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1 INTRODUCTION

Imputation of data is an important field of statistical analysis and is represented by a process of “filling
the data gaps” where data are either, missing, incorrect or inconsistent because of errors in their
editing or unwanted external bias. Imputation comprises both the determination of missing values and
the replacement value mechanism—defining what needs to be imputed in the gaps. The two are
fundamental to ensure that estimates are of high quality and plausible (Ferguson and Winkler 2000).

If we consider the statistician methodological perspective (Cheema 2014; Enders 2010) the problem of
missing information (MI) has been subject of debate and development for nearly a century (e.g., Wilks
already in 1932 proposes the earliest application of maximum likelihood imputation in bivariate
analysis). Despite the long history, major advances and statistical tools were developed in the 1970s in
response to the digital revolution. These later developments considered more complex imputation
methods, which marked sharp improvements in the methodology. During this period, Rubin (1976)
defined a theoretical framework for M| problems that is still valid today (e.g., Madani and Bazarbekov
2021). If we survey the range of imputation techniques (e.g., Enders 2010), we can find a multitude of
approaches. In this context, a division exists between techniques that work with data characterized by
randomly distributed Ml and techniques that work with data characterized by systematic distributions
of M, controlled by variable(s)-missingness interdependences. This latter case is common in mineral
exploration and mining datasets. Often the data are not missing completely at random (MCAR), but
rather missing not at random (MNAR); see Rubin (1976) for appropriate definitions and da Silva and
Costa (2019) for an application.

Choosing an appropriate method is partly directed by the distribution of MI, and in recent time it has
been restricted to the most advanced methods of maximum likelihood (Enders 2010) and multiple
imputation (van Buuren and Groothuis-Oudshoorn 2011), with the limited exception of using stochastic
regression imputation algorithms (Enders 2010; van Buuren and Groothuis-Oudshoorn 2011) which
however do not always perform well with missing at random (MAR) and MNAR data (Enders 2010).
Once the listed methodologies are implemented, they provide a reconstruction of the data distribution
that partly solves the problem of missingness (in the sense that the replaced values might be still
different from the true, real values), often resulting in a bias that can be measured if multiple
simulations involving sets of amputations and subsequent imputations are carried out to explore
solution variances against the original data.

Using an approach comparable to earlier work conducted on the assessment of imputation
methodologies, synthetic data were generated with variable parametrizations (e.g., different types of
M) to simulate different missingness scenarios and allow sensitivity analysis to understand the effect
of missingness and its replacement with imputed values, when considering geological data
distributions representing grade and tonnage of ore deposits. Results were compared against a
regression model developed on the mineral resources dataset (represented by complete-case data),
to obtain an appreciation of the quality of imputations performed. The final objective of minimizing
bias together with the need of identifying appropriate imputation algorithms were key aspects to this
analysis. All these tests are useful to characterize the behavior of imputation methods and assist the
selection of an appropriate imputed dataset, subsequently used to construct a grade and tonnage
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model, an important phase of the three-part method (Singer 1993; Singer and Menzie 2010) in
undiscovered mineral resources assessments (UMRA).

This report illustrates an experimental workflow that attempts the integration of imputation with the
representation of grade and tonnage data in logistic form. A summary of the simulations conducted on
synthetic data is proposed. Simulations were generated from original geological grade and tonnage
information derived from a public dataset on Au deposits sited in the Chugach region, located in

central-southern Alaska, USA (Figures 1, 2).
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Figure 1: Tectonic plutonism on the Chugach-Prince William terrane (a), and geological representation of the plate margins
and overall arc-contractional setting of the Chugach and adjacent accretionary terranes. Porphyry and epithermal Au-Ag
mineralization (b) occur in both the Chugach and Wrangellia terranes, adapted from (Kepezhinskas et al. 2022).
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Further details of these experiments are explained below in the methodology and simulations sections.
In the final part, the report presents some of the most relevant results obtained by constructing
multiple grade fitting models for a univariate missing information case that most closely resemble the
original data missingness with only Ag grades being affected by MI. More in depth analysis and
discussion is then provided to explain the implications of these experiments when considering grade
and tonnage data and their statistical estimation.
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Figure 2: Tonnages and grades of Chugach-type low- sulfide Au-quartz vein deposits, after Bliss (2004).

