,6	145	258	0,65	0.1
LT6 Käpysuo	12,10	37,30	95,40	0,49	0,398
LT7 Käpysuo	16,60	54,80	132,00	0,59	0,255
LT11 Käpysuo	17,10	55,00	155,00	0,52	0,180
LT12 Käpysuo	15,60	43,40	113,00	0,43	0,046
LT13 Käpysuo	15,30	41,70	107,00	0,40	0,048
LT14 Käpysuo	16,70	48,60	144,00	0,45	0,042
LT24 Käpysuo	13,9	63,2	197	0,55	0,025
LT25 Käpysuo	24,7	86,3	216	0,54	0,014
LT26 Käpysuo	33,8	119	246	0,54	0,013
LT27 Käpysuo	14,1	50,7	185	0,56	0,084
LT28 Käpysuo	16,6	54,3	166	0,49	0,064
LT29 Käpysuo	10,8	32,5	105	0,4	0,084
LT 30 Takkula	14,6	49,2	144	0,53	
LT 31 Takkula	30,1	72,5	160	0,58	
LT 32 Takkula	41,4	102	194	0,55	
LT (24-26) <25µm	10,2	21,3	39,7	0,32	0,04
LT (24-26) 25-40µm	29,1	48,9	77,7	0,46	0,018

3.2 FESEM images

Figures 1 and 2 show the FESEM images for the reference and Heinävesi midfraction samples respectively. Information about referce material was found from book chapter ¹ "Hitachi Chemical Co. has developed artificial graphite with isotropically lined up, compressed graphite crystals within its grains and a large number of fine pores between the grains; the material provides a discharge capacity of 362 Ah kg⁻¹."

Fig 1. FESEM images of reference material with magnitudes 2500x and 10000x

Fig 2. FESEM images of Heinävesi graphite sample with magnitudes 500x and 2500x

Figures 3 - 11 shows Fesem images for the different LT samples.

Fig 3. FESEM images of LT 24 graphite sample with magnitudes 2500x and 10000x

Fig 4. FESEM images of LT 25 graphite sample with magnitudes 2500x and 10000x

Fig 5. FESEM images of LT 26 graphite sample with magnitudes 2500x and 10000x

Fig 6. FESEM images of LT 27 graphite sample with magnitudes 2500x and 10000x

Fig 7. FESEM images of LT 28 graphite sample with magnitudes 2500x and 10000x

Fig 8. FESEM images of LT 29 graphite sample with magnitudes 2500x and 10000x

Fig 9. FESEM images of LT 30 graphite sample with magnitudes 2500x and 10000x

Fig 10. FESEM images of LT 31 graphite sample with magnitudes 2500x and 10000x

Fig 11. FESEM images of LT 32 graphite sample with magnitudes 2500x and 10000x

Figure 12 shows sieved <25µm version of LT 24-26 samples. Figure 13 shows sieved 25µm-40µm version of LT 24-26 samples.

Fig 12. FESEM images of LT 24-26 <25 μm graphite sample with magnitudes 2500x and 10000x

Fig 13. FESEM images of LT 24-26 25µm-40µm graphite sample with magnitudes 2500x and 10000x

Figure 14 shows comparison of fesem images for LT 25, LT 24 and sieved samples.

Fig 14. FESEM images of LT 25, LT 24, LT (24-26) 25-40µm and LT (24-26) <25µm graphite sample with magnitude 500x

3.3 Electrochemical measurement

Table 3 compares coin cell results for the different graphite materials. Heinävesi midfraction and LT samples shows lower capacity than reference material.

LT samples show quite similar results with sieved version of LT 24-26 at low current 0.01/0.03C, however at higher current 0.1C sieved versions show higher capacity and its clear that particle size of LT samples limits the capacity (Fig 15)