2 METHODOLOGY

The workflow illustrated in Figure 3 includes two distinct phases. Firstly, a set of simulations carried
out on multiple synthetic datasets employing the packages MICE (van Buuren and Groothuis-
Oudshoorn 2011) and “norm2” (Schafer 2021; Takahashi 2017) to perform different imputation
routines. This phase helps with algorithm’s selection and evaluation. The second phase instead focuses
on the construction of grade and tonnage curves based on the imputed data and their comparison
against the complete-cases model and the listwise deletion model. In section 2.2, we discuss some of
the differences and applicability. Finally, simulations of MI imputation algorithms were compared to
listwise deletion (using the omit.na R-package of Figure 4 to remove Ml rows).
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Workflow adopted to process the grade and tonnage data (v 1.3)
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Figure 3: Proposed workflow adopted to merge imputation statistics with UMRA. Phases 1 to 5 represent simulation stages.
From 6 to 8 the workflow considers the validation of the results against listwise deletion and integration of selected
imputation results within grade and tonnage estimation curves.

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finland

L

GTK



Geological Survey of Finland Geological data imputation 5/16

December 26, 2022

R packages
framework

Identify Missing Values

.

| Delete Missing Values |

e

Maximum Likelihood
Estimation

v

| Impute Missing Values |

: l |

Casewise (Listwise) Available Case Single (simple)
(Pairwise) Imputation

l

Multiple Imputation

pairwisesto
ete.obs

Figure 4: Schematic of R packages implemented in the simulations with specific imputation methods and to document the
distributions of missing information and relative value replacements via imputation or row omissions when considering the
listwise deletion approach.

2.1 Classification of missing information

Three district mechanisms of Ml are commonly recognized (Rubin 1976; Enders 2010). If the Ml is
completely independent (a random distribution of gaps) it is commonly considered a missing
completely at random (MCAR) case. A geological example could consider several geologists that
worked on a drilling database and did not completely record the logging details (Geekiyanage et al.
2020). Another more structured distribution is the missing at random (MAR) case. This is a case of
dependency of Ml in a variable on a single or multiple external, measured variables, but not on the
variable itself (e.g., Enders 2010). The geologists may decide to send to the lab for chemical analysis
specific intervals of core, and this will be commonly decided upon examination of specific logging
information (e.g., available rock classifications). Finally, missing not at random (MNAR) considers the
case of Ml on a variable as dependent on the variable itself (e.g., Enders, 2010). For instance, a
geologist may decide to assay an interval of core that is close to existing mineralization. Recorded ore
grades are then influencing the distribution of Ml and the planning and design of geochemical studies
(da Silva and Costa 2019).

MAR, MCAR and MNAR distributions were reconstructed using the produce_NA R package, see Figure
5 for an explanation of the different types of MlI. A total of 2 cycles with 100 and 1000 simulations for
each parametrization were generated repeatedly over synthetic Ml data to evaluate the improvement
of algorithm convergence and relative bias minimization (this report discusses only the first cycle of
analyses with 100 simulation rounds). Simulation rounds considered the effect of Ml as well as different
sampling rates (Sim. N = 25, 50, 100) of the posterior distribution (van Buuren and Groothuis-
Oudshoorn 2011). Results of the first batch of 100 cycles is reported in Table 1. Before discussing the
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results, we introduce the 3 algorithms considered in the reported experiments and discuss a series of
validation measures.

MCAR: Missing Completely at Random MAR: Missing at Random MNAR: Missing Not at Random

vl v2 vl v2 vl vl

[] High [ ] High [] High
N[ [ N ]
O H O N O
H A H N H N
BE B Bl oo

Ml independent Ml Conditional to v2 MI Conditional to v1
V1 contains Ml when v2 is high v1 contains MI when high

Figure 5: Two variable (v1, v2) examples of possible relationships of Ml in variable v1 with a second variable (v2): MCAR
case shows Ml unrelated to v2 magnitude (high-low); MAR case shows v1 conditioned by v2 and constrained to high values
of v2; MNAR case illustrates how Ml in v1 is conditioned by the values of v1.

2.2 Imputation algorithms and validation

The MICE package (van Buuren and Groothuis-Oudshoorn 2011) offers a variety of imputation
algorithms and a set of statistical measures of the quality of imputation performed using biases. Two
univariate, linear regression algorithms were used in these simulations (norm.predict and norm.nob).
They were compared with another method, predictive mean matching (pmm), that performs better
when the correlation among variables is weak or non-significant (Morris et al. 2014), which often
occurs when we have higher frequencies of Ml gaps or if the MI distributions are cross-variable
independent. The pmm algorithm employs multiple imputation with chained equations and is less
dependent on the normality assumption, a condition typical of linear regression models. Multiple
imputation (pmm) is expected to perform better than single pass imputation methods when the
distribution of Ml is of MAR or MNAR type (Enders 2010). These methodologies were also compared
with parametric estimation models based on norm2 R package, which represents an example of
maximum likelihood (ml) imputation (Schafer 1999, 2021).

Different statistical measures of bias and residual variance were used to allow models’ comparison.
Measures include raw bias (RB), percent bias (PB), coverage rate of the confidence interval (CR),
average width (AW) and root mean squared error (RMSE). The first two metrics express the difference
(bias) between the expected values of the regression coefficients estimates, and what is considered
the true value. PBrescales the result as a normalized percentage difference (see Table 1) with an upper
limit of 5% (0-5% range results are considered acceptable). CR represents the proportion of confidence
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intervals that contain the true value. It should be equal or higher than the nominal value (95% in Table
1 or 0.95). AW indicates the statistical efficiency. It should be as narrow as possible however
maintaining CR over the nominal value. RMSE represents a compromise between bias and variance;
although widely in use, it was not used to compare the algorithms (refer to van Buuren 2018 for further
details on RMSE limitations in imputation studies).

An additional test was carried out to evaluate a MNAR specific regression methodology, accounting for
the common problem of under sampling and under representation of barren domains or low-grade
poorly endowed areas (see Figure 6 for some examples of sampling bias occurring in mining and
mineral exploration environments). These examples show that in most cases input data will be
overestimations of the real crustal endowments of a commaodity. It is customary to apply a correction
to this deficiency by either empirical fixed rescaling of the data or alternatively as implemented in this
analysis by applying a correction that relies on a linear fit (mnar.norm R package).

Ore deposit example of MNAR Exploration example of MNAR UMRA Example of MNAR
A High - X grade - Low B High - X signal - Low C High - X probability - Low
A ‘ A /] | ] /)
l Densely Sampled I | Undersampling |
—

Regional Anomaly
Undersampling

Ore deposit

Crustal Enrichment Domains
Undersampling

N

In mineral exploration, one of the

In mining, one of the variables of
interest often has a very low-
grade zone within the deposit,

variables of interest often has a
very low-signal zone within the
targeting domain, and it is

Small deposits are more
abundant than large (high grade)
deposits. It is likely that a grade

and tonnage model will under-
represent smaller deposits.

uncommon to conduct
exploration work on it.

and it is not beneficial to sample
such a zone.

Low-grade underapresented
(Da Silva et al. 2018)

Low-signal underapresented Low-tonnage-grade underapresented

Figure 6. In many economic geology exploration and mining cases the distribution of missing data is conditioned by
knowledge acquired during past exploration programs and mining activities. Conceptually when conducting resource
definition studies (A) there is a tendency to oversample domains with proven resources. If we consider an exploration
program (B) usually many surveys are carried out in areas that have shown potential representing a form of localization of
exploration knowledge that biases missingness. The last example is an UMRA study (C), in most cases these assessments
will report information on highly endowed terranes discounting areas that are assumed to be poorly endowed.
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3 SIMULATIONS

The simulation performed considered a complex set of parameters presented in Table 1. We briefly
outline the main findings based on the bias and variance measures discussed in 2.2 and observed in a
variety of experiments.

3.1 Experimental setup

The statistical workflow included a series of pre-processing steps before simulation (Figure 3). The
data were normalized using a log-transformation to approximate normality (a requirement and
limitation of some of the imputation algorithms implementing linear regression or parametric
modelling).

Complete-case data were used to develop a multiple-regression model that represented the true
benchmark for the simulations. Biases and variances were then calculated by comparing the
regression’s fits done on multiple imputations outputs after amputation of the complete dataset (van
Buuren 2018). A total of ~118,800 simulations, obtained from 216 parametrizations were run to
evaluate sampling uncertainty of the posterior distribution and the variable distribution of Ml in the
synthetic data (Table 1 presents a preliminary summary of top results based on 100 simulations
rounds).

3.2 Simulation results

The results obtained show a broad variability of biases and variances. These differences allowed the
classification of cases that were likely representative of “good” imputations. If we restrict the analysis
of the results to the summary in Table 1, we observe a range in RBs of one to two orders of magnitude
around the zero-threshold value, indicating minimal bias and an inverse relationship with the sampling
number n (larger sub-samples offer a better representation of the posterior distribution reducing bias
of approximately one order of magnitude cfr. Rows 1 and 2 of Table 1 in the RB field or ~10% of the
PBs). Coverage rates oscillate between a minimum of 0.26 and 0.97 with a total of 9 cases with either
equal or higher CRs than the nominal value. All these results are either obtained with pmm or norm.nob
imputations.