Sample	1st cycle n	nAh/g	1 cycle eff.	4 th. Cycle r	4 th. cycle Eff.	
	DC 0.01V @0.01C	CC 2.0V @0.03C	%	DC 0.01V @0.1C	CC 2.0V @0.1C	%
Ref.	443,35	382,72	86,32	360,60	357,75	99,21
Heinävesi midfraction	432,68	361,24	83,49	331,77	326,81	98,50
LT6 Käpysuo	507,3	349,5	68,88	326,0	321,8	98,71
LT7 Käpysuo	514,9	347,9	67,56	317,1	311,9	98,36
LT11 Käpysuo	498,3	353,3	70,91	335,2	332,4	99,15
LT12 Käpysuo	495,3	354,8	71,64	338,1	334,7	98,99
LT13 Käpysuo	495,8	354,2	71,43	325,4	322,2	99,00
LT14 Käpysuo	486,1	358,9	73,84	328,5	325,1	98,95
LT24 Käpysuo	404,07	365,08	90,35	315,06	313,88	99,62
LT25 Käpysuo	408,98	372,41	91,06	323,74	321,92	99,44
LT26 Käpysuo	403,85	370,08	91,64	272,23	270,94	99,53
LT27-1 Käpysuo	444,68	363,53	81,75	339,93	337,70	99,34
LT27-2 Käpysuo	444,59	362,52	81,54	344,00	341,56	99,29
LT28-1 Käpysuo	435,68	364,10	83,57	342,06	339,74	99,32
LT28-2 Käpysuo	430,54	359,19	83,43	336,60	334,52	99,38
LT29-2 Käpysuo	445,32	360,05	80,85	344,45	341,78	99,22
LT29-1 Käpysuo	442,44	358,90	81,12	341,57	339,09	99,27
LT 30 Takkula	400,49	362,73	90,57	334,79	333,27	99,54
LT 31 Takkula	393,10	360,25	91,64	326,97	325,51	99,55
LT 32 Takkula	399,19	365,17	91,48	310,83	308,98	99,41
LT 32 Takkula	402,95	366,69	91,00	320,55	318,64	99,40
LT (24-26) <25µm-2	418,45	372,14	88,93	354,05	352,01	99,42
LT (24-26) <25µm-1	410,02	368,04	89,76	352,34	350,85	99,57
LT(24-26) 25-40µm-2	412,69	372,88	90,35	350,67	349,26	99,60
LT (24-26)-25-40µm-1	415,79	376,71	90,60	355,37	353,72	99,54

Table 3. Coin cell discharge and charge specific capacities of graphite materials (mAh/g).

Fig 15. Correlation of particle size and specific capacity of all tested material.

Pouch cell results of the tested materials are shown in Table 4 and 5. As can be seen in Table 4, 0.1C discharge rate shows the highest capacity for the LT24 sample. LT 24 and reference material shows better performance at higher discharge rates than other samples. However for the high c-rate tests electrode preparation and composition should optimize for different materials.

First charge capacity show that LT24 cell was prepared with lowest anode/cathode capacity ratio and LT32 with highest anode/cathode capacity ratio.

able 4. Pouch cell charge and dischar	ge specific capacities for the f	first cycle and discharge	capacities at different rates.
---------------------------------------	----------------------------------	---------------------------	--------------------------------

Sample	Firs cycl	t e	Eff	Charge 0.2C + 0.015C									
	Ch 0.03C +0.015C	Dc 0.1C	%	DC 0.2C	DC 0.5C	DC 1.0C	DC 2.0C	DC 3.0C	DC 5.0C				
Ref.	422,2	363,5	86,1	356,2	343,7	331,5	313,3	291,0	211,3				
LT24	439,2	384,8	87,6	379,6	362,0	346,2	322,6	295,8	241,6				
LT25	416,9	364,0	87,3	360,2	344,2	329,4	307,0	274,7	194,9				
LT26	405,1	352,2	86,9	350,5	334,7	320,5	296,9	263,9	189,8				
LT27	365,8	289,5	79,1	286,5	282,3	275,8	259,8	239,4	196,1				
LT28	371,6	300,7	80,9	296,0	290,2	281,3	260,9	235,1	184,8				
LT29	359,5	278,4	77,5	274,0	268,8	262,2	246,2	226,2	183,0				
LT30	402,4	343,2	85,3	333,5	313,9	297,5	260,1	203,1	121,0				
LT31	394,0	335,0	85,0	327,5	309,9	292,0	232,4	165,9	76,6				
LT32	349,3	303,0	86,7	294,7	282,1	270,5	252,3	229,2	177,5				
LT <25µm	389,4	339,6	87,2	334,4	320,3	308,5	291,4	260,7	187,5				
LT 25- 40µm	396,5	340,7	85,9	333,2	316,8	303,9	288,3	269,5	224,7				

Capacity retention data for pouchcells are shown in table 5. Reference material show highest capacity retentios. LT 28 sample prepeared with higher anode/cathode ratio show good retention.