The largest AW bounds are found in the standard regression imputations (last three rows of Table 1)
indicating complete failure of these solutions (close to infinite or unrealistically large bounds). The
narrower AW are instead around 1.75 down to a minimum of 0.79 among the top 9 cases, with optimal
PBs ~5% or smaller. AW were useful to assess the statistical efficiencies and showed that pmm is the
most appropriate when missing information is distributed across all variables (see Figure 7 illustrating
various examples of synthetic Ml distributions across the considered variables v1-v3 representing
incomplete grade and tonnage data). Stochastic regression imputation is however the best
methodology for cases with a single variable affected by missingness. If we consider the type of Ml (as
expected) lower biases will occur in the most complete data with either MAR or MCAR type
missingness.
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Another set of simulations considered the improvement of modelling results in case of MNAR type
data. Recent research indicated that if appropriate corrections are applied in the final part of the
workflow this could provide a closer fit to the original complete case data (e.g., da Silva and Costa,
2019). These simulations included an assessment of bias (Figures 8 and 9) to evaluate the variation in
model fit, depending on the algorithm of choice. Five distinct methodologies were used with MNAR
type simulations.

Index

0 10 20

| S I E— —

A B G

-1 |NHf\|||\ | \W\
ot o
Tl

MCAR Slmulatlons MAR Slmulatlons MNAR Slmulauons

Figure 7. MCAR-MAR-MNAR simulations of synthetic Ml distributions. Red pixels indicate synthetic Ml distributions in the
Au data from Bliss (2004) with darker greys indicating the highest values of tonnage (v1), Au grade (v2) and Ag grade (v3).
Data matrices represent a 3 variables model with 23 samples corresponding to the number of deposits (each pixel represents
a sample; the data are sorted by tonnage). Six simulations (in each Ml, MCAR, MAR and MINAR) were generated to account
for the variable proportion of Ml (A, B: 10-15%, C, D: 35%, E, F: 55-60% of Ml) and consider single (target) variable (A-C-E)
and cross-variable cases (B, D, F) with Ml distributed in all variables.
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A final step of experimentation considered a comparison of imputation methods against listwise deletion
to evaluate the difference in Ag grade estimates (see Figures 10, 11 for further details on the results).

Table 1. Summary of simulation results, top rows (nrow = 30) with less than 10% bias included (data sorted by CR = coverage
rate). Total number of experiments ne = 108 with Sim N = 100, corresponding to a total of 10,800 simulations (ne*Sim N).
Simulations involved Ml over a single (target) variable [001] or equally distributed on three variables [111]. Sampling rate
considered resampling with subpopulations with n = 50, 100 samples per simulation. Each experiment considered also
variable percentages (p) of Ml [15, 35, 55 %] (RB = raw bias, PB = percent bias, CR = coverage).

nvar p Ml  Sim  Imputation
Mi n RB PB CR AW RMSE (%) Type N Method

[111) 100 -0.003 097 097 1.00 023 15 MAR 100 pmm

[001) S50 0.020 7.91 097 1.14 028 15 MAR 100 norm.nob
[001) 100 0.008 3.05 096 080 0.19 15 MAR 100 norm.nob
[111) 100 -0.009 352 096 093 024 15 MAR 100 norm.nob
[001) 100 0.012 467 096 0.79 0.19 15 MAR 100 pmm

[001) 100 0.014 527 096 092 024 35 MCAR 100 norm.nob
[111) 100 0.021 832 096 095 024 15 MCAR 100 pmm

[111) s0 0.005 1.81 095 175 039 35 MCAR 100 norm.nob
[111) 100 0.018 6.92 095 091 024 15 MCAR 100 norm.nob
[001) 100 0.017 6.42 094 080 021 15 MCAR 100 norm.nob
[001] S50 0.023 8.76 094 097 028 15 MAR 100 norm.predict
[111) S0 0.023 9.07 094 140 032 15 MAR 100 norm.nob
[111) 100 -0.001 041 093 127 031 35 MCAR 100 norm.nob
[001) 100 0.021 8.04 093 0.81 021 15 MCAR 100 pmm

[001) 100 0.020 7.62 092 068 021 15 MCAR 100 norm.predict
[001) S50 0.023 875 092 1.16 030 15 MCAR 100 norm.nob
[001) 100 0.009 344 091 067 0.19 15 MAR 100 norm.predict
[111) S0 -0.010 391 091 133 032 15 MCAR 100 norm.nob
[001) 100 0.013 5.01 091 089 023 35 MAR 100 norm.nob
[001] S50 0.003 134 087 125 041 55 MNAR 100 norm.nob
[001) 100 0.013 495 087 1.01 030 55 MCAR 100 norm.nob
[001) 50 0.017 6.75 0.87 096 030 15 MCAR 100 norm.predict
[111) 100 -0.001 045 0.80 0.76 0.27 15 MNAR 100 norm.predict
[001) 100 0.018 7.03 0.80 058 023 35 MAR 100 norm.predict
[111) 50 -0.025 957 080 1.02 038 15 MAR 100 norm.predict
[001] 100 0.022 841 077 059 024 35 MCAR 100 norm.predict
[001] 100 0.019 7.34 059 048 030 55 MCAR 100 norm.predict
[111) S50 0.003 1.07 037 inf 093 35 MNAR 100 norm.predict
[111) 100 0.017 6.39 028 inf 128 55 MAR 100 norm.predict
[111) 100 0.001 047 026 inf 151 55 MCAR 100 norm.predict
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Figure 8. Residuals plots of 500 simulations using MNAR synthetic data (low variable values replaced with M| at
variable percentage (a) Ml = 15%, (b) Ml = 35% and (c) Ml = 55% respectively. Boxplots of model performance
based on the 6 regression coefficient estimate derived from synthetic MNAR distributions (100 simulations of Ml
draws at variable Ml percentage and with a sampling rate n = 25). A single variable v3 (Agpt) was amputed to
produce MI-MNAR distributions and subsequently replaced with values obtained from 5 distinct imputation
methodologies (1-5) respectively representing 1 = norm.nob, 2 = norm.predict, 3 = pmm, 4 =ml, 5 = norm.mnar.
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Figure 9. Residuals plots of 500 simulations using MNAR synthetic data (low variable values replaced with Ml at
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based on the 6 regression coefficient estimate derived from synthetic MNAR distributions (100 simulations of Ml
draws at variable Ml percentage and with a sampling rate n = 100). A single variable v3 (Ag,ct) was amputed to
produce MI-MNAR distributions and subsequently replaced with values obtained from 5 distinct imputation
methodologies (1-5) respectively representing 1 = norm.nob, 2 = norm.predict, 3 = pmm, 4 =ml, 5 = norm.mnar.
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Figure 10. Comparative logistic, cumulative distribution functions for different percentages of Ml [(a) 15%, (b)
35% and (c) 55% respectively]. Six cumulative distribution curves are plotted in logarithm scale to allow the
comparison of grade prediction models resulting from different imputation strategies (1 to 5) and compared to
the complete cases fit (original complete data, regression model 6), the empirical cumulative distribution of
complete cases (ECDF) is also reported (red dots). Selected “best” models NARFCS (not at random fully conditional
specification, MNAR) and for the latter at 55% MI norm.predict (standard linear regression, PREDICT LR).
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Figure 11. Comparative logistic, cumulative distribution functions for different percentages of Ml [(a) 15%, (b)
35%, and (c) 55% respectively]. Three curves are plotted in logarithm scale to allow the comparison of grade
prediction models resulting from: (1) listwise deletion of rows containing missing Ag data, (2) the optimal
imputation obtained from earlier comparisons, and (3) the complete cases fit (original complete data). Relative
empirical distributions (ECDF) are also presented for comparison.
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4 DISCUSSION AND CONCLUSIONS

4.1 Factors that should be considered for model selection and their implications

The first aspect that emerges from a closer examination of the results of Ml and imputation simulations
is that sensitivity analysis is a necessary step when implementing imputation for data augmentation
purpose and if solution optimization is a need for the analysis in question. In most cases, sensitivity
tests will be part of the imputation approach as the results are heavily dependent on the input data
considered, thus they may well change if we consider for instance different ore deposit styles that
inherently have unique statistical intercorrelations and Ml distributions.