Table 5. Pouch cell capacity retention every 100 cycles

sample	First	Cycle	Eff.	1st. Caj	p. Check	Cap. Ch Cy.	eck 100	x 100 Ret. Cap. Check 200 Cv.		Ret.	et. Cap. Check 300 Cv.		Ret.	Cap. Check 400 Cy.		Ret.	
	CC mAb/g	DC mAh/g	%	0.2C Cc	0.2C Dc	0.2C Ce	0.2C Dc	%	0.2C Cc	0.2C Dc	%	0.2C Cc	0.2C Dc	%	0.2C	0.2C Dc	%
Ref.	422,2	363,5	86,1	356,6	356,4	338,0	339,3	95,2	330,0	332,4	93,3	319,9	325,9	91,4	317,6	319,3	89,6
LT24	439,2	384,8	87,6	380,0	379,1	336,5	339,5	89,5	326,9	329,0	86,8	319,7	321,4	84,8	314,3	316,0	83,3
LT25	415,9	366,1	88,0	360,9	360,4	329,3	330,2	91,6	317,9	318,6	88,4	308,9	309,6	85,9	301,7	302,3	83,9
LT26	405,1	352,2	86,9	351,1	350,8	303,8	304,7	86,9	289,7	290,5	82,8	278,7	279,5	79,7	270,3	270,9	77,2
LT27	365,8	289,5	79,1	286,8	285,7	265,3	265,2	92,8	258,3	258,2	90,4	249,7	249,3	87,3	242,1	242,1	84,7
LT28	371,6	300,7	80,9	296,6	295,1	272,4	272,3	92,3	265,5	265,4	90,0	260,7	260,7	88,3	257,0	257,0	87,1
LT29	359,5	278,4	77,5	274,2	272,8	243,6	240,5	88,1	228,0	228,0	83,6	218,2	212,7	78,0	209,7	209,8	76,9
LT 30	402,4	343,2	85,3	333,7	332,4	315,8	317,5	95,5	301,0	302,0	90,8	288,2	289,3	87,0	277,1	278,2	83,7
LT 31	394,0	335,0	85,0	327,9	327,0	296,7	300,9	92,0	283,9	287,6	88,0	273,1	276,3	84,5			
LT 32	349,3	303,0	86,7	295,2	295,2	272,2	274,2	92,9	255,8	259,3	87,8	249,6	250,9	85,0			
LT (24-26) <25µm	389,4	339,6	87,2	334,7	333,7	314,1	314,2	94,2	301,2	301,3	90,3	292,7	292,9	87,8	284,7	284,9	85,4
LT(24-26) 25- 40μm	396,5	340,7	85,9	333,8	332,6	316,2	316,8	95,3	301,0	301,2	90,6	289,9	290,0	87,2	280,3	280,6	84,4

Figure 16 shows the capacity retention of cathode material in graphite-NCM cells. Capacity fading during cycling for the LT samples is higher than ref. sample. Sieved <25µm version of LT sample show highest discharge capacity for the cathode material. However, anode/cathode capacity ratio is higher for the sieved sample compared to ref. sample as we can see in fig.17. Higher anode/cathode ration means that graphite is not so fully charged as sample with lower ratio. Different Anode/capacity ratios depending on the different size of the electrodes used.

Figure 16. Specific discharge capacity of cathode in NCM/graphite cells vs. cycles.

Figure 17 shows the capacity retention of anode material in graphite-NCM cells. LT-24 sample show highest capacity for the anode material, however capacity fading for the LT24 sample is very high at beginning of the test.

Figure 17. Specific discharge capacity of anode in NCM/graphite cells vs. cycles

Testing program includes formation cycles at low C rate and rate performance cycles (not shown in figures). Long term cycling tests for the Ref sample include 2 x (100 cycles at 1C rate, capacity control at 0.2C, and 100 cycles at 0.5C and capacity control at 0.2C) Testing program for LT samples includes 4 x (100cycles at 1C rate, and capacity control at 0.2C).

1/1

26.9.2023

4. Conclusions

- Tap-density for the LT samples is lower than reference material. High tap density is very important for the energy density on the electrode, but also for the slurry and electrode fabrication process.
- FESEM images of LT samples show different size of graphite flakes.
- Electrochemical performance of half cells show clear correlation with particle size. At higher current materials with big particles show weak properties. LT samples did not show as good properties compared to reference sample. Sieving the material to smaller size improves performance almost same level with reference material.
- Pouch cell results show that it is possible to charge and discharge same amount of lithium in to the LT and reference graphite structures. However, capacity retention for the LT samples is not as good as it is for the reference material.
- Considering that the electrode preparation was optimized for the reference material, it might be
 possible to achieve better electrochemical results for the LT samples by optimizing slurry and
 electrode preparation. However, when viewing all the results it seems that reference graphite
 sample have better performance than other samples.
- 1. Peter Kurzweil, Klaus Brandt, in Electrochemical Power Sources: Fundamentals, Systems, and Applications,