In particular, the assessment of the “best” algorithms for imputing grade and tonnage data in UMRA
would be best treated by considering the number of deposits (equating to the sampling rate in the
simulations and showing broadly its impact on imputation model performance). For instance, if Figures
8 and 9 (with respectively biases for sampling rates of 25 and 100 synthetic deposits) are compared it
appears clear how a larger simulated, sampling population reduces the performance differences across
different imputation algorithms. This result suggests that the choice of the methodology will be most
relevant when small datasets (small number of deposits) are considered.

In addition, model selection appears to be dependent and requires a close evaluation of the proportion
of Ml present in the data. This is exemplified by a variation in model performances observed if
comparing in both Figures 8, 9 the distances of box plot medians from the complete case fit median
value, which will vary dramatically with increasing proportions of Ml (cf. cases a, b, c). In this context,
it is assumed that lower Ml percentages would reflect more reasonable model performances, since the
algorithms work best in these scenarios where the statistical correlations are partly preserved in the
data.

Another important aspect is to gain an understanding of Ml distributions with respect to internal
(MNAR) and external variable dependency (MAR). The ideal workflow will then examine the existing
data correlations, and the abundance and cross-variable distribution of missing information with
respect to internal and external associations. In the Chugach deposit data, we observed weak
correlations between Ag and Au data (Pearson correlation = 0.47) with missing information being
limited to the Ag variable and having Ml in most cases occurring in lower tonnages, indicating a possible
link of MI to project maturity or deposit size, suggesting at a minimum a MAR type MI distribution.
Further to this, assumptions discussed in Figure 6 which would indicate underestimation bias due to
sampling concentration in domains that are favorable to Au endowment led to consider the
distribution of Ml in Ag grade data likely to be best represented in the MNAR type incompleteness.
These considerations are valuable in the selection of imputation models accounting for the specific
type of MNAR distributions and led to comparisons carried out using the mnar.norm extension
illustrated in Figures 10, 11 where comparative analysis clearly shows improvements in the fit when
considering low (up to 15%) to medium (up to 35%) percentages of missing information (Moreno-
Betancur and Chavance 2016; Tompsett et al. 2018). In this case, these MNAR specific models
demonstrated to be better than multiple imputation pmm and norm2 maximum likelihood, given also
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that only a single variable is affected by missingness, which tends to favor stochastic imputation
(norm.nob, mnar.norm implementations). A close examination of logistic functions representative of
model fits compared to the empirical distribution of complete cases (original data before amputation)
helps further with the evaluation of model performance and illustrates the tendency of most of the
algorithms to lead to overestimation of Ag grades, especially at the lower end of the cumulative
distributions, with the only exception represented by the fit considering a correction due to the MNAR
type MI. A similar overestimation is also observed if we apply the listwise deletion methodology as
illustrated in Figure 11 with an overestimation that is even more pronounced than most of the
considered imputation methods (except mnar.norm) and would lead to grade estimates that could be
overoptimistic, and likely affecting the UMRA models.

4.2 Conclusive remarks

In summary sensitivity analysis should be run on a specific dataset to evaluate several model fits rather
than implementing imputation blindly with a single pass solution, given the expected heterogeneity of
grade and tonnage data. With respect to the methodology of choice, the results obtained agree with
earlier research indicating that even in these relatively simple mineral resource dataset, stochastic
regression imputation and predictive mean matching offer less biased solutions (with pmm being
slightly superior because of narrower confidence bounds and much lower raw biases in cases with small
sampling rate and with elevated MI, which is attributed to the reduction in variable correlations, with
larger MI percentages). In contrast, standard linear regression offers the worst performances with
none of the results returning RB values under the 5% threshold in MAR and MCAR analyses (cf. Table
1). If we consider model selection in the context of the Chugach Au-Ag data, it is safe to consider
appropriate the use of the mnar.norm algorithms given to relatively moderate amount of Ml and its
inferred MNAR-type. Despite this appearing to be the optimal selection, these results should not be
translated to other resource data of similar nature (for instance applying the same algorithm to another
epithermal Au-Ag district dataset). It will always be prudent to complete a series of simulations and
compare the results as in some circumstances more than one algorithm could be a viable solution to
the imputation problem or as discussed changes in the correlation structure and its association to
missing information patterns will condition the results of a specific imputation methodology.

In the more general context of evaluating if imputation could effectively improve the UMRA
methodology experimental work suggests that in specific cases (such as Ml distributions that conform
to the MNAR type) the use of imputation could preserve useful information in the original data records,
mitigate the downside effects of listwise deletion method by elimination of bias induced by rows
removal, thus providing more accurate estimation of grade and tonnage models.
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